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Abstract

Gravitational waves are distortions of space-time that have been predicted to exist by Ein-
stein’s General Theory of Relativity. On September 14, 2015, the era of gravitational-wave
astronomy has been opened by the observation of a transient gravitational wave signal
determined to be the coalescence of two black holes. To reach the required sensitivity, the
Laser Interferometer Gravitational-Wave Observatory (LIGO) is equipped with a quadru-
ple pendulum, which is a chain of four suspended masses used to provide seismic isolation.

The research discussed in this work is on the active damping of transverse eigenmode
vibrations of the suspension fibres (also known as Violin Modes), which are standing wave
modes that can be excited by seismic noise, thermal noise, sudden relaxations of mechan-
ical stresses, etc. The vibrational energy from these high-Q modes is transferred to the
suspended test masses along the line of the interferometric beam-axis, at frequencies lying
within the gravitational wave detection bandwidth. The methods explored here are based
on collocated control strategies using piezoelectric force actuation and sensing. The first
approach consists of an axial parametric control that dynamically changes the tension in
the fibre in a way that destructively interferes with the fibre’s transverse vibrations. The
second approach is based on a transverse boundary force control for which classical active
damping schemes designed for linear systems like Integral Force Feedback (IFF) can be
used. The suspension fibre dynamics are derived as well as the interactions with differ-
ent sensor and actuator configurations and technologies using distinct formalisms. The
proposed strategies are simulated numerically based on the latter mathematical represen-
tations and the damping performances are compared to the analytical predictions. The
theoretical outcomes are then validated experimentally on a real plant and the results are
discussed including the limitations of the recommended strategies.

Keywords: violin modes, active damping, collocated control, piezoelectric transducer,
parametric control
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Résumé

Les ondes gravitationnelles sont des distorsions de l’espace-temps prédites par la théorie
de la relativité générale d’Einstein. Le 14 septembre 2015, l’ère de l’astronomie des ondes
gravitationnelles a été lancée par l’observation d’un signal d’onde gravitationnel transitoire
provenant de la coalescence de deux trous noirs. Pour atteindre la sensibilité requise à la
mesure d’ondes gravitationelles, le Laser Interferometer Gravitational-Wave Observatory
(LIGO) est équipé d’une chaîne de quatre masses suspendues servant à l’isolation sismique.

Les travaux abordés dans ce mémoire de fin d’études portent sur l’amortissement actif
des vibrations transversales associées aux modes propres des fibres de suspension (égale-
ment appelés Violin Modes). Ce sont des modes d’ondes stationnaires pouvant être excités
par du bruit sismique, du bruit thermique, des relaxations mécaniques soudaines, etc.
L’énergie vibrationnelle provenant de ces modes à facteur de qualité élévé est transférée
aux miroirs suspendus, le long de l’axe du faisceau interférométrique, à des fréquences
comprises dans la largeur de bande de détection des ondes gravitationnelles. Les méthodes
explorées ici sont basées sur des stratégies de contrôle co-localisées utilisant un actionne-
ment et une mesure de force piézoélectrique. La première approche consiste à effectuer
un contrôle paramétrique axial qui modifie de façon dynamique la tension dans la fibre
pour interférer de manière destructive avec les vibrations transversales de celle-ci. La se-
conde approche est basée sur un contrôle de force transversal pour lequel des techniques
d’amortissement actif classiques conçues pour des systèmes linéaires tels que le Integral
Force Feedback (IFF) peuvent être utilisées. Les équations décrivant la dynamique des
fibres de suspension sont établies ainsi que les interactions avec différentes configurations
de capteurs et d’actionneurs en utilisant des formalismes distincts. Les stratégies proposées
sont simulées numériquement sur base de ces dernières représentations mathématiques et
les performances d’amortissement sont comparées aux prévisions analytiques. Les résultats
théoriques sont ensuite validés expérimentalement sur un système réel et les résultats sont
discutés ainsi que les limites des stratégies proposées.

Mots clés : violin modes, amortissement actif, contrôle co-localisé, transducteur pié-
zoélectrique, contrôle paramétrique
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Samenvatting

Gravitatiegolven of zwaartekrachtgolven zijn fluctuaties in de kromming van de ruimte-
tijd voorspeld door Einstein’s Algemene Relativiteitstheorie. Op 14 september 2015 is het
tijdperk van de zwaartekrachtgolf-astronomie gestart door de waarneming van een zwaar-
tekrachtgolfsignaal dat afkomstig is van een coalescentie van twee zwarte gaten. Om de
vereiste gevoeligheid te bereiken is de Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) uitgerust met een viervoudige slinger, waarin vier hangende massa’s gebruikt
worden om seismische isolatie te bieden.

Het onderzoek dat in dit werk wordt besproken betreft de actieve demping van transver-
sale eigenmode-trillingen van de ophangingsvezels (ook bekend als Violin Modes), staande
golf modi die gedreven kunnen worden door seismische ruis, thermische ruis, plotselinge
relaxaties van mechanische spanningen, etc. De trillingsenergie van deze hoge Q-modi
wordt overgebracht naar de opgehangen testmassa’s in de richting van de interferometrische
laser-as, bij frequenties die liggen binnen de bandbreedte die dient voor de zwaartekracht-
golfdetectie. De voorgestelde methoden zijn gebaseerd op collocated control met behulp
van piëzo-elektrische krachtactuator en meting. De eerste methode bestaat uit een axiale
parametrische controle die de spanning in de vezel dynamisch verandert zodanig dat die
destructief interfereert met de transversale trillingen van de vezel. De tweede methode is
gebaseerd op een transversale krachtregeling waarvoor klassieke actieve dempingsschema’s
ontworpen voor lineaire systemen zoals Integral Force Feedback (IFF) kunnen worden
gebruikt. De dynamica van de ophangingsvezels is afgeleid, evenals de interacties met ver-
schillende sensor- en actuatorconfiguraties en technologieën met behulp van verschillende
formalismen. De voorgestelde strategieën worden numeriek gesimuleerd op basis van de
wiskundige afleidingen en de demping wordt vergeleken met de analytische voorspellin-
gen. De theoretische resultaten worden vervolgens experimenteel gevalideerd op een reëel
systeem en de uitslagen worden besproken samen met de beperkingen van de aanbevolen
strategieën.

Kernwoorden: violin modes, actieve demping, collocated control, piëzo-elektrische
transducer, parametrische controle
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Chapter 1

Violin Modes in Gravitational Wave
Detectors
This introductory chapter provides a brief description of gravitational waves (GW) and
how the LIGO succeeded in capturing the first direct observations of GW. It will then
briefly describe the objective of this master thesis and why it is an important research
question.

1.1 Introduction

The recent measurements of GW have significantly raised excitement and motivation
amongst scientists about the quest for GW. The ability to identify gravitational radia-
tion patterns enables the observation and analysis of astronomical coalescing binaries like
merging black holes or neutron stars, supernovae and pulsars, launching a new era of
gravitational-wave astronomy. According to some theories of quantum gravitational pro-
cesses in the early Universe, it would also allow to collect valuable information about the
early Universe just after the occurrence of the Big Bang and according to other theories,
like the loop quantum cosmology, information about the Universe before the Big Bounce
[12]. In 1916, Albert Einstein predicted the existence of GW using the General Theory of
Relativity. These waves, being a solution to the linearized weak-field equations, can be por-
trayed as a space-time curvature propagating at the speed of light.[1] They are generated
by time variations of the mass quadrupole moment of the source and can be represented
by Equation (1.1). (

∇2 − 1

c2

∂2

∂t2

)
hµv = 0 (1.1)

where the constant c is the speed of light and the tensor hµv represents the metric per-
turbation away from the so-called flat space-time [13]. The astronomical sources of GW
strong enough to be detected by an observatory such as aLIGO include supernovae, coa-
lescing compact binaries, pulsars, and a stochastic background of GW. While the existence
of GW has been demonstrated earlier through the observations of the energy losses of the
binary pulsar system PSR B1913p16 [14], the first direct observation of GW took place
on September 14, 2015 at the LIGO Hanford and Livingston observatories in the United
States (U.S.) and is referred as GW150914 (see Figure 1.1). The gravitational radiation
transients seemed to match relativistic models of compact binary waveforms corresponding
to binary black holes (BBH). This observation was made possible principally thanks to the
significant increase in sensitivity brought by the upgrade of the LIGO detectors, known as
aLIGO. At the time of GW150914, the LIGO detectors were the only ones in active obser-
vational mode being sufficiently sensitive. However, other GW detectors were completed at
the time, including Virgo in Italy, TAMA 300 in Japan, and GEO 600 in Germany which
evolved into a global network of significantly more sensitive and advanced detectors.[1, 15]
Despite the very high performances reached in terms of sensitivity, ground-based detectors

1



2 1.2. LASER INTERFEROMETERS

Figure 1.1 – The gravitational-wave event GW150914 observed by the LIGO Hanford
(H1, left column panels) and Livingston (L1, right column panels) detectors. The second
row shows the projection of the observations in the 35-350 Hz band compared with a
reconstructed model using binary black hole template waveforms (dark gray) and another
one using a linear combination of sine-Gaussian wavelets (light gray). The third row shows
the residuals after subtracting the filtered numerical relativity waveform from the filtered
detector time series. The bottom row is a time-frequency representation of the strain data,
showing the signal frequency increasing over time [1]

.

can only observe astronomical sources of GW with short lifetimes which are characterised
by short wavelengths (< 1 sec). Some sources with longer characteristic time scales or
very low amplitude could only be observed in space using satellites, free of the seismic
disturbances present on earth. The planned Laser Interferometer Space Antenna (LISA)
mission, with its baselines defined by satellites five million kilometers apart, should reach a
sensitivity that allows to study the formation of galaxies and the formation of interactions
of massive black holes through the observable universe [16, 17].

1.2 Laser Interferometers

The interferometers used to detect gravitational waves are a modified version of the classical
Michelson type that has been used to look for the ether drift. The biggest differences are
the size of the detector (the two interferometric arm lengths are Lx = Ly = 4 km instead
of a few meters) and the higher vibration isolation requirements [16]. The length of the
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interferometer arms maximise the length change induced by the strain of the passing GW.
A simplified diagram is shown in Figure 1.2, illustrating the basic working principle of such
an instrument. An infrared laser beam is injected into a beam splitter that divides the
light into the two Fabry-Perot cavities, being in the orthogonal arms. These cavities are
equipped with an input test mass (ITM) and an end test mass (ETM) each, which are
used as mirrors. Passing GW effectively change both arm lengths with δLx and δLx such
that the measured difference is

∆L = δLx − δLy = h(t)L

where h(t) is the strain amplitude of the GW projected onto the detector (notice the anal-
ogy with mechanical strain). The phase difference between the two laser beams returning to
the beam splitter changes with this differential length variation, enabling a photodetector
to measure an optical signal proportional to the gravitational wave strain h(t) [1].
A picture of the LIGO Hanford Observatory in Washington State is shown in Figure 1.3,
clearly illustrating the long interferometric arms.

Figure 1.2 – A diagram of an aLIGO detector (not to scale)[1].

To reach the required sensitivity for measuring GW, one of the necessary adjustments,
among several other enhancements to the basic Michelson interferometer, is to carefully
isolate the test masses from external disturbances in such a way that they behave as ideal
mirrors. This is performed by suspending each test mass as the final stage of a so-called
quadruple-pendulum system, which is further detailed in Section 1.3.

1.3 Quadruple suspension

The working principle of the previously discussed laser devices require very good detection
sensitivities and thus, very low noise levels. Therefore, besides a fastidious control of the
large interferometer environment, a so-called quadruple suspension is used as a seismic
isolation solution in the aLIGO detectors [6]. Actually, low-level earthquakes, human
activity, ocean waves and wind drive the earth’s surface motions. These motions are filtered
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Figure 1.3 – A photograph of the LIGO Hanford Observatory in Washington State[2].

by the isolation stacks and pendulums of the quadruple suspension shown in Figure 1.4,
enabling the required sensitivity. Each pendulum provides f−2 vibration isolation along

Figure 1.4 – Schematic diagram of quadruple pendulum suspension system for Advanced
LIGO. The diagram above shows a face view of the main chain on the left, and on the
right a side view with main and reaction chains is visible[3].

the beam direction above its eigenfrequency, so that the four stages combined provide
approximately f−8 isolation above 10Hz, giving an isolation factor of about 108 at 100Hz

[18]. The reaction chain shown in Figure 1.4 is used to provide a seismically isolated surface
to actuate against when performing active damping of the different Degrees Of Freedom
(DOFs) of the quadruple suspension [2].
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1.4 Thermal Noise and Violin Modes

The sensitivity of the detectors is limited by the noise that is injected from various sources:
quantum noise, seismic noise, gravity gradient that produces noise, suspension thermal
noise and other sources, all contributing to the total sensitivity limit shown by the red
line in Figure 1.5. The dominant broadband sensing noise source above 100 Hz is shot
noise or quantum noise, which is caused by the fluctuation of the photon arrival rate (or,
equivalently, of the power) [16] and is determined by the Poisson statistics of photon detec-
tion [4]. At the lowest frequencies (especially below 45Hz), the seismic noise is dominating

Figure 1.5 – The displacement sensitivity of the Advanced LIGO detector in Hanford; the
Livingston detector has a similar sensitivity[4].

and is caused by motions of the earth’s surface, filtered by the seismic isolation pendu-
lums and stacks described in Section 1.3. The identification of the seismic contribution to
the measurements is performed using accelerometers located at the quadruple suspension
support points, whose signals are processed with transfer functions of the stacks and pen-
dulums to estimate the resulting mirror motions [6]. The gravitational noise or Newtonian
noise comes from sources of gravity perturbations, which are generally associated with
fluctuating mass density in the vicinity of the test masses [19].

Mechanical thermal noise arises from the mechanical losses and is governed by the
Fluctuation-Dissipation Theorem and also by the Equipartition Theorem [6, 20]. This
thermal energy, combined with the fluctuating collision rate of the molecules of the sur-
rounding dilute gas on the mirror surfaces, excite the pendulums’ fibres and test mass,
causing the so-called suspension thermal noise [21, 22]. From the Fluctuation-Dissipation
Theorem, it is possible to prove that far from the resonant frequencies, the broadband
thermal motion is proportional to the mechanical dissipation associated with the motion.
The thermal energy is however highly concentrated at the system’s resonant frequencies,
which are designed to be as far as possible from the GW detection band. This can be
seen from the green curve in Figure 1.5, where the narrow peak is located at the pendu-
lum frequency. It can also be seen from the simple expression given in [16] for the power
spectrum of the thermal motion of a 1 DOFs mass-spring-damper system based on the
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Fluctuation-Dissipation Theorem:

x2
th(f) =

kBTb

π2f2(b2 + (2πfm− k
2πf )2)

(1.2)

in which T is the temperature, kB ≈ 1.38 · 1023JK1 is the Boltzmann constant, k is
the spring constant, m is the mass, f is the frequency and b is the damping coefficient
reflecting the dissipation. This is why so much attention has been given the last decades
to the reduction of damping in the suspension system, leading to a decreased level of
thermal noise. This explains why a very low gas damping is necessary and why the design
of suspension fibres has been a very critical research topic in order to reduce the losses
associated with the anelastic bending of the fibres near the attachment points (e.g. design
of very thin fibres to reduce these bending losses) [21]. However, the Equipartition Theorem
states that each quadratic term in a system’s Hamiltonian is excited by thermal noise to a
mean energy of kBT2 , and since for a multi-modal system every mode can be associated with
quadratic kinetic and potential energy terms, their individual thermal noise spectra will
contribute to the total noise [16]. Actually, besides the pendulum mode associated with the
low-frequency peak in Figure 1.5, the pendulum system has an infinite number of modes
associated to the suspension fibres (see Figure 1.6), causing additional spikes in the total
thermal noise visible in Figure 1.7. This is why these suspensions fibres are made of fused

Figure 1.6 – The fundamental violin mode and the pendulum mode of a single suspension
fibre pendulum, also showing the anelastic bending of the fibres near the attachment points.
(figure from [5])

silica materials with very low loss angles φw = 1
Q where Q is the quality factor, thereby

decoupling the fibre motions from the suspension’s so-called thermal reservoir. [23, 4]. The
majority of the high Q peaks in Figure 1.7 are due to power lines (60Hz, 120Hz, 180Hz,
etc. from the 60Hz utility frequency in the U.S.), calibration lines (55Hz, 400Hz and 1100
Hz present due to calibration procedures) and fibre resonances (350Hz, 700 Hz, etc.) [6].
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Figure 1.7 – The H1 detector noise spectrum. The black curve is the measured strain noise
(same spectrum as the red line in Figure 1.5). The labeled spectral peaks are identified as
follows: c, calibration line; p, power line harmonic; s, suspension wire vibrational mode;
m, mirror (test mass) vibrational mode. (figure from [6])

The latter standing wave vibration modes are called violin modes due to the analogy with
string instruments (see Figure 1.8). Indeed, to generate musical tones, the musician excites
the standing wave vibrations of the strings generating sounds (through coupling with the
acoustic field) that are amplified in a resonance chamber. Although these vibrations are
treasured in the musical world, they are detrimental to the sensitivity of GW detectors.
They may complicate the stable control of the interferometer and their very high quality
factors (Q > 109) [24] result in long ringdown times after any mechanical excitation, during
which the detector output signal exceeds the acceptable dynamic range [10].

Figure 1.8 – The standing wave modes of a taut fibre with the corresponding wavelengths
(figure from [7]).
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Currently, high-Q spikes are excluded from analysis by subtracting the recorded fibre
motions from the measured motion of the test mass [23, 6, 25]. A possible solution is to
use a Kalman filter based on the known dynamics of the fibres (with some uncertainties)
to distinguish VMs signals from other contributions to the measured detector output [25].
Notch filters can also be used, simply suppressing all contributions to the noise within a
narrow band [26]. However, this method does not distinguish VMs from other contributions
like GW signals. The thermal noise excitation mechanisms will be further detailed in
Section 2.4.

1.5 Motivation and goals

The aim of this work is to design an active solution for the vibration damping of VMs
of the suspension fibres in GW detectors. At present, the only implemented solutions to
reduce these vibrations involve mechanical design optimization for the suspension fibres,
using high-purity materials and coatings. In fact, the measured VM signals still have to
be suppressed at the signal processing level. Besides continuously seeking for the optimal
material choice, ongoing research topics aim to damp these modes in a passive or in an
active manner (see for example [10], [27], [28] and [29]). This would allow to avoid the
signal post-processing steps which introduce a risk of altering GW signals.
The main objectives can be listed as follows

• Analyzing the nature of VM vibration dynamics

• Providing recommendations for active damping strategies

• Validating the theoretical outcomes experimentally

• Expanding to complex suspension structures

1.6 Project outline

From chapter 2, the reader can expect to learn about different mathematical formulations of
the governing dynamics of a single suspension fibre. In Chapter 3, the latter mathematical
outcomes are used to model the interactions with typical VM sensing and actuation devices
and the different control strategies are developed accordingly. Chapter 3 also provides some
numerical simulation results. The experimental results can be found in Chapter 4 along
with a discussion of the validated theories and the limitations of the implemented control
schemes. Finally, the dynamics of the main chain of the quadruple suspension are derived
in Section 5.2.1, allowing to assess the influence of the active damping system on the rest
of the suspension. A general conclusion and some suggestions for future research can be
found in Chapter 6.



Chapter 2

Dynamic modelling of a single fibre
2.1 Introduction

Before thinking about strategies to actively reduce fibre vibrations, it is important to un-
derstand the dynamics of a single fibre, considered as an isolated system. Only then one can
speak about control and active damping strategies, mainly based on the system dynamics.
This chapter describes different ways to model a single suspension fibre. The equations
remain linear in Section 2.2 and a somewhat different representation is developed in Sec-
tion 2.3, introducing a nonlinear formulation that will be useful in Chapter 3. Normally,
the vibration modes of the multiple silica fibres are also coupled with each other and with
other parts of the suspension structure. There are some asymmetries and imperfections
due to welding, silica evaporation from the fibres, etc. [29] and the fibre dynamics will be
different from an identical but isolated fibre.

2.2 Linear models

This section justifies the use of linear dynamic expressions for the fibre motions in both a
continuous and a discrete formalism, also showing the limitations of these representations
for an extended model.

2.2.1 Analytical model

Consider a homogeneous fibre stretched between two clamps separated by a fixed distance
L shown in Figure 2.1a and a differential element ds between z and z + dz presented in
Figure 2.1b and let the externally applied transverse force be f(z, t) per unit length. The
net transverse force is

(T sinα)z+dz − (T sinα)z (2.1)

in which T is the tension in the fibre and α is the angle between the section ds and the
z-axis, as shown in Figure 2.1b. For small transverse displacements one can write

sinα =
dy√

dz2 + dy2
=

dy
dz√

1 +
(
dy
dz

)2
≈ dy

dz
for

dy

dz
<< 1

Expanding 2.1 in a Taylor series yields(
T
dy

dz

)
z+dz

−
(
T
dy

dz

)
z

=
∂

∂z

(
T
dy

dz

)
dz +O(dz)2 + . . .

9
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(a) (b)

Figure 2.1 – The stretched continuous fibre with fixed ends conditions (left) and a section
ds of a fibre in a deformed state (right).

from which only the first term will be used. Momentum conservation of the differential
element requires that

ρdzÿ =
∂

∂z

(
T
dy

dz

)
dz + f(z, t)dz (2.2)

Taking dz −→ 0 the governing equation for the whole fibre becomes

ρÿ =
∂

∂z

(
T
dy

dz

)
+ f(z, t) (2.3)

Assuming small planar transverse motions so that the tension can be considered as
constant over the fibre length, the equations of motion (EOM) for the elastic fibre is
nothing but a wave equation, which takes the same form as Equation (1.1).

∂2y

∂z2
− 1

v2
ÿ = −f(z, t) (2.4)

where v =
√

T
ρ is the propagation velocity of transverse waves determined by the mass

per unit length ρ and the tension T of the fibre [30]. The linearity of Equation (2.4) will
be useful in further calculations. Searching for a solution of this wave equation arising in
numerous contexts, one can suggest the readily adopted ansatz:

y(z, t) = Asin(kz)cos(ωt− ψ) (2.5)

with peak amplitude A, wavenumber k , wavelength λ = 2π/k , angular frequency ω , and
phase angle ψ. Substituting the latter equation into Equation (2.4) yields the so-called
dispersion relation ω = kv. Indeed, to force the fibre to be fixed by two clamps separated
by a distance L, one can formulate the following conditions:

y(0, t) = 0 y(L, t) = 0 (2.6)

The second boundary condition is only satisfied when sin(kL) = 0, which implies that
k = n πL , where the integer n represents the mode number. The trivial situation where
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n = 0 describes the fibre at rest, while all other values of n are associated to the resonant
transverse modes of the fibre with the following eigenfrequencies:

ωn = nπ
v

L
for n = 0, 1, 2, ... (2.7)

From this, one can see that an approximated solution can be found with a Rayleigh-Ritz
discretization, which consists of approaching the solution of a variational problem by a
finite sum of functions of forms:

y(z, t) = lim
N→∞

N∑
n=1

qn(t)φn(z) (2.8)

in which φn(z) are the Rayleigh-Ritz mode shapes and qn(t)) = |qn| cos(ωnt) are the modal
amplitudes, also called the generalized coordinates [31]. By neglecting the bending stiffness,
the mode shapes can be approximated by simple sine functions (see Figure 1.8).

φn(z) = sin(
nπz

L
) (2.9)

However, assuming the material to be a linear elastic solid, the finite cross-section of the
fibres is responsible for a so-called elastic distance ∆, which is the distance over the fibre
bends near the clamps (∆

L ≈ O(10−3) for aLIGO). This elastic distance is approximately

given by ∆ =
√

EI
T , where E is the Young modulus of the fibre material and I is the area

moment of inertia around any direction normal to the z-axis [21]. This means that a more
realistic mode shape would require a flexure correction (see Figure 2.2), which yields [32]

φn(z) = sin

(
2nπ(z −∆)

2(L− 2∆)

)
+

2nπ∆

2(L− 2∆)
·
(
e
z
∆ − (−1)ne

L−z
∆

)
(2.10)

This causes some small anharmonicity of the eigenfrequencies given by [33]

ωn =

√
T

L

nπ

L

(
1 +

2∆

L
+ 4

(
∆

L

)2

+

(
nπ∆

L

)2
)

(2.11)

Also, despite the very high level of environmental control, these eigenfrequencies are not
totally constant with time [29].

Figure 2.2 – The first mode shape with a flexure correction.

This linearized analytical model is unquestionably useful, since it allows to understand
the basics of the fibre motions as well as the eigenfrequencies of the VMs. Nevertheless,
one major limitation here is the fixed-ends condition, causing the model to be incompatible
with boundary motions. Indeed, one should keep in mind that the quadruple pendulum is
composed of fibres whose boundaries are moving and transmitting forces.
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2.2.2 Finite Elements State Space Representation

In view of the linearity of Equation (2.4), which is the equation of motion governing the
dynamics of a continuous fibre, one can think of a discretized model whose dynamics would
be represented by a state space model. In order to do so, let’s start from a fibre with rest
length L, tension T and linear mass density ρ. A lumped mass representation is realized
by concentrating the mass on N equally distanced points, whose individual masses are
all identical and equal to m = ρL

N (see Figure 2.3). The dynamics of the string are now
described by a set of N equation of motion of the N lumped masses, which are derived as
follows.

Consider the i’t behad, attached to the beads i− 1 and i + 1 through weightless con-
nections with equal lengths. If we consider no displacements in the longitudinal direction
(z-direction), we get

tan(Θi) =
yi − yi−1

zi − zi−1
= (yi − yi−1)

N

L
(2.12)

and for small transverse displacements

Θi = (yi − yi−1)
N

L
for Θi << 1 (2.13)

Figure 2.3 – The spatial discretization of a fibre into N lumped masses for a FE represen-
tation of its dynamics.

The EOM of the i’th lumped mass is obtained by writing its force equilibrium

mÿi = −T sin(Θi) + T sin(Θi+1) ≈ −TΘi + TΘi+1 for i = 2, 3, ...N − 1 (2.14)

Using Equation (2.13), the latter equation yields

mÿi =
TN

L
(yi+1 − 2yi + yi−1) for i = 2, 3, ...N − 1 (2.15)

For i = 1 and i = N , taking into account the external boundary forces Fe1 and FeN and
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fixing the boundaries yN+1 = y0 = 0, the EOM become

mÿ1 =
TN

L
(y2 − 2y1) + Fe1 (2.16)

mÿN =
TN

L
(yN−1 − 2yN ) + FeN (2.17)

Defining the vector of lumped mass positions as

~y =


y1

y2
...
yN

 (2.18)

The system of equations of motion can be written in the following matrix form

M~̈y = −K~y +R~F (2.19)

Where M = mIN×N , ~F = [Fe1 Fe2 ... FeN−1 FeN ]T is the vector of external transverse
forces, R is a diagonal selection matrix allowing the activation of the individual external
forces and

K = k


2 −1 0 0 0 ... 0

−1 2 −1 0 0 ... 0

0 −1 2 −1 0 ... 0
...

...
...

...
...

. . .
...

0 0 0 ... 0 −1 2


where k = NT

L . Equation (2.19) can also be rewritten as

~̈y = −Ω2~y +
1

m
R~F (2.20)

with− Ω2 =


2ω2

0 −ω2
0 0 0 0 ... 0

−ω2
0 2ω2

0 −ω2
0 0 0 ... 0

0 −ω2
0 2ω2

0 −ω2
0 0 ... 0

...
...

...
...

...
. . .

...
0 0 0 ... 0 −ω2

0 2ω2
0

 and ω0 =

√
k

m
(2.21)

Defining the state vector as

~Y =

(
~̇y

~y

)
(2.22)

the state space representation becomes

~̇Y =

(
0N×N −Ω2

IN×N 0N×N

)
~Y +

1

m

(
R

0N×N

)
~F = A~Y +B ~F (2.23)

clearly defining both the system matrix A and the input matrix B. If the output is chosen
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to be the transverse reaction forces at the boundaries which are in local equilibrium with
the internal forces of the fibre, one can derive the output matrix as follows:

fr1 = −T ∂y
∂z
≈ −T y2 − y1

z2 − z1
≈ −NT

L
(y2 − y1) and fr2 ≈ −

NT

L
(yN − yN−1) (2.24)

which yields(
fr1

fr2

)
= C~Y with C = −NT

L

(
02×N

−1 1 0 . . . 0

0 0 . . . −1 1

)
(2.25)

completing the state space representation of the fibre. One could also choose the position
of any lumped mass to be the output by changing the matrix C correspondingly.

The latter model does not include the necessary boundary conditions. Adding a tip
mass Mtm at i = N and a finite stiffness kp (several orders of magnitude higher than k)
for i = 1, corresponding to the physical situation depicted in Figure 2.4,the EOM for i = 1

and i = N become

mÿ1 = −kpy1 + k(y2 − y1) + Fe1 (2.26)

MtmÿN = k(yN−1 − yN ) + FeN (2.27)

so that

K1,1 = k + kp KN,N = k with k =
MtmgN

L
(2.28)

MN,N = Mtm (2.29)

where g ≈ 9.81m
s2

is the gravitational acceleration. Therefore, the system and input matri-
ces turn into

A =

(
0N×N −M−1K

IN×N 0N×N

)
B =

(
M−1R

0N×N

)
(2.30)

The resulting system withN inputs and 2 outputs can now be used to simulate the response

Figure 2.4 – Upper fixed-end boundary condition of the fibre with a penalizing stiffness kp
and a tip mass Mtm.

of the fibre to certain input forces. A Matlab script has been written (see Appendix C.2)
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to evaluate the correctness of the model and to allow time domain simulations (using
N = 200, L = 0.4m, Mtm = 1kg, ρ = 2.5 g

m and kp = 1.857 · 106N
m). The expected VMs

frequencies are given by fn = n
2L

√
Mtmg
ρ . Using a band-limited Gaussian white noise input

at the upper fibre end, one can for example plot the power spectral density of the position
of the middle of the fibre (see Figure 2.5a) and the shape of the fibres at specific times
(see Figure 2.5b). The peaks in the power spectrum of the middle position correspond

50 100 150 200 250 300 350 400 450 500
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(b)

Figure 2.5 – (a) The power spectral density of the position of the middle of the fibre;
(b) the shape of the fibre at consecutive time steps (ti = 2.5 + i ·∆T sec). The input force
has a white Gaussian spectral content, which is band-limited between 50Hz and 500Hz.
The simulation time is 10s and the sampling frequency is fs = 1

∆T = 2kHz.

to the expected values of the frequency. Indeed, for the used parameter values, the VM
frequencies are 77.8Hz, 155.6Hz, 233.4Hz, 311.1Hz, 388.9Hz, etc. and since the middle of
the fibre corresponds to a nodal point for even mode numbers, their frequencies are not
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observed here. When the input force is sinusoidal with a frequency corresponding to one
of the VMs, the obtained fibre shape takes the form of the corresponding mode shape (see
Figure 2.6).

0 50 100 150 200 250 300 350 400 450 500

-1.5

-1

-0.5

0

0.5

1

1.5
10

-3

Figure 2.6 – The shape of the fibre at consecutive time steps (ti = 2.5 + i ·∆T sec) for a
sinusoidal excitation at the 2nd VM frequency f2 = 155.6Hz.

Since the Multiple-Input Multiple-Output (MIMO) state space model obtained from the
FE fibre representation is linear, it is possible to speak about transfer functions between
different quantities, e.g. between force inputs and the horizontal force sensed by the
suspended mass or at the suspension attachment. This will be useful to design a vibration
controller in Chapter 3. In fact, one can already understand that looking at the transfer
function between the force input Fe1 and the force output fr1 would represent the open
loop transfer function between the actuator and the sensor force for a horizontally mounted
collocated pair (see Figure 2.7). Also, as expected, the pendulum mode of the suspension
system appears in the open loop transfer function and its frequency is given by ωp =

√
g
L .

By changing Equation (2.27), one can modify the model to have a suspension motion as
input and the test mass displacement as output

mÿ1 = k(ye − 2y1 + y2) (2.31)

where ye is the motion of the suspension point. Knowing that the transfer function between
the suspension motion and the test mass motion for a single DOF representation is given
by

yN (s)

ye(s)
=

T

LMs2 + T
(2.32)

one can compare this with the FE model, as in Figure 2.8, clearly showing the effect of
the VMs on the motion transmission. From this figure, one can understand that high
frequency seismic noise can contribute to the VMs spikes in the detector sensitivity.
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Figure 2.7 – Open Loop transfer function between a horizontal force actuator and sensor
which are collocated at the fibre suspension point. The pendulum mode (PM) and the
violin modes (VM) are clearly visible and their frequencies correspond to the expected
ones.
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Figure 2.8 – The bode plot of the transfer function between the suspension motion and
the test mass motion for a single degree of freedom pendulum and a multimode FE model,
taking into account the VMs.
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The FE model defined in spatial coordinates can also be projected on the modal basis
by applying simple linear transformations. Defining Φ as the basis of eigenvectors of the
system containing the N mode shapes (see Figure 1.8)

Φ = [φ1 φ2 . . . φN ] with Φj,k = sin(kπ
j

N
) (2.33)

one can then transform Equation (2.19) into a decoupled system of modal states ~r by
projecting the state vector ~y into the eigenvector basis as follows:

~y = Φ~r (2.34)

so that

MΦ~̈y = −KΦ~r +R~F (2.35)

Left multiplication of the latter equation by ΦT yields

Mm~̈r = −Km~r + ~Fm (2.36)

where Mm is the diagonal modal mass matrix and Km is the diagonal modal stiffness
matrix and ~Fm is the vector of modal forces. The resulting N equations are decoupled
and, when converting Equation (2.36) to a state space representation, this discretization
could be used to control the different VMs individually. Nevertheless, one major limitation
of this projection is that input forces at the boundaries are cancelled by the zero amplitude
of the mode shapes at these locations, since the boundaries are nodal points for any mode.
Actually, an external force applied on a nodal point for a certain mode will be cancelled
by its projection on the modal basis. On the contrary, if the external force is acting at
an antinode of a certain mode, i.e. where the corresponding mode shape is maximum, the
projection on Φ maximizes the modal force for this mode. This is important to keep in
mind, because it gives indications about the authority of an actuator on different modes,
depending on where it is being placed.

2.3 Nonlinear model

In the linear model developed in Section 2.2.1, the tension was considered constant. This
assumption disallows the modelling of the longitudinal dynamics, making its use irrelevant
for the study of the interaction of the fibre with vertical forces. Indeed, a convenient model
should include the coupling effects between transverse and longitudinal dynamics which is
nonlinear, even for small oscillation amplitudes.

2.3.1 Single mode spring model

To account for the dynamic stretching causing a varying tension, a first approach is to
consider a single mode model shown in Figure 2.9. The fibre is characterised by a weightless
linear spring of length L0 with spring constant k, or 2 identical springs in series of length L0

2

and stiffness 2k. A punctual mass is placed in the middle and its transverse displacement
will be the considered degree of freedom. When both extremities are fixed, inducing a
static tension in the fibre, the total length becomes L

2 .
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Figure 2.9 – The single mode model of a nonlinear fibre with one lumped mass ond two
identical springs.

The dynamics for the transverse lumped mass motion are derived in Appendix A.1 and
after a series expansion one gets

ẍ+ λẋ+ ω2
0x
(
1 +Kx2

)
= f(ωt) (2.37)

which takes the typical form of the well-known Duffing equation. The introduced constants
have the following definitions

ω2
0 = 4

k

m

L− L0

L
K =

2L0

(L− L0)L2
> 0 (2.38)

and f(ωt) represents a harmonic forced acceleration while λ represents a linear viscous
damping. This damped and forced oscillator equation has been studied extensively in
the literature (see for example [34] or [11]) and is used in study of lateral vibrations of
periodically loaded pin-ended columns for example. The stretching of the springs causes
the restoring force to be a nonlinear function of the deflection, causing a hardening effect
since K > 0 (for K < 0, the non-linearity would lead to a softening effect). Despite the
relatively simple form of this differential equation, the responses of such oscillators show
some random phenomena like chaotic motions, bifurcations, shifting natural frequencies
etc. . . [34, 35, 11]. A somewhat more detailed study of a modified duffing oscillator can be
found in Section 3.3.2.

2.3.2 Continuous fibre model

Referring to the previously discussed continuous fibre with linear mass density ρ and length
L shown in Figure 2.1a, consider the tension that has been employed until now as the sum
of a static and a dynamic contribution

T = Ts + Td

where the static tension Ts is constant over the length of the fibre and over time, while the
dynamic tension Td depends on the instantaneous strain in the following fashion

Ts = EA

(
L− L0

L

)
Td = EAεd(z, t) (2.39)

where εd(z, t) is the dynamic axial strain. This means that the tension in Equation (2.3)
can not be considered as a constant over the fibre length anymore. Since a differential
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element with a length dz is being deformed to ds, the axial strain can be obtained as

εd(z, t) =
ds− dz
dz

=

√
dz2 + dy2 − dz

dz
≈ 1

2

(
dy

dz

)2

(2.40)

The latter equation shows that if at a given instant the fibre takes the shape of a perfect
sine (e.g. sin(2π zL)), the dynamic tension along the fibre length will have the shape of a
squared cosine, having a non-zero average value. By averaging the dynamic tension caused
by the latter strain over the length of the fibre, causing it to be still a function of time, we
get

Td =
EA

L

∫ L

0

1

2

(
dy

dz

)2

dz (2.41)

Substitution of Equation (2.41) in Equation (2.3) yields

ρÿ = Ts
∂2y

∂z2
+
EA

2L

∂2y

∂z2

∫ L

0

(
dy

dz

)2

dz + f(z, t) (2.42)

which takes the same form as the nonlinear transverse string EOM derived by Carrier et
al. in [36], by Narasimha in [37] and by Gough et al. in [38]. It is important to notice the
differences with Equation (2.4) which did not include the stretching effects. In order to
compare these results with the single mode spring system described by Equation (2.37),
consider first no external force f(z, t). To adapt Equation (2.42) for a single vibration
mode, one can write yn(z, t) as the product of its mode shape function φn(z) and its
modal amplitude qn(t), which yields

ρφnq̈n = Ts
∂2φn
∂z2

qn +
EA

2L

∂2φn
∂z2

∫ L

0

(
dφn
dz

)2

dzq3
n (2.43)

This is again a Duffing equation and can be compared witch Equation (A.6) by evaluating
it in z = L

2 and for mode number n = 1. From Section 2.2.1, the mode shapes are known
and the required derivatives become

φn(z) = sin
(
nπ

z

L

) ∂φn
∂z

=
nπ

L
cos
(
nπ

z

L

) ∂2φn
∂z2

= −
(nπ
L

)2
sin
(
nπ

z

L

)
(2.44)

and the integral ∫ L

0

(
dφn
dz

)2

dz =
(nπ
L

)2
∫ L

0

1

2

(
1 + cos

(
2nπ

z

L

))
dz

=
1

2

(nπ
L

)2

L+

∫ L

0
cos
(

2nπ
z

L

)
dz︸ ︷︷ ︸

=0 ∀n


=

(nπ)2

2L
(2.45)

Substituting the latter results in Equation (2.43) for z = L
2 and adding some distributed

viscous damping βd = 2ξnωnρ, the transverse equations of motion of the fibre for the n’th
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vibration mode turns into

q̈n + 2ξn
nπ

L

√
Ts
ρ
q̇n +

(nπ
L

)4 EA

4ρ
q3
n +

(nπ
L

)2 Ts
ρ
qn = 0 (2.46)

This allows to choose the parameters of the spring system in Figure 2.9 such that its be-
haviour is identical to that of the continuous fibre studied here above. Moreover, it is now
possible to account for the nonlinear hardening effect in the continuous fibre, whose phys-
ical interpretation can be related to the one for the spring system. From Equation (2.46),
one can see that the non-linearity of the EOM increases for higher axial stiffness EA and for
higher mode number n. The latter can be understood from the higher number of consecu-
tive bends along the fibre length, causing globally a higher hardening. Another important
observation is that this equation allows no coupling between the different modes, while in
general they are non-linearly coupled so that a mode with no initial energy will be excited
by gaining energy from other modes [39]. However, it is much easier to study the behaviour
of individual modes, assuming no inter-modal couplings. A first mode truncation (like in
Section 2.3.1 for the first mode) can be studied by looking at yn(z, t) = qn(t)φn(z), while
the real solution of the fibre dynamic response y(z, t) can be approximated with Equa-
tion (2.8). However, for modelling it is convenient (most of the time rather necessary) to
truncate the high frequency dynamics (also called residual dynamics), leading to increased
model uncertainties [8]. This is important to keep in mind when doing the control system
design, especially when the controller can excite the residual modes, leading to the well
known spillover phenomenon (see Chapter 3 for the control design).

2.4 Violin Mode excitation mechanisms

2.4.1 Guitar plectrum

To excite the fibre, one can think of pulling it in a lateral direction to give it an initial
shape which is different from its equilibrium state. Releasing the fibre will cause it to
vibrate in a way that depends on the location and the amplitude of the pulling force. This
can be compared to a plucked guitar string (see Figure 2.10). The initial shape of the fibre

Figure 2.10 – The plucked fibre initial shape.
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can be approximated by

y(z, 0) =


h zd ∀0 ≤ z < d

hL−zL−d ∀d < z ≤ L
(2.47)

Remembering the Rayleigh-Ritz discretization from Section 2.2.1, one can compute the
amplitude of qn(t) = |qn|eiωnt using the orthogonality of the mode shapes [40]

|qn| =
2

L

∫ L

0
y(z, 0) sin

(nπz
L

)
dz

=
2h sin

(
nπz
L

)
d
L

(
1− d

L

)
π2n2

(2.48)

The latter equation clearly shows that if the fibre is pulled exactly in a nodal point for a
certain mode, the amplitude of that mode will be zero. However, in reality the couplings
between the different modes cause energy transfers between these modes, making a zero
modal amplitude impossible. Equation (2.48) also shows that for any value of d and h, the
non-zero modal amplitudes decrease for increasing mode number.

2.4.2 Thermal noise

The previous calculations allow the modelling of the fibre response in the time domain from
an initial condition. However, in the aLIGO suspensions, the VMs are excited continuously
in the presence of thermal energy as seen in Section 1.4. It has been a very big challenge
for the LIGO Scientific Collaboration (LSC) and the other members of the GW detectors
community to identify the sources of dissipation and it seems that current research topics
are still focused on correctly modelling these effects. However, some significant results
emerged through the last decades. The thermal excitation of the VMs is mainly related to
the sudden relaxation of mechanical stresses near the attachment points, and the thermal
motion associated to the VM degrees of freedom, according to the Equipartition Theorem
[41]. Actually, considering each VM with mode number n as a harmonic oscillator executing
a one-dimensional motion, the average potential energy is equal to the average kinetic
energy [42]. Using the Equipartition Theorem on the average kinetic energy of mode
number n yields

< Kn > =
1

2

∫ L

0
ρ < ẏ2

n(z, t) > dz (2.49)

=
1

2
kBTf (2.50)

where< ẏ2
n(z, t) > is the time-averaged square velocity of mode n and Tf is the temperature

of the fibre (see Section 1.4). Using again yn(z, t) = qn(t)φn(z), Equation (2.49) becomes

< Kn >=
ρLω2

n|qn|2

8
(2.51)
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Combining Equation (2.51) and Equation (2.49) gives the amplitude of the mode motions
due to the thermal noise

|qn|2 =
4kBT

ρLω2
n

(2.52)

The latter equation shows that the thermal motion of the fibre increases linearly with the
temperature as expected and that the modal amplitudes decrease quadratically with n,
since ωn ∝ n.

2.4.3 Electromagnetic excitation

Consider a ferromagnetic wire excited by an electromagnet, which consists of a wound
copper coil placed at a short distance from the wire at a height z = p and perpendicular to
it (see Figure 2.11). The wire can also be a non-ferromagnetic material on which a piece of
ferromagnetic material is attached, near the electromagnet. To control the electromagnetic

Figure 2.11 – The ferromagnetic wire excited by an electromagnet.

force acting on the wire, one should first understand the coupling between the electrical
dynamics in the coil and the mechanical dynamics of the fibre. The electrical tension over
the solenoid can be expressed as follows:

U = RI +
dφf
dt

= RI +
d{Lf (yp)I)

dt
(2.53)

where R is the resistance, I is the current, φf is the magnetic flux, Lf is the inductance
and yp = y(z, t)|z=p is the vibration amplitude of the wire at the height of the coil. The
flux passing through the coil is generated by the current and the relationship between
both is assumed to be linear, with as proportionality factor the inductance Lf . Yet,
this inductance is depending on the distance between the electromagnet and the wire.
Assuming the electromagnet to be fixed, this distance is only dependent on the yp. Further
development of Equation (2.53) yield

U = RI +
∂Lf (yp)

∂yp

dyp
dt
I + Lf (yp)

dI

dt
(2.54)
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The power is given by the product of the current and the tension

P = UI = RI2 +
∂Lf (yp)

∂yp

dyp
dt
I2 + Lf (yp)

dI

dt
I (2.55)

The mechanical part of this power can be expressed as the product of a force and a velocity:

Fm
dyp
dt

=
∂Lf (yp)

∂x

dyp
dt
I2 (2.56)

⇔ Fm =
∂Lf (yp)

∂yp
I2 (2.57)

where Fm is the electromagnetic force, as shown in Figure 2.11. From Equation (2.57),
one can see that ∂Lf (yp)

∂yp
is required to calculate the force acting on the wire. This could be

obtained either using Finite Element Method Magnetics (FEMM) in a virtual environment
or by measuring the inductance for several values of yp, thereby constructing a lookup
table that could be used for real-time control. More importantly, the magnetic force is
proportional to the square of the current, meaning that for a given harmonic current
injection I(t) = |I|cos(ωIt), the magnetic force becomes

Fm(t) =
1

2

∂Lf (yp)

∂yp
|I|2 (1 + cos(2ωIt)) (2.58)

which is always positive. Thus, the wire is excited at twice the current frequency by a
continuously attractive magnetic force.

2.4.4 Electrostatic excitation

An electrostatic actuation solution has been evaluated by Dmitriev et al. in [10] with two
parallel electrodes installed near the fibre with a separation gap dg and an electrical charge
qe deposited on the fibre between the electrodes.

Controlling the voltage difference U(t) between the two electrodes allows to generate a
force on the fibre given by

Fe(t) = U(t)
qe
dg

The main advantage of this solution is that the actuator can be placed anywhere along
the fibre, with the electrostatic coupling between the plates and the fibre being the only
source of interaction. Notice that this solution is similar to the electromagnetic actuator
from Section 2.4.3, except that the generated force is a linear function of the input signal.



Chapter 3

Active damping of violin modes
3.1 Introduction

In this chapter, different types of sensors and actuators are discussed as well as the different
ways to assess information about the state of the fibre (i.e. the vibration amplitude)
and drive the actuator through a control filter in such a way that it will destructively
interfere with the motions of a single fibre, extracting kinetic energy from it in a similar
way as damping would do. In the case of linear systems, one can attempt to design a
vibration control system whose primary objective is to increase the negative real part of the
system poles, causing the resonance peaks to be attenuated in the dynamic amplification.
Mounting a collocated actuator-sensor pair (meaning that the sensor and actuator are
attached to the same degree of freedom) on a lightly damped flexible structures always
leads to alternating poles and zeros near the imaginary axis. This property is useful for
the design of active damping strategies with guaranteed stability [8].
In the nonlinear case, one can simply not speak of transfer functions and must rely on
energy analysis or other methods.

A possible physical interpretation of an active damping system is that the actuator ab-
sorbs and dissipates mechanical modal energy by providing a force opposed to the modal
velocity and therefore a negative mechanical power delivered to the vibrating fibre. There-
fore, one can think of an open-loop system with no sensor where the actuator is exclusively
powered by a negative active electrical power supply. This power supply dissipates the
mechanical power from the fibre, previously converted by the actuator in active electrical
power [43].

3.2 Sensing

Measuring VMs can be done in different ways. The choice of the sensor type mainly depends
on the adopted active damping strategy and the required sensitivity. Some possible sensor
configurations and technologies are discussed here, showing the different possibilities for
sensing VMs.

3.2.1 Vertical force sensor at the boundary

Consider a perfect vertical force sensor attached at the top end of the fibre (see Fig-
ure 3.1). In order to evaluate how the violin modes would be observed through such a
sensor, reminding the expression for the dynamic tension Td given by Equation (2.39)
and Equation (2.40), one can compute the dynamic tension caused by mode number n as
follows

Td,n(z, t) =
1

2
EA

(
dφn
dz

)2

q2
n(t) (3.1)

25
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Figure 3.1 – The perfect vertical force sensor to measure the dynamic tension.

where dφn
dz = nπ

L cos
(
nπ zL

)
. The dynamic force measured by the sensor at z = 0 is thus

given by

Td,n(0, t) =
EA

2

(nπ
L

)2
q2
n(t) (3.2)

If we write the modal amplitude as a harmonic function qn(t) = |qn|eiωnt, the latter equa-
tion becomes

Td,n(0, t) =
EA

2

(nπ
L

)2
|qn|2ei2ωnt (3.3)

This shows that, due to the quadratic observability of any mode of number n, it is measured
at twice its natural frequency ωn. For a physical interpretation of this phenomenon, one can
think of pulling the centre of the fibre in one direction and then pushing it into the opposite
direction. The effect of pulling or pushing on the measured vertical force is identical and
when passing through the equilibrium position, a minimum tension Ts is reached. When
one period is completed for the centre position, the measured vertical force has passed
through two maxima and two minima, hence clarifying the doubled frequency. Moreover,
it is important to note that despite the decreasing modal amplitude for increasing mode
numbers (see Section 2.4), the factor n2 in Equation (3.3) compensates partially for that.

It is also important to notice that T (t) = Ts +Td(t) is always positive (see Figure 3.2).
Indeed, by performing a rough Order of Magnitude estimate for reasonable values of the

Figure 3.2 – Time plot of the fibre’s total tension T (t) = Ts + Td(t).

parameters and assuming vibration amplitudes in the order of 1mm, one can see that
Ts ≈ O(101)N and |Td(t)| ≈ O(10−1)N so that T (t) > 0 ∀t.
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3.2.2 Horizontal force sensor at the boundary

Consider an ideal force sensor placed at the upper end of the fibre, sensing the transverse
forces produced by the VM vibrations. The horizontal force at this location is given by

Fh = T

(
dy(z, t)

dz

)
z=0

(3.4)

which yields for the linear FE model (see Section 2.2.2)

Fh =
NT

L
(y2 − y1) (3.5)

and for the modal representation (see Section 2.3.2 and Section 2.2.1) the horizontal force
caused by mode number n is given by

Fh,n = qn(t)T

(
dφn(z)

dz

)
z=0

= qn(t)
nπT

L
(3.6)

This shows that, in contrast with a vertical force sensor, qn(t) is linearly observable and
the measured frequencies will correspond to the ones of the VMs.

3.2.3 Piezoelectric sensors

The direct piezoelectric effect is the ability of certain crystalline materials to generate an
electrical charge proportional to an externally applied force. This effect can be obtained be-
low the Curie temperature after a poling process for some ceramics whose crystal structure
have no center of symmetry [8]. The poling process enables to form an electric dipole on
a macroscopic scale making the material permanently piezoelectric, so that it can convert
mechanical energy into electrical energy and vice versa.

Figure 3.3 – A schematic representation of a discrete piezoelectric transducer
(Figure from [8]).

Stacking multiple piezoelectric elements mechanically in series and electrically in parallel
(see Figure 3.3) increases the charge output linearly for a given force input as shown in [8]

Q = CcVp +Nsd33fp (3.7)

where Q is the total electric charge on the electrodes, fp is the externally applied load, Cc
is the capacitance of the transducer with no external load, Ns is the number of stacked
elements, Vp is the applied voltage in Volts and d33 is the piezoelectric constant, expressed in
m
V . By measuring the charge Q, one can linearly observe the force applied at the boundaries
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of the transducer. Therefore, the previously mentioned force sensor arrangements (see
Section 3.2.1 and Section 3.2.2) can be implemented with this type of sensors if the amount
of stacked elements is sufficient to reach the required sensitivity for measuring VMs.

3.2.4 Other sensors

The shadow sensor designed by Lockerbie et al. [9] consists of a collimated near infrared
beam illuminating the vibrating fibre whose oscillating shadow on the photodiode detector
generates a modulated (differential) photocurrent at the VMs frequencies. This current

Figure 3.4 – The schematic of the VMs shadow sensor from [9]. The mirror-coated beam-
splitting prism reflects the near infrared beam on the two reverse-biased photodiodes PDa
and PDb. The beam splitting allows a factor

√
2 improvement in signal-to-noise ratio.

is then converted into an oscillating voltage through a transimpedance amplifier (see Fig-
ure 3.4). This solution enables the detection of VMs of the silica suspension fibres at the
10−10m level.

Another sensing solution was developed by Dmitriev et al. based on the optical-beam
deflection technique [10] (see Figure 3.5). A focused laser beam has an off-centered inci-

Figure 3.5 – The optical sensor based on the optical-beam deflection technique [10].

dence on the fibre, resulting in an angle deflection of the beam passing through the fibre,
which acts as a cylindrical lens. Transverse displacements of the fibre cause the displace-
ment of the laser spot on the Position Sensitive Detector (PSD). Analog PSDs produce
output signals proportional to the true coordinates of the centre of the light spot on the
detector using the lateral photoelectric effect [44].
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The last VM sensor is also an optical device, consisting of a CCD camera, tracking the
transverse motions of an optical target placed on the vibrating fibre [45]. However, since
this sensor is used to measure vibrations of large cables (e.g. in bridge structures), the
resolution is probably not high enough to measure VM vibrations in aLIGO (this could be
investigated).

3.3 Actuation

Two actuation means are discussed here with their respective influences on the fibre dynam-
ics. This is of critical importance to design controllers effectively and to better understand
what is at stake when using them.

3.3.1 Vertical Force Actuator: Parametric Excitation

In Equation (2.46), which is governing the nonlinear fibre dynamics, the coefficient for the
linear restoring force is proportional to the fibre tention Ts. From this, one can imagine that
this restoring force can be controlled by controlling the tension through a perfect vertical
force actuator at one of the fibre ends (see Figure 3.6). This would regulate the total

Figure 3.6 – The perfect force actuator exerting a force along the axial direction of the
fibre.

tension to T (t) = Ts + Td(t) + Fu(t) such that, assuming that the actuation force appears
as a quasi-static axial loading superposed with the static tension (with |Fu(t)| < Ts),
Equation (2.46) turns into

q̈n + 2ξn
nπ

L

√
Ts
ρ
q̇n +

(nπ
L

)4 EA

4ρ
q3
n +

(nπ
L

)2 Ts
ρ
qn +

1

ρ

(nπ
L

)2
Fu(t)qn = 0 (3.8)

Thus mathematically one is led to a differential equation with an excitation appearing as
a varying coefficient (Fu(t) in the last term of Equation (3.8)), which is therefore called a
parametric excitation [11]. Furthermore, in contrast with small external excitations which
can produce large responses near the natural frequencies of the system (called primary
resonance), a small parametric excitation can produce a large response when its frequency
is close to twice one of the natural frequencies of the system (called principal paramet-
ric resonance). Therefore, it is necessary to study the conditions for stability of such a
parametrically excited system, especially if the objective is to damp the oscillations. This
stability analysis can be found in Section 3.3.2. It is also very important to notice that
this parametric excitation can only take place if there is an initial disturbance making
qn 6= 0 in Equation (3.8). For example in cable-stayed bridges, parametric excitation of
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the transverse vibration modes of the cables is possible through the presence of cable sag
[46]. In our situation, since no sag is present, one can already foresee that the VMs will
not appear in the open loop transfer function between the collocated vertical actuator and
sensor.

3.3.2 Stability analysis of a parametrically excited fibre

The form of equations of motion for parametrically excited systems is given by Hill’s
equation in [11]

¨̃qn +

(
δ +

∞∑
m=1

εmfm(t)

)
q̃n = 0 with fm(t+ π) = fm(t) (3.9)

However, this dimensionless equation is not general enough to include nonlinear and damp-
ing effects. To do so, one will need to deal with a parametrically excited Duffing equation
with small damping, sometimes referred to as a modified Mathieu equation :

¨̃qn + (δ + 2ε cos(2τ)) q̃n = εg(q̃n, ˙̃qn) with g(q̃n, ˙̃qn) = −αq̃3
n − 2µ ˙̃qn (3.10)

To relate the latter dimensionless equation to Equation (3.8), remembering that
ωn = nπ

L

√
Ts
ρ and writing Fu(t) = Fucos(ωut), the following transformations are necessary:

q̃n =
qn
L

τ =
ωut

2
δ = 4

(
ωn
ωu

)2

ε = 2
Fu
Ts

(
ωn
ωu

)2

µ̂ = εµ = 2ξn
ωn
ωu

α̂ = εα =
(nπ)4

L2

EA

ρω2
u

(3.11)

To study the combined effect of the nonlinear term and the parametric excitation on
the amplitude and the phase of the lightly damped system, Nayfeh and Mook [11] used
the method of multiple scales, enabling approximated stability conditions to be found.
With this technique, one determines first the equations that describe the amplitudes and
the phases, which are transformed into autonomous systems. Then, the singular points
of these autonomous systems correspond to the steady state solutions of the considered
system whose stability can be gathered from the stability of the singular points. Hence,
the proposed ansatz for steady state motion is given by

q̃n = a cos

(
τ − ψ

2

)
+O(ε) (3.12)

where

sin(ψ) = −8ξn

(
ωn
ωu

)2

cos(ψ) = 4
Ts
Fu

ωu − ωn
ωn

− 3

4
αa2 (3.13)

and the approximated steady state amplitude a is given by

a2 =
8

3

(
1− 2ωnωu

)
α̂

± 4

3

√
ε2 − 4(µ̂)2

α̂
(3.14)

For a steady state solution to exist, a2 must be positive so that 2µ < 1 or ε > 2µ̂ where µ̂ =

ξn for principal resonance (δ ≈ 1 meaning ωu ≈ 2ωn). The physical interpretation of this
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is that the amplitude of Fu must be great enough with respect to the damping coefficient
to produce sustained motion. Regarding the influence of the excitation frequency ωu, the
following results have been proved by Nayfeh and Mook ([11] Section 5.7.3) by determining
the nature of the singular points associated to the different steady state solutions. The case

in which |1 − 2ωnωu | <
√
ε2−4µ̂2

2 has one steady state solution and corresponds to a stable

saddle point. The case in which 2ωnωu < 1 −
√
ε2−4hatµ2

2 has two steady state solutions,
where only the one with the higher amplitude is stable.

It is now possible to use these stability conditions to classify the solutions and to draw
the associated transition curves defining boundaries between stable and unstable regions
in the

(
ε, ωuωn

)
-plane (see Figure 3.7). Indeed, the three curves given by

ε = 2µ̂ and
ωu
ωn

=

(
1±

√
ε2 + 4µ̂2

2

)−1

(3.15)

separate 3 regions. It is important to keep in mind that even if these approximated
boundaries are independent of α, the behaviour of the solution is certainly affected by
the nonlinearity in Equation (3.10). For a linearized system (α = 0), Region 2 would

Figure 3.7 – The different regions in the parameter space for the classification of steady-
state solutions of the damped and parametrically excited Duffing equation.

be characterised by responses with unbound growth for any initial disturbance while the
nonlinear system seems to have a bounded solution. In Region 3 the response may either
decay or converge to a sustained periodic motion, in contrast with the linearized system
whose response could only decay. For Region 1, it appears that the responses decays for
all initial disturbances. This can be explained by the fact that the phase is such that the
parametric excitation force does negative work, thus contributing to the decay. For Region
2, the phase is such that the parametric excitation force injects more energy into the system
than what is being dissipated, causing an unbounded response if α = 0. However if α > 0,
nonlinear phase shifting effects will occur in the phasing (especially for large amplitudes),
causing the response to be bounded and harmonic. For very large initial disturbances, the
response decays until the steady-state solution is reached while for small initial amplitudes,
the response grows until the nonlinearity is large enough to cause a phase-shifting. This
means that all initial disturbances cause the same steady-state response, revealing the
existence of a limit cycle (closed trajectory in the phase space). This phase shifting can
be physically understood as a stiffening effect of the fibre at high vibration amplitudes,
shifting its natural frequencies to higher values. In Region 3 the same reasoning can be
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used to explain the decay mechanism as in Region 1 for some initial disturbances. However,
for other disturbances the nonlinear term may have a large influence, inducing the same
phase shifting effect as in Region 2. Both behaviours are thus possible, keeping in mind
that only the largest of the two steady state solutions is stable. Even though the solutions
are bounded in the whole parameter space, the steady state motions could be a potential
danger for the considered fibre and its surroundings.

Another important observation is that in the vicinity of the parametric resonance,
the inherent damping ξn determines the margin from falling into Region 2. Actually, the
inequality ε < 2µ̂ that, if satisfied, locates the solution in Region 1 can be translated into

Fu < 4Tsξn (3.16)

giving a usable physical limit. Furthermore, one can extrapolate these results for a para-
metric excitation frequency that is close to the natural frequency by looking at the results
for a linearized system described by the Mathieu equation:

¨̃qn + 2µ ˙̃qn + (δ + 2ε cos(2τ)) q̃n = 0 (3.17)

Even though the axis are a bit different, one can see that for δ ≈ 1, the transition curves are
very similar (see Figure 3.8). When ωu ≈ ωn, the damping has a highly stabilising effect,

Figure 3.8 – The effect of viscous damping on the stability of the Mathieu equation around
ωu = 2ωn and ωu = ωn (remembering Equation (3.11)). The shadowed regions define
unstable solutions with unbounded amplitude growth. (Figure from [11])

making this region in the parameter space potentially less harmful than around parametric
resonance. For a more detailed study of parametrically excited Duffing oscillators, one can
look at [47] and for the bifurcation mechanisms [34].



CHAPTER 3. ACTIVE DAMPING OF VIOLIN MODES 33

3.3.3 Horizontal Force Actuator

The linear FE model from Section 2.2.2 allows to easily introduce a boundary horizontal
actuation force in the fibre dynamics (see Figure 3.9). The EOM for the first element,

Figure 3.9 – The perfect horizontal force actuator Fu.

being attached to the actuator spring kp becomes

mÿ1 = k(y2 − y1) + Fu − kpy1 (3.18)

so that the energy injected by Fu will propagate through the consecutive lumped masses.
As already mentioned in Section 2.2.2, a projection on the modal basis does not allow
energy injection at this boundary. In fact, the continuous linear model and the nonlinear
model do not allow this neither. Therefore, simulations of such an actuator are only
possible through the FE state space model.

3.3.4 Piezoelectric actuators

As seen in Section 3.2.3, the direct piezoelectric effect can be used for sensing forces applied
on a piezoelectric transducer, converting mechanical energy into electrical energy. Actually,
the opposite is also possible and is called the inverse piezoelectric effect. Indeed, applying
an electric field in the polarization direction causes the piezoelectric material to expand.
This can be seen in the following equation

∆p = Nsd33Vp +
1

kp
fp (3.19)

in which ∆p is the total extension as shown in Figure 3.3 and kp is the stiffness of the
transducer with short-circuited electrodes (Vp = 0). Equation (3.19) complements Equa-
tion (3.7) to form the piezoelectric transducer constitutive equations. Controlling the
voltage allows to control the expansion of the piezoelectric material and this effect is again
increased for a higher number of stacked elements, thereby reducing the required volt-
age levels [48]. This actuation mechanism can be used for the arrangements described in
Section 3.3.3 and Section 3.3.1. In order to increase the actuation stroke, one can use
Amplified Piezo Actuator (APA) systems, which use an external shell used both for the
ceramic prestress and for the ceramic motion magnification [48].

The use of piezoelectric actuators in GW detectors is however questionable, mainly
due to their heat generation caused by mechanical friction losses and dielectric losses
(ferroelectric hysteresis being the major contribution) in the stacks [49, 50, 51]. Indeed,
introducing a new source of thermal energy would increase the thermal noise level and thus
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impair the sensitivity of the GW detector. Nevertheless, these heat generation effects are
not covered by this work, which assumes perfect sensing and actuation devices.

3.4 Vibration Control Strategies

The latter actuation and measurement means could potentially be used to reduce the
vibration amplitude of the VMs. The idea is to use information about the state of the fibre
(i.e. the vibration amplitude) to drive the actuator in such a way that it will destructively
interfere with the fibre motions. This section covers some proposals based on a vertical or
a horizontal collocated sensor-actuator pair.

3.4.1 Vertical collocated force actuator and sensor

Consider a stretched fibre with a perfectly collocated vertical force actuator-sensor pair
at one of the boundaries (see Figure 3.14). The quadratic observability of the VMs has

Figure 3.10 – The perfectly collocated vertical force actuator-sensor pair.

been proved in Section 3.2.1, demonstrating that they are measured at twice their natu-
ral frequencies. The actuation force, treated in Section 3.3.1, appearing as a parametric
excitation term in the fibre dynamics will be used as the control input to actively damp
the VMs. The non-linearity of the system with a collocated vertical pair disallows the
computation of the transfer functions between the useful quantities, e.g. the modal dis-
placement qn and the actuation force Fu. Even if one neglects the cubic stretching term
in Equation (3.8), the system remains non-linear in control. Therefore, classical active
damping methods designed for linear systems cannot be used, a priori. However, they can
be inspiring for the design of nonlinear active damping strategies based on energy analysis.
The following sections describe some approaches, whose as primary objective is to extract
kinetic energy from the fibre.

Active control based on energy analysis

With the objective of minimizing the total energy of the fibre, it is convenient to define a
measure that quantifies the energy flow from the outer world to the fibre and vice-versa.
This can be done by writing the energy production Ep as the integral of the product of a
generalized force and the velocity q̇n over one period of oscillation of qn [52]. Assuming a
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harmonic oscillation for the n’th mode

qn(t) = |qn|cos(ωd,nt) (3.20)

where ωd,n = ωn
√

1− ξ2
n and |qn| is constant, one can propose the following ansatz for the

vibration control

Fu(t) = Aucos(2ωd,nt+ φu) (3.21)

where φu is the phase shift between Fu and qn. The energy flow into the fibre due to Fu is

Ep,u =

∫ 2π
ωd,n

0

(
−1

ρ

(nπ
L

)2
Fuqn

)
q̇ndt

= − π

2ρ

(nπ
L

)2
Au|qn|2sin(φu) (3.22)

The detailed calculations for this can be found in Appendix A.2. The latter equation shows
that this force input extracts energy from the fibre optimally when φu = π

2 and Au > 0.
Based on this, one can establish the following feedback control law

Fu(t) = Aucos(2ωd,nt+
π

2
) = Ausin(2ωd,nt)

= 2Ausin(ωd,nt)cos(ωd,nt) =
2Au
|qn|2ωd,n

qnq̇n (3.23)

During real-time measurements, there is no direct access to the vibration amplitude |qn|2.
However, if one neglects this factor, the vibration damping will be much smaller for small
oscillations, as the controllability decreases with a decreasing vibration amplitude (see
Equation (3.8)). Theoretically, |qn|2 can be measured as

|qn|2 = (|qn|cos(ωd,nt))2 + (|qn|sin(ωd,nt))
2 = q2

n +
1

ω2
d,n

q̇2
n (3.24)

Given the previously stated assumptions and a perfect control of φu such that no delay
caused by finite sampling frequencies is introduced, the control law given by Equation (3.23)
allows pure energy extraction from the fibre with an efficiency that can be evaluated by
introducing an equivalent added damping. Indeed, the energy flow due to the viscous
damping in Equation (3.8) can be expressed as

Ep,ξn =

∫ 2π
ωd,n

0

(
−2ξn

nπ

L

√
Ts
ρ

)
q̇2
ndt

= −2ξn
nπ2

L

√
Ts
ρ
ωd,n|qn|2 (3.25)

The equivalent added damping due to Fu can be obtained by equating Equation (3.22)
and Equation (3.25) where ξn is replaced by ξa,n, which yields

ξa,n =
nπ

4ωd,nL
√
ρTs

Au (3.26)
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In case there is some time delay so that φu = π
2 + ∆φu, the latter equation expression for

ξa,n is multiplied with sin(π2 +∆φu) = cos(∆φu), showing that delay effects are detrimental
to the performance of this control law. Applying Equation (3.23) to the system described
by Equation (3.8) results in an equivalent system with no feedback and a total damping
factor ξn,tot = ξn + ξa,n. To measure the damping factor ξn,tot from a decaying oscillation
measurement, one can use the logarithmic decrement method. With this method, one
looks at the amplitude of two peaks qn(t0) and qn(t1), where the second one takes place
kq oscillations after the first one (kq =

ωd,n
2π (t1 − t0)). The damping factor is computed as

ξn,tot =
1√

1 +
(

2πkq
ln fq

)2
with fq =

qn(t0)

qn(t1)
(3.27)

The effect of the active damping on the quality factor for a given VM can be computed
from the equivalent added damping and the original quality factor Qor of that specific
mode

Qnew =
1

2ξn,tot
=

1

Q−1
or + 2ξa,n

(3.28)

where ξa,n is a linear function of the actuation amplitude Au, as shown by Equation (3.29).
Using the silica fibre parameters of aLIGO (see Appendix C.1), assuming Qor = 109 for
the first VM, the new quality factor is shown as a function of the actuation amplitude in
Figure 3.11. So, for Au = 0.1N the quality factor of the first mode can be reduced by a
factor 105 or 100 dB.
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Figure 3.11 – The quality factor of the first VM as a function of the actuation
amplitude Au.

If the fibre vibration is only measurable through a vertical force sensor as described in
Section 3.2.1, the latter control law can’t be used directly. Assuming a perfect force sensor
without any high-pass filtering, the measured quantity is Tm,n = Ts + Td,n, from which
Td,n can be computed assuming Ts is known. To simplify notations, Td,n will now be used
instead of the previously used notation Td,n(0, t). From Equation (3.2), one can write

|qn(t)| =
√

2L

nπ
√
EA

√
Tm,n − Ts (3.29)
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Assuming again a harmonic oscillation qn = |qn|cos(ωd,nt), one can write

Td,n =
EA

2

(nπ
L

)2
|qn|2cos(ωd,nt)2 =

EA

2

(nπ
L

)2 |qn|2

2
(1 + cos(2ωd,nt)) (3.30)

and its time derivative

Ṫd,n = −EA
2

(nπ
L

)2
|qn|2ωd,nsin(2ωd,nt) (3.31)

Using the latter equations, it is possible to see that the force sensor measurement can be
used to apply the a nonlinear feedback law as follows

Fu(t) = Ausin(2ωd,nt)

= Au
−Ṫd,n

EA
2

(
nπ
L

)2 |qn|2ωd,n (3.32)

in which, in a similar way as for Equation (3.24)

EA

2

(nπ
L

)2
|qn|2 =

EA

2
|qn|2

(nπ
L

)2 (
cos2(ωd,nt) + sin2(ωd,nt)

)
= Td,n +

Ṫ 2
d,n

4Td,n
(3.33)

from which one can finally write

Fu(t) = − Au
ωd,n

Td,nṪd,n

T 2
d,n + 1

4 Ṫ
2
d,n

(3.34)

If the DC component of the signal from the force sensor is suppressed (e.g. through high-
pass filtering), the latter feedback law can’t be used. In fact, from Equation (3.30) it is
possible to prove that the measured quantity becomes

Tm =
EA

2

(nπ
L

)2 |qn|2

2
cos(2ωd,nt) and Ṫm = −EA

2

(nπ
L

)2
|qn|2ωd,nsin(2ωd,nt) (3.35)

Thus, the optimal control turns into

Fu(t) = −Au
Ṫm

EA
2

(
nπ
L

)2 |qn|2ωd,n (3.36)

in which EA
2

(
nπ
L

)2 |qn|2 can be replaced by
√

4T 2
m +

(
Ṫm
ωd,n

)2
so that

Fu(t) = −Au
Ṫm√

(2ωd,nTm)2 + Ṫ 2
m

(3.37)

This nonlinear feedback control can be represented by the following control scheme, as-
suming thermal noise to be the only disturbance source exciting the violin modes.
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Fibre

e.g. Thermal Noise

Force Sensor
T

Fu(t) = f(Tm, Ṫm)

TmFu

Since the measured quantity is now Tm(t) and not qn(t), one can not directly apply
Equation (3.27) to compute the damping factor from the measurements. However, since
Tm(t) oscillates at twice the frequency of qn(t), the interval [t1 − t0] contains kT = 2kq
oscillations of Tm(t). Moreover, since |qn(t)| ∝

√
|Tm(t)|, one can write

ln fq =
1

2
ln fT with fT =

Tm(t0)

Tm(t1)
(3.38)

so that the same formula can be used as before (the factor of 2 cancels out) but with the
tension measurement:

ξn,tot =
1√

1 +
(

2πkT
ln fT

)2
(3.39)

Modified Integral Force Feedback

Because of the non-linearity of the control term in the plant dynamics, it is not possible
to directly apply all the theoretical concepts of IFF, which is originally designed for linear
systems (see Section 3.4.2). Nevertheless, one can imagine that this approach could po-
tentially damp the vibrations in a similar way as the nonlinear derivative feedback from
Section 3.4.1 does, since the measured vertical force at the top of the fibre is used to drive
the vertical force actuator with a phase shift of π2 , leading to negative work. Writing again
qn(t) = |qn| cos(ωd,nt), the IFF control signal can be written as

Fu(t) = |Fu|
∫ t

0
Tm(t)dt = |Fu|

EA

2

(nπ
L

)2
|qn|2

1

4ωd,n
sin(2ωd,nt) (3.40)

The latter equation shows that, in a similar way as for the derivative control feedback
given by Equation (3.37), the IFF control will reduce the vibration energy of the fibre (this
can be proved by looking again at the sign of the energy production calculated over one
oscillation period). However, this control law does not damp small vibrations as good as
large vibrations, so that its performance can be increased by dividing the feedback gain by
|qn|2. In order to get the same equivalent added damping factor ξa,n (see Equation (3.29))
as with derivative feedback for the same value of Au, the control law becomes

Fu(t) = Au4ωd,n

∫ t
0 Tm(t)dt

|Tm|2
(3.41)

where,in contrast with the derivative control, Au > 0.

Notice that the proposed nonlinear feedback laws do not show any optimal gain like
classical IFF would do. In fact, the higher the gain, the more the vibration will be reduced,
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at the expense of large required input forces and potentially high excitation of the system on
which the actuator is mounted. Thus, the maximum damping will depend on the actuator
specifications and on the rest of the system (see Section 5.2.1). Furthermore, a perfect
integrator introduces a phase lag (−π

2 ) and a −20dB per decade magnification while a
perfect differentiator introduces a phase lead (+π

2 ) and a +20dB per decade magnification.
This means that applying these control laws on a real plant should be done carefully because
high frequency noise could be problematic for a derivative control and low frequency noise
would lead to saturation for the integrator (this is further detailed in Chapter 4).

Other controllers

Fujino and Chen studied and implemented a system that is very similar to the derivative
control discussed previously, with as main difference that a non-collocated Direct Velocity
Feedback (DVF) controller is used with a CCD camera tracking the modal velocity q̇n(t)

[52, 53]. Strategies based on the parametric excitation term in the nonlinear cable or string
dynamics can be categorized as active stiffness control, where the output of the controller
is a quadratic function of the target mode, so that the actuator signal fluctuates at a
frequency that is twice that of the controlled mode [46].
The control law developed by Onoda et al. is based on a nonlinear saturation controller
(sometimes called bang-bang control), which can be written as

Fu(t) =

{
−Au for qnq̇n < 0

Au for qnq̇n > 0
(3.42)

However, applying this to a taut string leads to spillover instability [54].

Notice that the strategies of Fujino, Chen and Onoda are all likely to be affected by
spillover, occurring when non-modelled high-frequency modes are measured by the sensor
(observation spillover) and are excited by the actuators (control spillover) [46]. Indeed,
the advantage of using a collocated pair is that the dynamics of the structure do not need
to be known, which allows to implement unconditionally stable control laws [8].

Simulink models for vertical control

In order to understand how the relative phase of the vertical actuation signal with re-
spect to the modal amplitude influences the damping effect, a simulation is performed
using Simulink where an external sinusoidal modal force (e.g. thermal noise) of frequency
f1 is applied on the fibre and a sinusoidal parametric excitation is applied at twice that
frequency. This is done using a nonlinear fibre block in Simulink (see Figure B.1 in Ap-
pendix B) that takes the vertical control force and an external modal force as input and
the dynamic tension as output. It also allows for an easy visualisation of the modal vi-
brations. The relative phase between the parametric excitation and the modal force is
shifted over time, resulting in an evolution of the modal amplitude envelope as shown in
Figure 3.12. The numerical integration is performed using a fixed-step 4th order Runge-
Kutta algorithm. The parametric actuation is applied after 10 seconds to allow the motion
to be in a steady state regime (due to the external sinusoidal force). The phase is shifted
slowly to make the envelope correspond to the modal amplitude in steady state conditions.
The figure clearly shows that a relative phase difference of π

2 results in a positive energy
injection while a phase difference of −π

2 results in a negative energy injection. The slope of
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Figure 3.12 – The first mode vibration amplitude envelope for a sinusoidal magnetic exci-
tation with a frequency f1 and a vertical sinusoidal force excitation at 2f1 activated after
10 sec. The phase delay of the vertical excitation with respect to the string’s first mode
motion is shifted over time, showing an optimal phase difference around π

2 .

the envelope just after reaching a minimum is high because of the nonlinear phase shifting
effect discussed in Section 3.3.1. In Chapter 4, it will be shown that this behaviour is also
observed in the experimental results for the real plant.

For a vertically mounted collocated force actuator-sensor pair, both IFF and derivative
control have been implemented in Simulink. The quadratic modal amplitude has to be
estimated through the tension measurement to increase the control efficiency at low vibra-
tion amplitudes (see e.g. Equation (3.37)). However, due to finite time steps in numerical
simulations, the numerator causes some problems caused by discontinuities. This can be
solved by using an amplitude estimator, allowing to rewrite Equation (3.37) as

Fu(t) = Au
Ṫm

|Ṫm|
(3.43)

A custom made Simulink block has been made using a sample and hold, triggered by
a decrease detector and filtered by a first order low-pass filter to avoid discontinuities
(see Figure B.2 and Figure B.3 in Appendix B). The two control schemes are shown in
Figure B.4 and Figure B.5. By simulating with the parameters given in the Matlab script
in Appendix C.1, one can analyze the obtained modal dynamics with both control methods
(see Figure 3.13). In this simulation there is no external force, but only an initial position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Control ON

Figure 3.13 – A comparison between simple IFF (Au = 106) and derivative feedback with
amplitude estimation (Au = −0.5).
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for the modal amplitude. This clearly shows the effect of dividing the control signal
by the estimated amplitude. The effect of viscous damping is visible through the decay
when the control is not yet activated. The equivalent added damping for the derivative
feedback computed by applying the logarithmic decrement on the modal amplitude signal
corresponds to its expression given by Equation (3.29).

3.4.2 Horizontal collocated force actuator and sensor

Assuming only horizontal forces, the EOM for the first element in the FE model from
Section 2.2.2 with a perfectly collocated horizontal force actuator-sensor pair becomes

mÿ1 = k(y2 − y1) + Fs Fs = Fu − kpy1 (3.44)

where Fs is the force measured by the sensor. Defining the system output as Fs, the output
state space matrices (C1×2N and D1×N ) become

Fs = C~Y +D~F with


C =

(
01×N −kp 0 0 . . . 0

)
D =

(
1 0 0 . . . 0

) (3.45)

Figure 3.14 – The perfectly collocated horizontal force actuator-sensor pair.

The resulting state space representation of the suspension fibre allows to study the
response of the system to different disturbances in the controlled and uncontrolled case.
Closing the loop can be done as in the following block diagram. The transfer function
g

s+ac
acts as an integrator from a certain frequency ac, which allows to avoid saturation

generally associated with integral control.

Linear Fibre SS

e.g. Thermal Noise

IFF = g 1
s+ac Fsen

Fact
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It is important to remember that the FE model represents planar motion only, while
a real fibre has two orthogonal transverse vibration directions. These two directions are
coupled, so that energy transfer between both is undeniable [37]. As a consequence, active
damping on one of the two directions will also damp the vibrations in the other direction,
which is desirable.

Numerical simulations for horizontal control

With the latter control law, one can look at the root locus of the control (see Figure 3.15
obtained using the Matlab script in Appendix C.3). The open-loop poles are the natural

Figure 3.15 – The root-locus of the IFF, showing the migration of the poles towards the
zeros for an increasing feedback gain. The units for both axes are in rad

s .

frequencies of the structure with the active element working passively (contributing with
its own stiffness kp). The open-loop zeros are the natural frequencies of the system when
the active element is removed [8]. As there is no damping introduced in the dynamics, the
poles and zeros of the VMs are on the imaginary axis (or very close to it, due to numerical
errors). Figure 3.15 shows that an increased feedback gain g causes the poles to migrate
towards the zeros. Defining the optimal gain as the one that maximizes the negative real
part of the pole associated to the mode of interest (and so, the modal damping), one can
analyse the root locus to find it. In fact, since the different loops are travelled at different
’speeds’ and g is the only decision variable, the optimal value of g for one mode will not
necessarily be optimal for another one. This way, one mode can be selected to be damped
the most. Furthermore, the higher the distance between the poles and their associated
zeros, the better the corresponding modes can be damped because the root loci go further
into the left complex half plane.
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Using the fibre parameters defined in Appendix C.1, with the collocated pair placed 2cm
below the attachment point, the optimal gain for the first mode is around 106, causing an
equivalent damping of ξ1 = 0.014, ξ2 = 0.010 and ξ3 = 0.007 for the first, second and third
VM respectively. This result can be illustrated with the comparison between the open loop
and closed loop transfer function of the collocated pair. The open loop transfer function
was shown in Figure 2.7 and is now compared with the closed loop transfer function in
Figure 3.16. Moving the latter to 4cm below the attachment point and using the same
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Figure 3.16 – Open Loop vs. Closed Loop transfer function between force actuator and
sensor for a feedback gain of 106 and an integrator 1

s . The pendulum mode (PM) and the
VMs are all present in these transfer functions, clearly showing the corresponding poles
and zeros.

feedback gain, a damping ξ1 = 0.020 can be obtained, showing again the low authority on
these modes near the attachment points.
The effect of applying this control on the transmissibility from suspension point motion to
test mass motion is shown in Figure 3.17.
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Figure 3.17 – The transmissibility transfer function from ground motion (at the suspension
point) to test mass motion with and without IFF control.
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3.5 Conclusion

Different control strategies have been developed in this chapter with two collocated actuator-
sensor pair configurations. The first one, being a vertical mount, allows to damp the VMs
through a parametric control, using a derivative or an integrating feedback law. For the
horizontal mount, where the equations remain linear, an IFF control has been proposed.
All of these have been simulated with the adequate fibre models (Simulink for parametric
control and state space for horizontal control) allowing to understand how the proposed
strategies perform. For a vertical mount, classical IFF control originally designed for lin-
ear systems has been proven to have very low performances at low vibration amplitudes.
Therefore, a modified solution has been proposed. For the horizontal mount, the classical
IFF is applied successfully, which can be expected from the linearity of this configuration.
However, the small distances between the poles and zeros reduce the authority on the cor-
responding modes a lot. One could think of moving the collocated pair down to increase
this authority but this can be detrimental to the seismic isolation performances of the
pendulum.

The main advantage of IFF is that all the observable and controllable modes are damped
and stability is in principle guaranteed regardless of the value of the gain and the structure
on which it is acting (linear or not) [8]. Another important comment is that a vertical
mount allows to damp vibrations in both transverse directions, while a horizontal mount
only acts in one direction. However, the nonlinear couplings allow to damp the vibrations
in the other direction, as mentioned before.

The designed Single-Input Single-Output (SISO) control laws constitute decentralized
feedback loops in each active mount. Indeed, the quadruple pendulum has multiple fibres
which all need to be controlled. As will be seen in Section 5.2.1, there might be some
stability issues due to the other DOFs of the quadruple suspension, so that a centralized
control architecture could be required.



Chapter 4

Experiments
4.1 Introduction

The different control strategies proposed in Chapter 3 based on the fibre dynamics derived
in Chapter 2 are tested on a real plant in the Precision Mechatronics Laboratory (PML).
A single fibre suspended mass setup has been built by Universite Libre de Bruxelles (ULB)
students, in a way that allows a fast and easy replacement of the different components.
This setup as well as the main equipment used for experiments are described in Section 4.2.
The test results are given in Section 4.3, and a detailed interpretation of these results is
discussed in Section 4.4. An important remark is that the experiments performed for this
work are conducted on a system at much higher dynamic and kinematic scales than in GW
detectors. Indeed, the VM vibration amplitudes in the lab are of order 10−3 m while in
aLIGO they are of order 10−16 m [42].

Figure 4.1 – A schematic drawing of the suspended mass and the collocated piezoelectric
force sensor-actuator pair in the vertical configuration (left) and the horizontal configura-
tion (right).

4.2 Experimental Setup

4.2.1 Suspension arrangement

A guitar string is used (nylon or low carbon steel) as a suspension fibre, because of its
elastic behaviour and relatively long ring-down times [55]. The suspended cylindrical mass
of 1.456kg coming from a machining lathe is clamped to the string using a screw clamp
(see Figure 4.2). The other side of the string is attached to a connecting block (clamping
the fibre between two diametrically opposed screws) which on its turn is screwed on a
support structure. This structure can be the vertically mounted piezoelectric transducer
(see Section 4.2.2) in the case of a vertical control, or it can be another support structure
in the case of a horizontal control.

45
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Figure 4.2 – The suspended mass of 1.456kg coming from a machining lathe spindle. It is
attached to the fibre with a screw clamp.

4.2.2 Collocated Piezoelectric transducer

For both the force sensor and actuator, preloaded piezoelectric stacks are used, which
are integrated along the horizontal axis of a compliant elliptic stainless steel shell (see Fig-
ure 4.3), constituting an almost perfectly collocated pair. This transducer is the APA100M
from Cedrat Technologies, being the smallest stroke and highest force version of their Am-
plified Piezo Actuator M series. The elliptical structure is working as a stroke amplifier
(through mechanical amplification), as a pre-stressing frame and as a suspension spring (in
the case of vertical control), with a resulting stroke of 126µm and a stiffness of 1.859 N

µm

under quasistatic excitation (from datasheet [56]). Actually, the deformation of the low
voltage piezoelectric ceramics, typically MLA, along the horizontal axis (or main axis) can
be in compression or in extension and, since the ceramics do not withstand large tensile
stresses, the elliptical structure provides a preload to ensure a longer life time. In the case

Figure 4.3 – The vertically mounted APA 100M piezoelectric transducer from Cedrat
Technologies.

of a horizontal vibration control, the piezo is rotated 90◦ around the axis perpendicular to
the main axis and the vertical axis to protect the transducer from bending loads. More-
over, the fibre is not attached directly to the transducer, but to another support structure
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through the string connection block. The transducer is then attached to the string near its
suspension point by clamping it between metallic washers, tightened with nuts on a screw
(see Figure 4.4).

Figure 4.4 – The horizontally mounted APA 100M piezoelectric transducer with a clamping
allowing no bending forces.

4.2.3 Piezoelectric Transducer Control and Data Acquisition

The APA100M is equipped with two coax cable connectors. Because of the symmetry
of this transducer, the user can choose which side is for actuation and which side is for
the measurements. The sensor side is connected to a sensor signal conditioner from PCB
Piezotronics, which is set to voltage mode. The filtered output from this signal condi-
tioner goes to the MicroLabBox prototyping unit from dSpace, which has ADC and a DAC
modules enabling the connection with the dSpace computer software. The latter software
allows to use compiled Simulink models in real time with the operating MicroLabBox. One
can thus send signals in real time to the DAC and actuate the other side of the piezoelectric
transducer through a voltage amplifier (piezo controller from Thorlabs). Using the dSpace
software, it is possible to visualise different signals simultaneously (e.g. sensor or actuator
signal) and modify some of the model parameters of the Simulink model (e.g. gains, con-
stants, etc.). Consequently, the computer can also be used to generate digital controllers
and apply them on the plant, thereby closing the loop. Remembering the nonlinear feed-
back laws, the high-pass filtering of the sensor measurements by the signal conditioner is
necessary to eliminate the static tension.

4.2.4 Violin Mode Excitation

Guitar strings are generally excited with plectrums or fingertips (using the skin or the
finger nail) and the location of the plucking force will determine the modal amplitudes (in
the middle: mainly 1st mode, at 1/4th: mainly 2nd mode). An approximated solution of
the fibre motion with this kind of excitation is derived in Section 2.4. These different means
of excitation have a non-zero touching width, which creates a low-pass filtering effect. It
may also cause the excitation to be a nonlinear and time-varying operation [55].
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For steel strings, which are ferromagnetic materials, it is possible to use a magnetic coil
excitation as in Section 2.4.3. In Figure 4.5, one can see a copper solenoid coming from
a AKRIBIS Voice Coil Motor AVM24-10-0.5. A current is injected into the coil through
a power amplifier (from Micromega) which takes as input one of the analog outputs of
the Microlabbox DAC. This way, the string can be excited by a magnetic field which
oscillates at twice the frequency of the injected current (see Section 2.4.3). To increase

Figure 4.5 – The magnetic coil, screwed on a metallic structure with a sliding slot, allowing
to choose the position of the excitation.

the magnetic flux reaching the string, a steel core is placed inside the coil. The metallic
structure to which the electromagnet is attached works both as a rigid support and as
a heat sink. Indeed, the resistive losses generate heat in the copper and the maximum
nominal temperature is 100◦C with maximum peak currents of 3.8A, so that one should
control the temperature. It is important to know that besides the doubled frequency and
the varying inductance non-linearity predicted by the magnetic force model in Section 2.4.3,
there are some additional nonlinear effects that have to be taken into account. Indeed,
the magnetic flux-current characteristics of the electromagnet show some hysteresis and,
more importantly, a saturation limit introducing a significant non-linearity in the relation
between the input signal and the magnetic force. This effect is reduced by keeping the
current in the linear range of the electromagnet.

4.3 Test results

The control strategies that have been detailed in Section 3.4.1 and in Section 3.4.2 for
a collocated force sensor-actuator pair (vertical and horizontal mount, respectively) are
tested on the real plant using the equipment described here above. Nonetheless, both
approaches are implemented without dividing the control signal by the modal amplitude
like in the former Section. This part describes the experiments and their results, while
Section 4.4 provides a more detailed discussion.
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4.3.1 Vertical collocated piezoelectric mount

When the string is excited by the electromagnet, one can observe the ASD sowh in Fig-
ure 4.6. The first peak corresponds to the vertical (also called axial) vibrations of the
string whereas the other successive peaks are associated to the VMs. The eigenfrequency
of the vertical mode is given by the following formula [37]

ωv =

√
EA

ML
(4.1)

where A is the cross section area of the string, M is the suspension mass, L is the string
length and E is the young modulus, which can be calculated from the latter expression.
With regard to the open loop transfer function between the sensor and the actuator, the
VMs are not visible, as expected from Chapter 3.
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Figure 4.6 – The vertical piezoelectric sensor signal ASD for a white noise magnetic exci-
tation. The first peak corresponds to the vertical eigenmode of the string at the frequency
fv = 27.5Hz. The following peaks are the VM harmonics, for which the fundamental
frequency is f1 = 37.5Hz.

An experiment is conducted to evaluate the effect of the phase of the stiffness control on
the string vibration amplitude, like in Section 3.4.1. To do so, the electromagnet is exciting
the string at its first VM frequency and the piezoelectric actuator is driven at twice that
frequency, but with a relative difference of 1.11%. This difference causes a relative phase
shifting over time between the two actuation signals. The sensor signal is then passed
through a high order bandpass filter (whose frequency response is quasi-rectangular) to
access the string amplitude through the linear observability (see Figure 4.7). On the other
hand, a video camera has been placed in front of the string to record these vibrations and
compare them with the piezo sensor measurements. The obtained signal coincides with
the visual observations, namely a slow periodic variation of the amplitude (each period
being repeated every 89sec). Looking at the relative phase difference between the modal
amplitude and the piezo actuation and rememebering Equations 3.20 and 3.21, one can see
that the experiment agrees with the predicted optimal relative phase of π2 and Au < 0. The
word optimal is used to designate the situation where the vibration amplitude is minimised.
On the contrary, a relative phase of −π

2 causes the piezo to inject energy into the string
vibrations as predicted by Equation (3.22), so that it is in fact contributing to the excitation
through the parametric resonance (see Section 3.3.2). An important comment on Figure 4.7
is that after reaching the optimal relative phase, causing the vibration to be much smaller,
there is a sudden increase in the vibration amplitude. This is due to the nonlinear phase
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shifting effect described in Section 3.3.2, and it corresponds to the simulation results (see
Figure 3.12). In Appendix B, Figure B.12a and b show the actuation and string vibration
signals at a much smaller time-scale, allowing to visualise the relative phase difference and
the damping effect.

Figure 4.7 – The vertical piezoelectric sensor signal filtered around f1 = 37.5Hz (to observe
the string amplitude through the linear observability) for a sinusoidal magnetic excitation
with a frequency f1 and a vertical sinusoidal excitation at 2f1 by applying a voltage of
60Vpp. The phase delay of the piezo excitation with respect to the string’s first mode
motion is shifted over time, showing an optimal phase difference around π

2 . The vibration
amplitudes shown on the pictures are approximately δa = 5.5mm, δd = 2.5, δc = 4mm.

Both IFF and derivative feedback have been implemented and a comparison can be
found in Figure 4.8a and b. The string is plucked with a plectrum and the control is
activated 1.5s later. The feedback gains that have been used are 0.035 and −19000 for
derivative feedback and IFF control respectively, which are the maximum attainable gains
before reaching instability due to other modes, which will be discussed later.
A comparison between the sensor ASD with and without IFF control is depicted in Fig-
ure 4.9 and clearly shows that the vertical bouncing mode of the string is significantly
attenuated, while the VMs are not, except for the first mode and the peak at the second
mode frequency as a result. The next modes however do not seem to be damped.
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(a) (b)

Figure 4.8 – Comparison between IFF and derivative control when activating the control
approximately 1.5s after plucking the string.
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Figure 4.9 – The comparison between vertical piezoelectric sensor signal ASDs obtained
with and without IFF control.
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4.3.2 Horizontal collocated piezoelectric mount

By injecting a white noise signal in the piezoelectric actuator and simultaneously recording
the sensor signal, the open loop transfer function between those two quantities can be
estimated using the acquired spectral power densities. The result is shown in Figure 4.10.
The increasing phase lag for higher frequencies is due to the finite sampling frequency.
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Figure 4.10 – The estimated open loop transfer function between the actuator and the
sensor and the associated coherence function.

Actually, due to the ADC conversion a one to one transfer function can be written as
H(s) = e

− s
fs where fs is the sampling frequency, so that a phase lag is introduced at

higher frequencies. The decreasing amplitude is due to a vibration mode of the structure to
which the collocated pair is attached. The alternating poles and zeros are associated to the
VMs of the string. This specific pattern has been predicted in Section 2.2.2 from the state
space representation of the string dynamics. However, the distances between the poles and
their associated zeros are even smaller (±0.2Hz for each mode), which indicates a very low
authority on these specific modes. Another difference is the increasing response for higher
mode numbers, which is due to the higher slopes of the mode shapes at the boundaries. The
transfer function between the electromagnet signal and the force sensor is estimated and
shown in Appendix B Figure B.13, showing a reduction of a factor 5 in the magnification
of the first mode when using IFF control. For increasing mode numbers however, the
reduction of the VM peaks in this transfer function is lower, as the IFF principally acts
at low frequencies. The feedback gain that has been used for this experiment is −28000,
which is the maximum attainable one before reaching instability due to other modes, as
will be discussed later.
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4.4 Discussion

The experimental results allow to put the mathematical representation of the fibre’s physics
in contrast with the reality. The similarities and the differences are discussed here in order
to evaluate the relevance of the proposed solutions.

4.4.1 Measurement of violin modes

A first observation is that the VM vibrations can be measured by a vertically mounted
force sensor, at twice their natural frequencies due to the quadratic observability. This
was predicted in Section 3.2.1, thereby illustrating the significance of the dynamic tension.
Nevertheless, the mathematical model assumed an ideal vertical force sensor, which is not
the case in the real plant. The piezoelectric sensor has a finite sensitivity to forces in other
directions (e.g. the vertical one), so that the transverse forces caused by VM vibrations
are also measured through the bending of the transducer. Thus, the measurements show
that the VMs are both observed quadratically and linearly, causing their spectral peaks to
be larger at the frequencies corresponding to even mode numbers (where quadratically ob-
served VMs are superposed with the linearly observed ones). Still, this non-ideal behaviour
is useful to analyze the modal amplitudes of VMs with odd mode numbers.

With the force sensor mounted horizontally, the VM vibrations are observed linearily,
as predicted in Section 3.2.2. However, in a similar way as for the vertically mounted
sensor, the horizontal configuration allows to measure vertical forces through the bending
of the transducer. Therefore, the vertical vibration mode of the string is measured as well.

A more direct observation of the VMs is performed by simply looking at the fibre
vibrations or recording it with a camera. Even with a video camera recording only 30 frames
per second, the visual data can be used to gather an approximate vibration amplitude.
Actually, since the string motion has its smallest velocity when it reaches the maximal
deflection (at both sides of the equilibrium position), an optical illusion is formed during
steady state vibrations, as if there were two nearly parallel strings separated by a distance
that is equal to twice the vibration amplitude. Using this technique, one can verify the
measurements of other sensors.

By using the logarithmic decrement method as discussed in Section 3.4.1 (see Equa-
tion (3.39)), the quality factors of the string VMs have been measured to be in the range
102− 103 depending on the string. This corresponds to the experiments of Carla Marcello
et al. in [57] and is much lower than the quality factors for the silica fibres in the aLIGO
suspensions (108 − 109, see Chapter 1). Nevertheless, it is still sufficient to be able to
analyze the effects of the active damping strategies.

4.4.2 Excitation of violin modes

By exciting the string with a plectrum having a smooth surface finish, one can observe all
the VM harmonics with the different sensor configurations. As discussed in Section 2.4,
the response of the fibre depends on the location and the amplitude of the plucking force.
However, when choosing the plucking location in the nodal point of a certain mode, that
mode is observed in the ASD of the sensors. This is due to the non-zero touching width of
the plectrum and the imperfection of the plucking location [55], as well as the inter-modal
energy transfers, especially for large vibration amplitudes [37].
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Using an electromagnet, the excitation is made nearly time invariant and its spectral
content can be chosen using the convenient filtering and remembering that the injected
current should have half the frequency of the desired excitation frequency. By injecting
white noise into the electromagnet and recording the piezoelectric sensor signal, the transfer
function between both quantities can be estimated, showing peaks at the VM frequencies.
This frequency response allows to visualise the effect of an active damping strategy.

4.4.3 Active damping of violin modes

For the vertical mount, the experiment that shows the effect of the relative phase difference
between the string vibrations and the parametric control coincides with the numerical
simulations and the analytical predictions. For a harmonic oscillation of a certain VM,
the optimal (read most dissipative) actuation for a given gain is at twice that frequency
with a phase lead of π2 , while the principal parametric resonance phenomenon described in
Section 3.3.1 occurs for a phase lag of π

2 . This important result validates the simulations
and thus the nonlinear mathematical model for the string dynamics.
However, when closing the loop using either a derivative feedback or an IFF controller, the
system becomes unstable for a given feedback gain, thereby limiting the damping perfor-
mances to a very low level. Actually, while the single frequency phase-shifting experiment
discussed previously allowed to apply a voltage signal of 100Vpp, the limited feedback gain
causes the applied voltage to be restricted to levels generally below 5Vpp. The reason
for this is probably the phase lag induced by the ADC at high frequencies as discussed in
Section 4.3.2, so that high frequency modes of the system (e.g. the eigenmode of the piezo-
electric transducer) are excited. In fact, the bandwidth of the control system is limited
since there is always some destabilization of the flexible residual modes. This phenomenon,
where the total damping of the residual modes decreases when the bandwidth increases is
known as spillover [8]. Despite this lack of stability, the proposed strategies are able to
actively damp the string vibrations, as shown by Figure 4.8a and Figure 4.8b. It goes with-
out saying that the string’s vertical mode vibrations are strongly coupled with the vertical
piezoelectric actuator and sensor, so that they are effectively damped by the implemented
vibration controls. Furthermore, the nonlinear couplings between the latter vertical mode
and the transverse modes of the string cause the reduction in the vertical vibrations to be
reflected as a reduction in the VM vibrations, which can be understood from the string
theories of Narasimha in [37]. For a material whose axial stiffness is such that the vertical
mode eigenfrequency is close to one of the VMs, which is the case in the experiments for a
steel wire, the latter coupling is even bigger for that distinct mode. This is why the first
VM is damped much more than its harmonics in the experiments.

For the horizontal mount, the alternating pole-zero pattern in the open loop transfer
function of the collocated pair that was predicted in Section 3.4.2 has been validated
experimentally. Therefore, the VMs are observable and controllable in this configuration.
However, the very small distance between the corresponding poles and zeros is indicative of
the low active damping potential, according to [8]. Moving the collocated pair further from
the attachment point could be a solution to increase these distances, but at the expense
of reduced seismic isolation performances in aLIGO. Indeed, the natural frequency of the
pendulum mode would be shifted to a higher value (see Figure 3.17) because of the reduced
effective fibre length, so that the overall seismic noise contribution would be increased in
the sensitivity of the GW detector.
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Main suspension chain vibration modes
5.1 Introduction

In this chapter, the main chain in the lower stages of the quadruple suspension system is
modelled in order to assess the effects of violin modes on other vibration modes. Indeed,
the suspended masses are rigidly attached to the fibres, causing the VMs to be observed
in GW measurements. The vibration control strategies described in Chapter 3 also affects
the rest of the system, enforcing the need for a model reflecting those interactions. The
terminology for the different degrees of freedom can be found in Figure 5.1. For the sake

Figure 5.1 – The different degrees of freedom for a single suspension loop with different
perspectives: (left) side view; (middle) front view; (right) top view.

of simplicity, this representation considers only the two lower suspension stages and only
one suspension loop for the lower mass. Seismic noise and vibrations of the upper stages
are not modelled here, but it can be injected through the motion of the suspension base,
which would normally be one of the leaf springs.

5.2 Pendulum, pitch and yaw motion

The most important vibration modes in the quadruple suspensions are associated to the
pendulum, pitch and yaw degrees of freedom of both masses. One can also model the roll
and side pendulum motions, but even supposing they are present, their influence along the
beam axes of the detector is very limited and only caused by misalignments.[33]

5.2.1 Single suspended mass

The lower stage of the isolation system is simpler to model because there are less coupling
terms between different DOFs. Furthermore, this part does not include fibre vibrations for
the sake of simplicity. These will be included in Appendix A.4.

For the pendulum and pitch motions, consider a single suspended mass with a moving
suspension point (which will later be replaced by the motion of the upper stage) a moment
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of inertia I (for pitch and yaw motion) and a mass M causing a constant tension Mg
2 in

both fibres due to gravity. Omitting yaw motion, the two fibres of length l can be replaced
by a single fibre of length L with a tension Ts = Mg (see Figure 5.2). The attachment point

Figure 5.2 – The single suspended mass pitch and pendulum modes, with a moving sus-
pension point.

is located at a vertical distance dp from the centre of mass. The pendulum displacement
and pitch degrees of freedom are denoted x and Θ respectively. These motions are coupled
through the following equations of motion

Mẍ = F + Ts sin(α) ≈ F + Ts
xe − x− dpΘ

L
(5.1)

IΘ̈ = Cp + Tsdp sin(α−Θ) ≈ Cp + Tsdp
xe − x− (dp + L)Θ

L
(5.2)

where xe is the suspension displacement, F is an external horizontal force, Cp is a pitch
torque and α is the angle between the fibre and the vertical axis. From these differential
equations, which are typical harmonic oscillators, one can derive the natural frequency
for both motions by ωx =

√
Gx
M and ωΘ =

√
GΘ
I where Gx and GΘ are the coefficients

responsible for the restoring forces associated to motions x and Θ respectively. Thus, the
eigenfrequencies are given by

ωx =

√
g

L
and ωΘ =

√
Tsdp

dp+L
L

I
(5.3)

For the yaw motion φ, one has to deal with both fibres whose four attachment points
are given by the distances dy and db (see Figure 5.3) and the rotation of the suspension base
is given by the angle φe. This motion is decoupled from the other DOFs and is described
by the following equation of motion:

Iφ̈ = Cy +
db
2

sin(φ′e)(Fy1 + Fy2) = Cy +Gφ(T1 + T2)(φe − φ) (5.4)

where Cy is an external yaw torque, T1 and T2 are the tensions of the two fibres and the
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Figure 5.3 – The single suspended suspension loop yaw mode, with a rotating suspension
base.

geometric constant Gφ can be found using the triangle proportionality theorem and the
Pythagorean theorem, which yield

Gφ =

(
db
2

)2

·
dy

db−dy

l + l
dy

db−dy

=
1

4

dbdy
l

where l =

√
1

4
(db − dy)2 + L2 (5.5)

The proof for this can be found in Appendix A.3. In a similar manner as for Equation (5.3),
the eigenfrequency for yaw is given by

ωφ =

√
Gφ(T1 + T2)

I
(5.6)

An extended model of the two lower stages of the suspension chain taking into account
the effects of VMs and the decentralized control actuation is derived in Appendix A.4. The
differential equations are translated to rather complex Simulink block diagrams, which
are shown in Figure B.8, Figure B.10 and Figure B.9 (in Appendix B). The numerical
simulations can be performed using the Matlab script in Appendix C.1. From this, one
can analyze the effects of the parametric control on the pendulum, pitch and yaw of the
two suspended masses (see for example Figure B.11 in Appendix B). Overall, the effect of
the decentralized parametric control of each individual fibre on the other DOFs is desirable.

The EOM governing the dynamics of the different DOFs of the two masses have restor-
ing force coefficients proportional to the tension. This means that there might be an
opportunity for an active damping strategy using the same kind of actuators as in Chap-
ter 3. This is discussed in Appendix A.5. Indeed, by dynamically varying the restoring
force coefficients, one is again led to perform parametric control. As the eigenfrequencies
of for example the pendulum motions are much lower than the VM frequencies, the control
signals can a priori be computed separately by the respective filters and superposed to
generate a single control signal for each active mount. See Appendix A.4 and Appendix A.5
for more details.



Chapter 6

Conclusions and Future Work
Different representations of the fibre dynamics have been discussed in this work. A linear
modal model assuming fixed-end boundary conditions allows a rather simple formulation
and the derivation of the eigenfrequencies of the VMs. An extended model that takes into
account the dynamic tension allows to account for nonlinear hardening effects and axial
force interactions at the fibre boundaries. Finally, a FE state space model of the linear
transverse dynamics of the fibre has been derived, which allows to simulate a suspension
fibre with a tip mass and a finite boundary stiffness.

The recommended active damping approaches are based on collocated control strate-
gies using piezoelectric force actuation and sensing. The first method consists of an axial
parametric control that dynamically changes the tension in the fibre in a way that de-
structively interferes with the transverse fibre vibrations. With this type of actuation,
mathematically, one is led to study a damped parametrically driven Duffing oscillator.
The optimal actuation force is proven to have twice the frequency of the controlled VM,
with a relative phase lead of π2 with respect to the modal vibration. This is achieved using
a nonlinear feedback digital controller, delivering either a negative derivative feedback or
a modified IFF control. The hardening effect is included to understand the physics of the
strings that are used in the lab, which are driven to vibration amplitudes of order 10−3 m.
However, the average amplitudes of the VM vibrations at aLIGO are of order 10−16 m, so
that a priori the cubic stretching effects can be neglected. Moreover, the non-linearity of
the parametric control term in the fibre dynamics indicates a very low control authority at
the aforementioned modal amplitudes for a parametric control strategy. Still, applying one
of the the proposed nonlinear feedback laws allows to generate a synthetic damping that
is proportional to the actuation force amplitude. The VM quality factors are estimated to
be reduced from 109 to 104 for a constant actuation force with amplitude 0.1 N. Some ex-
perimental results coincide with the numerical simulations, thereby validating the optimal
relative phase for the actuation signal and thus the nonlinear mathematical model for the
string dynamics. The feedback gain is however limited by the finite control bandwidth on
the real plant, thereby reducing the active damping performances substantially.

The second approach is based on a transverse force control close to the suspension point
using classical IFF. The numerical simulations of the latter control strategy are realized
with the FE state space model using Matlab. Due to the collocated actuator-sensor pair
configuration, the open loop transfer function is characterized by strictly alternating poles
and zeros, which allows to design an unconditionally stable vibration control using IFF.
This specific pole-zero pattern has been validated experimentally in the lab, along with
the linear observability of the VMs. The fact that the collocated pair is placed near
the suspension point makes the distances between the corresponding poles and zeros very
small, resulting in a low active damping potential. This issue was also predicted from the
projection of the FE dynamic equations on the modal basis. For the same reasons as for
the vertical mount, the active damping performances are significantly reduced on the real
plant due to the limited feedback gain.
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Future work

The use of piezoelectric stack actuators and sensors in GW detectors is questionable, mainly
due to the heat generation caused by mechanical friction losses and dielectric losses that
would increase the thermal noise level and thus impair the sensitivity of the GW detector.
These thermal effects are not covered by this work, which assumes perfect sensing and
actuation devices. Thus, using this type of technologies would require to thermally isolate
it from the rest of the system. Moreover, the amplified piezoelectric actuator has its own
eigenmode, which would also be reflected in the thermal noise of the suspension according
to the Equipartition Theorem. This would require to design a new type of transducer,
with adequate materials that are characterised by very low mechanical and electrical losses
(e.g. fused silica). Also, a solution should be developed to mount the collocated pair in a
way that is compatible with the actual suspension design.

As mentioned previously, the experiments that have been performed in this work were
conducted on a system at much higher dynamic and kinematic scales than in GW detectors.
The damping due to air friction is much higher, and the materials are not the same (metals
and polymers instead of ceramics). The influence of these discrepancies on the outcomes of
this work should be assessed experimentally, using vacuum conditions and adequate fibre
materials and dimensions.

An additional potential research topic would be to design a centralized control scheme
that takes into account all DOFs of the quadruple suspension using optimization based
control design methods. The nonlinear MIMO Simulink model based on the dynamic
equations derived in Section 5.2.1 can be used for this in the case of a parametric control
strategy. Furthermore, noise budgeting would allow to assess the sensor and actuator noise
requirements, based on the sensitivity requirements of the GW detector.
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Appendix A

Mathematical Developments
A.1 Nonlinear single mode spring model

For a given displacement x of the mass shown in Figure 2.9, the tension in both springs is
given by

Fs = 2k

√(L
2

)2

+ x2 − L0

2

 (A.1)

This tension, which is identical in both parts of the fibre, induces a purely horizontal
restoring force on the central mass, leading to the following equation of motion

mẍ = −2Fs sinβ

= −4k

√(L
2

)2

+ x2 − L0

2

 x√(
L
2

)2
+ x2

= −4kx

(
1− L0√

L2 + 4x2

)

= −4k
x

L

L− L0√
1 +

(
2 xL
)2
 (A.2)

The last step allows the expansion of 1√
1+4( xL)

2
in a binomial series. The expansion of

1√
1+γ2

where γ = 2 xL < 1 gives

∞∑
n=1

(−1)n
1 · 3 . . . (2n− 1)

2nn
γ2n = 1− 1

2
γ2 +

3

8
γ4 + . . . (A.3)

By neglecting terms of order higher than 2, Equation (A.2) becomes

mẍ ≈ −4k(L− L0)
x

L

(
1 +

2L0

L− L0

(x
L

)2
)

(A.4)

In the latter equation, one can see that the non-linearity effects increase for small values
of L− L0 or in other words, for small static tensions. On the other hand, large vibration
amplitudes will effectively increase the dynamic tension, causing a hardening effect. This
result corresponds to the one obtained by Tufillaro et al. in [58].

A comparison between the exact restoring force and its approximation for different deflec-
tions is shown in Figure A.1. Defining the following quantities

ω2
0 = 4

k

m

L− L0

L
K =

2L0

(L− L0)L2
(A.5)
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Equation (A.4) reduces to

ẍ+ ω2
0x
(
1 +Kx2

)
= 0 (A.6)

To model loss mechanisms such as air resistance or internal friction, one can add some

Figure A.1 – The restoring force - deflection characteristic of the spring system in Figure 2.9
for k = 10kNm L = 0.1m and L0 = 0.08m given by Equation (A.2) (blue line) and the
approximate expression defined by Equation (A.4) (red line).

linear viscous damping λ and, adding a forced harmonic acceleration term f(ωt), the
considered nonlinear second order differential equation becomes

ẍ+ λẋ+ ω2
0x
(
1 +Kx2

)
= f(ωt) (A.7)

A.2 Energy production

The proof for Equation (3.22) in Section 3.4.1 can be written as follows

Ep,u =

∫ 2π
ωd,n

0

(
−1

ρ

(nπ
L

)2
Fuqn

)
q̇ndt

(A.8)

combining all the constants in a single one as

Ct =

(
nπωd,n
Lρ

)
Au|qn|2

so that

Ep,u = −Ct
∫ 2π

ωd,n

0
[cos(ωd,nt) cos(2ωd,nt+ φu) sin(ωd,nt)] dt (A.9)

in which

cos(ωd,nt) cos(2ωd,nt+ φu) = cos(ωd,nt) [cos(2ωd,nt) cos(φu)− sin(2ωd,nt) sin(φu)]

= cos(ωd,nt)
[
(2 cos2(ωd,nt)− 1) cos(φu)− 2 sin(ωd,nt) cos(ωd,nt) sin(φu)

]
= 2 cos3(ωd,nt) cos(φu)− cos(ωd,nt) cos(φu)− 2 cos2(ωd,nt) sin(ωd,nt) sin(φu)

(A.10)
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Substituting Equation (A.10) in Equation (A.9) yields

Ep,u = −Ct
π

2ωd,n
sin(φu) (A.11)

which is what was to be demonstrated.

A.3 Yaw motion geometric constant

The geometric constant Gφ introduced in Equation (5.4) (see Section 5.2.1) can be under-
stood as follows. The yaw motion is described by the following equation of motion:

Iφ̈ = Cy +
db
2

sin(φ′e)(Fy1 + Fy2) (A.12)

in which φ′e = φe
dy

db−dy and Fy1 = T1 sin(α) where α is the angle between the fibre and the
vertical axis (parallel to the gravity, see Figure A.2). One can write

Figure A.2 – The schematic diagram linking the forces on the test mass with geometric
constants.

sin(α) =
db
2

1

l1 + b
(A.13)

Using the triangle proportionality theorem gives

l1
db
2 −

dy
2

=
b
dy
2

so that

l1 + b =
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db
2
− dy

2

)2

+ L2
1

(
1 + +
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)
and l1 =
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2
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2

)2

+ L2
1 (A.14)

From this, Equation (A.12) becomes

Iφ̈ = Cy +Gφ(T1 + T2)(φe − φ) (A.15)
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where

Gφ =

(
db
2

)2

·
dy

db−dy

l + l
dy

db−dy

=
1

4

dbdy
l

where l =

√
1

4
(db − dy)2 + L2 (A.16)

A.4 Complete suspension model with vibrating fibres

The single suspension loop system described by Equations 5.1, 5.2 and 5.4 will now be
completed with an additional isolation stage and with violin mode vibrations. For the lower
mass, the base motion previously given by xe and φe will now be replaced by the motion of
the upper mass. The definitions of all the quantities used in the next derivations are given
in Figure A.3. For each fibre, the transverse force exerted on the mass is approximated

Figure A.3 – The different degrees of freedom for a two-stage isolation system and the
definition of the attachment points of the fibres.

by using the instantaneous shape of the fibre near the attachment point and its tension.
Indeed, the transverse force exerted by a fibre i with a tension Ti, mode shape φn,i(z) and
modal amplitude qn,i(t) at z = z∗ is given by

qn,i(t)Ti

(
dφn,i(z)

dz

)
z=z∗

(A.17)

For even mode numbers n, the forces at the two extremes of the fibre are opposite while for
odd mode numbers, they are equal. This can be understood from Equation (2.44). For the
following calculations, the transverse forces associated to odd and even mode numbers and
qn(t) > 0 are defined as positive (in the x direction) at the upper endpoint for all fibres (see
Figure A.4). This is important to state as it gives a direction to the positive planar vibration
of the different fibres, potentially having different phases and amplitudes. Moreover, the
tensions of the different fibres will also include dynamic tension and parametric control,
so their instantaneous values will be used. The equations of motion for the lower mass
are similar to those derived in Section 5.2.1 but completed with forces and toques using
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Figure A.4 – The directions of the forces exerted by the VMs at the attachment points for
even and odd mode numbers.

Equation (A.17). For the coupled pendulum and pitch DOFs, the motion is described by

Pendulum: M2ẍ2 = F2 + (T1 + T2)
x1 − x2 − dp2Θ2

Lb

+
nπ

Lb
(qn,1T1 + qn,2T2)(−1)n+1 (A.18)

Pitch: I2Θ̈2 = Cp2 + (T1 + T2)
dp2
Lb

[x1 − x2 − (dp2 + Lb)Θ2 − dqΘ1]

+
dp2nπ

Lb
(qn,1T1 + qn,2T2)(−1)n+1 (A.19)

For the yaw motion, excitations due to fibre vibrations are a result of a difference in phase
and/or amplitude of fibres 1 and 2. Therefore, the yaw torque is a function of the difference
between transverse fibre forces, leading to

Yaw: I2φ̈2 = Cy2 +Gφ,2(T1 + T2)(φ1 − φ2) +
db2nπ

2Lb
(qn,1T1 − qn,2T2)(−1)n+1 (A.20)

in which, in a similar way as for Equation (5.5)

Gφ,2 =
1

4

db2d
′
b1

lb
where lb =

√
1

4
(db2 − d′b1)2 + L2

b (A.21)

The motion of the upper mass is coupled to the motion of the lower mass, the suspension
base motion and the fibre vibrations, leading to somewhat more complicated equations.
Note that only the transverse forces associated to the upper fibres are negative for positive
modal amplitudes. The equations of motion for the upper mass become:

Pendulum: M1ẍ1 = F1 + (T3 + T4)
xe − x1 − dp1Θ1

La
− (T1 + T2)

x1 − x2 − dp2Θ2

Lb

+
nπ

La
(qn,3T3 + qn,4T4)(−1)n+1 +

nπ

Lb
(qn,1T1 + qn,2T2) (A.22)
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Pitch: I1Θ̈1 = Cp1 + (T3 + T4)
dp1
La

[xe − x1 − (dp1 + La)Θ1]

+ (T1 + T2)
dq
Lb

[x1 − x2 − (dq + Lb)Θ1 − dp2Θ2]

+
dp1nπ

La
(qn,3T3 + qn,4T4)(−1)n+1 +

dqnπ

Lb
(qn,1T1 + qn,2T2) (A.23)

Yaw: I1φ̈1 = Cy1 +Gφ,1(T3 + T4)(φe − φ1) +G′φ,1(T1 + T2)(φ2 − φ1)

+
db2nπ

2Lb
(qn,1T1 − qn,2T2)(−1)n+1 (A.24)

in which

Gφ,1 =
1

4

db1dy
la

with la =

√
1

4
(db1 − dy)2 + L2

a (A.25)

G′φ,1 = Gφ,2 (A.26)

All the EOM derived here above assume no damping. Nonetheless, the pitch motion
for example loses energy due to the friction with the surrounding dilute gas and due to the
local bending of the fibres near the attachment points, also generating losses. Actually, the
aLIGO quadruple suspensions are designed such that these losses are minimised to reduce
thermal noise as explained in Section 1.4, so that disregarding damping effects should be
satisfactory for this work. It is also important to mention that due to the presence of four
fibres at lower mass, differences in tension in front and back fibres will lead to pitching
moments.

One can also see that, because of the varying coefficients appearing in the EOM, the
latter system is parametrically excited through the different fibre tensions for all the DOFs.
This means that there might be an opportunity for an active damping strategy using the
same kind of actuators as in Chapter 3.

A.5 Potential Multi-DOF Motion Damping

The method that is currently used to actively damp the different DOFs in the quadruple
suspension is detailed by Shapiro et al. [2]. Considering constant fibre tensions, the system
is described linearly by

M~̈x+K~x = ~P (A.27)

in which ~x is the state vector describing the kinematics of the different masses, M is the
mass matrix, K is the stiffness matrix and ~P is the external force vector. As seen in
Section 1.3, the actuation is performed through the reaction chain using Optical Sensor
Electro-Magnet (OSEM)s for the three upper stages and an electrostatic drive for the lower
mass. Defining Φ as the basis of eigenvectors of the system containing the N mode shapes

Φ = [φ1 φ2 . . . φN ] (A.28)
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one can then transform Equation (A.27) into a decoupled system of modal states ~q by
projecting the state vector ~x into the eigenvector basis as follows:

~x = Φ~q (A.29)

MΦ~̈q +KΦ~q = ~P (A.30)

Left multiplication of the latter equation by ΦT yields

Mm~̈q +Km~q = ~Pm (A.31)

where Mm is the diagonal modal mass matrix and Km is the diagonal modal stiffness
matrix. The resulting N equations are decoupled. This modal decomposition allows to
control all the modes that are taken into account in the model individually, as shown in
Figure A.5. Since only the upper stage motion of the main chain is measured (see Sec-

Figure A.5 – Schematic diagram of a modal control loop from [2]. The state ~x is transformed
into modal signals ~q and passed through the respective control filters. The resulting modal
forces ~Pm are then transformed into real forces ~P that are applied to the real system.

tion 1.3), the controller requires a good mathematical representation of the pendulum to
estimate the state vector ~x. Thus, in Figure A.5 the state should be thought of as a recon-
structed estimated state ~̂x. The optimal linear feedback control law is determined using
a constrained optimisation algorithm based on the standard Linear-Quadratic Regulator
(LQR) technique. The word optimal is here used to express a minimisation of the state
energy taking into account the actuation constrains, depending on the definition of the
convex objective function.

Unfortunately, if one thinks of an active damping strategy based the same kind of
actuators as in Chapter 3, it is impossible to apply the latter approach mainly due to the
nonlinear form of the control terms. Indeed, the control would be performed through the
varying coefficients in the different EOM. Consider for example the simultaneous active
damping of the yaw motion of the lower mass and its suspension fibres’ VMs. Since the
natural frequency of the yaw mode is much lower than the VMs frequencies, one can
think of superposing both control signals and injecting them into the actuator without
causing mutual excitation. It is thus convenient to treat both controls independently.
Neglecting vibrations caused by VMs and any external horizontal force, one can rewrite
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Equation (A.20) as

I2φ̈2 = Gφ,2(T1 + T2)(φ1 − φ2) (A.32)

in which one can assume that T1 + T2 ≈ M2g + 2Fu if both fibres are actuated with
the same control force Fu. From this, it is possible to follow the same approach as in
Section 3.4.1. Assuming a periodic motion φ1 − φ2 = Aφ cos(ωφt) and a control force
Fu = Au cos(2ωφt+ φu), it is possible to find the phase and amplitude of Fu that provides
the maximum damping. The energy production for the yaw motion due to Fu is

Eφp,u =

∫ 2π
ωφ

0

[
2Gφ,2Fu(φ1 − φ2)

d(φ1 − φ2)

dt

]
dt

= −πGφ,2AuA2
φ sin(φu) (A.33)

and the equivalent added viscous damping is

ξφa,n =
Gφ,2
2ω2

φ

Au sin(φu) (A.34)

which is maximum for φu = π
2 . The same idea can be followed for the other modes of the

suspension chain.



Appendix B

Additional Figures
B.1 Simulink models

Figure B.1 – The simulink fibre subsystem, taking the actuator force as input and both
the dynamic tension and the modal amplitude as outputs.

Figure B.2 – The custom made amplitude estimator block diagram.
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Figure B.3 – The tension amplitude estimator input (blue) and output (red).
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Figure B.4 – The Simulink derivative control block diagram with amplitude estimation.

Figure B.5 – The Simulink IFF control block diagram.

Figure B.6 – Simulink model used with dSpace for electromagnet excitation and IFF con-
trol.
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Figure B.7 – Simulink model used with dSpace for electromagnet excitation and derivative
feedback control.
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Figure B.8 – The Simulink model of the quadruple suspension, taking into account the
dynamic tension and the forces exerted at the fibre boundaries due to VM vibrations.
This model also includes the decentralized parametric control of VMs.
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Figure B.9 – The Simulink model of the lower mass in the quadruple suspension
shown in Figure B.8.
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Figure B.10 – The Simulink model of the upper mass in the quadruple suspension
shown in Figure B.8.
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B.2 Simulations
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Figure B.11 – The upper mass (UM) and lower mass (LM) pendulum, pitch and yaw
evolution with and without decentralized parametric control on each suspension fibre.
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B.3 Measurements
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Figure B.12 – The recorded string position signal and vertical parametric control signal
for a relative phase difference of (a) φu = π

2 for a damping effect and (b) φu = −π
2 for an

amplifying effect.
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Figure B.13 – The estimated transfer function between the electromagnet signal and the
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Matlab scripts
C.1 Fibre parameters Matlab code

1 Tsample = 0 . 0001 ; % Simulat ion s t ep s i z e
2 Tsim = 0 . 3 ; % Simulat ion time
3

4 Fu_opt_contr = −50;
5 IFF_gain = 1000000;
6

7 % i n i t i a l f i b r e p o s i t i o n s [m]
8 q01 = 0 . 0001 ;
9 q02 = −0.0001;

10 q03 = 0 . 0003 ;
11 q04 = 0 . 0002 ;
12

13 % Mirrors :
14 % For advanced LIGO: 34 cm diameter , 20 cm th i c kne s s , and 40 kg

mass
15 M1 = 40 ; % Upper mass
16 M2 = 40 ; % Lower mass
17 R1 = 0 . 1 6 ;% Radius
18 H1 = 0 . 2 ; % mirror t h i c kn e s s
19 I1 = M1∗(3∗R1^3+H1^2) /12 ; % =Iy = Iz ( p i t c h and yaw)
20 R2 = 0 . 1 6 ;% Radius
21 H2 = 0 . 2 ; % mirror t h i c kn e s s
22 I2 = M1∗(3∗R2^3+H2^2) /12 ; % =Iy = Iz ( p i t c h and yaw)
23

24 % f i b r e s :
25 % For advanced LIGO s i l i c a : l e n g t h 60cm, den s i t y = 2200 kg/m3 ,
26 %diameter = 0.36mm, young modulus = 70 GPa.
27 g = 9 . 8 1 ; % Gravi ty
28 Tsa = g ∗(M1+M2) /2 ; % s t a t i c t ens i on in upper f i b r e s [N]
29 Tsb = g∗M2/2 ; % s t a t i c t ens i on in lower f i b r e s
30 La = 0 . 6 0 ; % e f f e c t i v e pendulum l en g t h in upper f i b r e s [m]
31 Lb = 0 . 6 0 ; % e f f e c t i v e pendulum l en g t h in upper f i b r e s
32 A = pi ∗0 .000190^2; % cros s s e c t i on [m^2]
33 E = 70E9 ; % Young modulus [Pa ]
34 rho = 2200∗A; % Linear d en s i t y [ kg/m^3]
35 n = 1 ; % Mode number
36 k s i = 0 . 00001 ; % Damping r a t i o
37

38 % Geometry o f at tachments ( see schematic diagram fo r d e f i n i t i o n s )

82
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39 % ( Units : meters )
40 dy = 0 . 0013 ;
41 dq = 0 . 0 2 6 ;
42 db1 = 0 . 0 4 ;
43 db1_bis = 0 . 0 4 ;
44 db2 = 0 . 0 4 ;
45 dp1 = 0 . 0 2 6 ;
46 dp2 = 0 . 0 2 4 ;
47

48 % Other geometr ic cons tan t s :
49 l a = sqrt ( ( db1/2 − dy/2)^2+La^2) ; % leng t h o f upper f i b r e s [m]
50 lb = sqrt ( ( db2/2 − db1_bis /2)^2+Lb^2) ; % leng t h o f lower f i b r e s [

m]
51 G_phi1 = (1/4) ∗db1∗dy/ l a ;
52 G_phi2 = (1/4) ∗db2∗db1_bis/ lb ;
53 G_phi1_bis = G_phi2 ;
54

55 % Expected e i g en f r e q u en c i e s [Hz ]
56 fx1 = sqrt (2∗Tsa/La + 2∗Tsb/Lb) /(2∗pi ) % Upper mass Pendulum
57 fx2 = sqrt ( g/Lb) /(2∗pi ) % Lower mass Pendulum
58 fp1 = sqrt ( (2∗Tsa∗dp1∗( dp1+La) /La + 2∗Tsb∗dq∗( dq+Lb) /Lb) / I1 ) /(2∗

pi ) % Upper mass Pi tch
59 fp2 = sqrt ( (2∗Tsb∗dp2∗( dp2+Lb) /Lb) / I2 ) /(2∗pi )% Lower mass Pi tch
60 fy1 = sqrt ( (2∗Tsa∗G_phi1 + 2∗Tsb∗G_phi1_bis ) / I1 ) /(2∗pi ) % Upper

mass yaw
61 %fy1 = s q r t ((2∗Tsa∗G_phi1 + 2∗Tsb∗G_phi1_bis ) / I ) /(2∗ p i )
62

63 % Vio l in Modes
64 wna = sqrt (Tsa/ rho ) ∗n∗pi/La ; % upper f i b r e s
65 fna = wna/(2∗pi ) % [Hz ]
66 wnb = sqrt (Tsb/ rho ) ∗n∗pi/Lb ; % lower f i b r e s
67 fnb = wnb/(2∗pi ) % [Hz ]
68

69 %highpas s f i l t e r c u t o f f
70 wca = wna/2 ;
71 wcb = wnb/2 ;
72

73

74 %% Launch Simul ink Model
75 sim ( ’ Tota l_contro l l ed ’ )
76 t = ScopeData . time ;
77 X2 = ScopeData . s i g n a l s (1 ) ;
78 T2 = ScopeData . s i g n a l s (2 ) ;
79 Y2 = ScopeData . s i g n a l s (3 ) ;
80 X1 = ScopeData . s i g n a l s (4 ) ;
81 T1 = ScopeData . s i g n a l s (5 ) ;
82 Y1 = ScopeData . s i g n a l s (6 ) ;
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83

84 f igure ;
85 subplot ( 2 , 3 , 1 )
86 plot ( ScopeData . time , X2 . va lue s )
87 t i t l e ( ’LM Pendulum ’ )
88 xlabel ( ’Time [ s ec ] ’ )
89 ylabel ( ’Amp [m] ’ )
90 subplot ( 2 , 3 , 2 )
91 plot ( ScopeData . time , T2 . va lue s )
92 t i t l e ( ’LM Pitch ’ )
93 xlabel ( ’Time [ s ec ] ’ )
94 ylabel ( ’Amp [ rad ] ’ )
95 subplot ( 2 , 3 , 3 )
96 plot ( ScopeData . time , Y2 . va lue s )
97 t i t l e ( ’LM Yaw ’ )
98 xlabel ( ’Time [ s ec ] ’ )
99 ylabel ( ’Amp [ rad ] ’ )

100 subplot ( 2 , 3 , 4 )
101 plot ( ScopeData . time , X1 . va lue s )
102 t i t l e ( ’UM Pendulum ’ )
103 xlabel ( ’Time [ s ec ] ’ )
104 ylabel ( ’Amp [m] ’ )
105 subplot ( 2 , 3 , 5 )
106 plot ( ScopeData . time , T1 . va lue s )
107 t i t l e ( ’UM Pitch ’ )
108 xlabel ( ’Time [ s ec ] ’ )
109 ylabel ( ’Amp [ rad ] ’ )
110 subplot ( 2 , 3 , 6 )
111 plot ( ScopeData . time , Y2 . va lue s )
112 t i t l e ( ’UM Yaw ’ )
113 xlabel ( ’Time [ s ec ] ’ )
114 ylabel ( ’Amp [ rad ] ’ )
115

116 Fu_opt_contr = 0 ;
117

118 sim ( ’ Tota l_contro l l ed ’ )
119

120 t = ScopeData . time ;
121 X2 = ScopeData . s i g n a l s (1 ) ;
122 T2 = ScopeData . s i g n a l s (2 ) ;
123 Y2 = ScopeData . s i g n a l s (3 ) ;
124 X1 = ScopeData . s i g n a l s (4 ) ;
125 T1 = ScopeData . s i g n a l s (5 ) ;
126 Y1 = ScopeData . s i g n a l s (6 ) ;
127

128 f igure ;
129 subplot ( 2 , 3 , 1 )
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130 plot ( ScopeData . time , X2 . va lue s )
131 t i t l e ( ’LM Pendulum ’ )
132 xlabel ( ’Time [ s ec ] ’ )
133 ylabel ( ’Amp [m] ’ )
134 subplot ( 2 , 3 , 2 )
135 plot ( ScopeData . time , T2 . va lue s )
136 t i t l e ( ’LM Pitch ’ )
137 xlabel ( ’Time [ s ec ] ’ )
138 ylabel ( ’Amp [ rad ] ’ )
139 subplot ( 2 , 3 , 3 )
140 plot ( ScopeData . time , Y2 . va lue s )
141 t i t l e ( ’LM Yaw ’ )
142 xlabel ( ’Time [ s ec ] ’ )
143 ylabel ( ’Amp [ rad ] ’ )
144 subplot ( 2 , 3 , 4 )
145 plot ( ScopeData . time , X1 . va lue s )
146 t i t l e ( ’UM Pendulum ’ )
147 xlabel ( ’Time [ s ec ] ’ )
148 ylabel ( ’Amp [m] ’ )
149 subplot ( 2 , 3 , 5 )
150 plot ( ScopeData . time , T1 . va lue s )
151 t i t l e ( ’UM Pitch ’ )
152 xlabel ( ’Time [ s ec ] ’ )
153 ylabel ( ’Amp [ rad ] ’ )
154 subplot ( 2 , 3 , 6 )
155 plot ( ScopeData . time , Y2 . va lue s )
156 t i t l e ( ’UM Yaw ’ )
157 xlabel ( ’Time [ s ec ] ’ )
158 ylabel ( ’Amp [ rad ] ’ )

C.2 FE simulations in the time domain

1 % Sing l e Fibre FE SS model : Time s imu la t i on s
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 close a l l
4 clear a l l
5 % Parameters
6 L = 0 . 7 ; % E f f e c t i v e pendulum f i b r e l e n g t h [m]
7 Lp = 0 . 0 2 ; % Co l l o ca t ed pa i r p o s i t i o n
8

9 % Number o f lumped masses
10 N = 35 ; % ( the more , the b e t t e r , but e xp l od ing comp lex i t y )
11 Np = round(Lp∗N/L) ; % lo c a t i o n o f p i e zo
12

13 kp = 1.857∗10^6; % Piezo s t i f f n e s s [N/m]
14 Mtm = 1 ;% kg
15 T = Mtm∗9 . 8 1 ;% Tension N
16 CS = pi ∗ (0 .0003^2) ; % Fibre cros s s e c t i on area [m^2]
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17 rho = 8960∗CS; % mass/ un i t l e n g t h [ kg/m]
18 m = rho∗L/N; %Lumped mass
19 k = N∗T/L ; % Lumped s t i f f n e s s
20 w0 = sqrt ( k/m) ;
21

22 % FE SS ( lumped masses )
23 R = zeros (N) ; R(Np,Np) = 1 ; %R(1 ,1) =1; R( round (N/2) , round (N/2) )

=1 ; % Externa l f o r c e @ middle
24 K = diag ( repmat (2 ,N, 1 ) ) ; K(1 , 1 ) = 1e10 ; % S t i f f n e s s matrix
25 for i = 1 :N
26 i f ( i >1)
27 K( i , i −1) = −1;
28 end
29 i f ( i<N)
30 K( i , i +1) = −1;
31 end
32 end
33 K = k∗K; K(Np,Np) = 2∗k + kp ; K(N,N) = k ;
34

35 M = m∗eye (N) ;
36 M(N,N) = Mtm;
37

38 A = [ zeros (N) −M\K; eye (N) zeros (N) ] ;
39 B = [M\R; zeros (N) ] ;
40 C = zeros (2 ,2∗N) ; C(1 ,N+Np)=−kp ;C(2 ,2∗N−1)=k ;C(2 ,2∗N)=−k ;
41 D = zeros (2 ,N) ; D(1 ,Np) = 1 ;
42

43 model_ss = i d s s (A,B,C,D, ’Ts ’ , 0 ) ; % s t a t e X = [ ydot ; y ]
44

45 %% Simulat ion
46

47 % In j e c t gauss ian whi te no i se ?
48 %−−−> h t t p s ://www. mathworks . com/examples / s y s i d /mw/ ident−

ex03319182−
49 % simulate−a−continuous−time−s t a t e−space−model
50

51 Ts = 0 . 0005 ; % Sample time [ sec ]
52 Tsim = 10 ; % Length o f s imu la t i on [ sec ]
53 n = Tsim/Ts ; % nbr o f data po in t s
54

55 % Force input at boundar ies
56 force_amp = 0 . 1 ;
57 force_Freq_Band = [50 , 500 ]∗2∗Ts ; % conver t to f r a c t i o n o f Nyquis t

Freq .
58 i f force_Freq_Band (2)>1
59 force_Freq_Band (2) = 1 ;
60 end
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61 u = id input ( [ n ,N] , ’RGS ’ , force_Freq_Band ,[− force_amp , force_amp ] ) ;
% , [ 1 , 1 , 1 ] ) ; % ’SINE ’ or ’ rbs ’= b inary or ’ rgs ’=whi te gauss ian

62 %u(n/4 +1:n , : ) = zeros (n∗3/4 ,N) ; % Zero input from the middle o f
the per iod

63 f igure
64 plot (u ( : ,Np) )% Only p l o t channe l s 1 and N, the r e l e v an t ones
65 legend ( ’ Force in middle ’ )
66 t i t l e ( ’ Force input ’ )
67

68 % Sinuso i da l f o r c e :
69 % wu = 10∗2∗ p i ; % f r e q o f input f o r c e
70 % t = 0:Tsim/n : Tsim−Tsim/n ;
71 % u = s in (wu∗ t ) ;% + 0.1∗ randn ( s i z e (u) ) ;
72 % u = repmat (u ,N, 1 ) ;
73

74

75 %Create idda ta o b j e c t
76 data = iddata ( [ ] , u , Ts ) ;
77 %f i g u r e
78 %p l o t (u ( : , [ 1 ,N] ) )% Only p l o t channe l s 1 and N, t e r e l e v an t ones
79 % data = idda ta ( [ ] , u ) ;
80 % data . t s = 0 . 1 ;
81 %opt = simOptions ( ’ AddNoise ’ , t rue ) ;
82

83 % Simulate
84 y = sim (model_ss , data ) ;%, opt ) ;
85

86 f igure
87 plot ( y )
88 t i t l e ( ’ React ion f o r c e s at the boundar ies ’ )
89

90 %% Plot e v o l u t i on o f p o s i t i o n in the middle o f the s t r i n g :
91 % Now the output o f the system i s the N/2 ’ th p o s i t i o n s t a t e −−>

C & D change
92 p = 3 ; % Number o f po in t p o s i t i o n s you want to p l o t
93 C2 = zeros (p ,2∗N) ;
94 for i = 1 : p
95 C2( i ,N+Np+i ) = 1 ;
96 end
97 D2 = zeros (p ,N) ;
98 model_middle_position = i d s s (A,B,C2 ,D2 , ’Ts ’ , 0 ) ;
99

100 % Simulate
101 y2 = sim (model_middle_position , data ) ;%, opt ) ;
102

103 f igure
104 plot ( y2 )
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105 t i t l e ( ’ Po s i t i on o f the middle o f the s t r i n g ’ )
106

107 %% Plot shape o f the s t r i n g at a g iven time :
108 %Now the output o f the system i s the s t a t e i t s e l f
109

110 t1 = n/4 ; % Desired s t a r t time
111

112 C3 = zeros (N,2∗N) ; C3 ( : ,N+1:2∗N) = eye (N) ;
113

114 D3 = zeros (N,N) ;
115 model_middle_position = i d s s (A,B,C3 ,D3 , ’Ts ’ , 0 ) ;
116

117 y3 = sim (model_middle_position , data ) ;%, opt ) ;
118 y3 = y3 . OutputData ;
119

120 f igure
121 hold on
122 for j = 0 :3
123 shape = [ ] ;
124 for i = 1 :N
125 shape = [ shape y3 ( t1+j , i ) ] ;
126 end
127 plot ( [ 1 :N]∗L/N, shape )
128 end
129 xlabel ( ’ Po s i t i on [m] ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
130 ylabel ( ’ De f l e c t i on [m] ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
131 legend ( ’ $t_1$ ’ , ’ $t_2$ ’ , ’ $t_3$ ’ , ’ $t_4$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’

f o n t s i z e ’ , 15)
132

133 t i t l e ( ’ Shape o f the wire at cons e cu t i v e t imes teps ’ )
134

135 f f = sqrt (T/ rho ) / ( ( 0 . 4 /5 ) ∗2∗pi ) ;
136

137 %% Power s p e c t r a l d en s i t y o f input f o r c e s
138 x = u ( : , [ 1 ] ) ;
139 Fs = 1/Ts ;
140 t = 0 :1/ Fs:1−1/Fs ;
141 N2 = length ( x ) ;
142 xdf t = f f t ( x ) ;
143 xdf t = xdf t ( 1 :N2/2+1) ;
144 psdx = (1/( Fs∗N2) ) ∗ abs ( xd f t ) . ^2 ;
145 psdx ( 2 :end−1) = 2∗psdx ( 2 :end−1) ;
146 f r e q = 0 : Fs/ length ( x ) : Fs /2 ;
147

148 f igure
149 plot ( f req ,10∗ log10 ( psdx ) )
150 grid on
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151 %t i t l e ( ’ Periodogram Of Input Forces Using FFT’ )
152 xlabel ( ’ Frequency [Hz ] ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
153 ylabel ( ’Power/Frequency [ $\ f r a c {dB}{Hz}$ ] ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’

, ’ f o n t s i z e ’ , 17)
154

155 %% Power s p e c t r a l d en s i t y o f bead po s i t i o n
156 x = y3 ( : ,N/2) ;
157 Fs = 1/Ts ;
158 t = 0 :1/ Fs:1−1/Fs ;
159 N2 = length ( x ) ;
160 xdf t = f f t ( x ) ;
161 xdf t = xdf t ( 1 :N2/2+1) ;
162 psdx = (1/( Fs∗N2) ) ∗ abs ( xd f t ) . ^2 ;
163 psdx ( 2 :end−1) = 2∗psdx ( 2 :end−1) ;
164 f r e q = 0 : Fs/ length ( x ) : Fs /2 ;
165

166 f igure
167 plot ( f req ,10∗ log10 ( psdx ) )
168 grid on
169 %t i t l e ( ’ Periodogram Of a bead po s i t i o n ( in the middle ) Using FFT

’ )
170 xlabel ( ’ Frequency [Hz ] ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
171 ylabel ( ’Power/Frequency [ $\ f r a c {dB}{Hz}$ ] ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’

, ’ f o n t s i z e ’ , 17)
172

173 %% Expected resonance peaks
174 Exp_Freq = [ 1 : 6 ] ∗ sqrt (T/ rho ) /(2∗L)

C.3 Integral Force Feedback design

1 % Sing l e Fibre FE SS model : Contro l des i gn
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 close a l l
4 clear a l l
5

6 % Parameters
7 L = 0 . 7 ; % E f f e c t i v e pendulum f i b r e l e n g t h [m]
8 Lp = 0 . 0 2 ; % Co l l o ca t ed pa i r p o s i t i o n
9

10 % Number o f lumped masses
11 N = 35 ; % ( the more , the b e t t e r , but e xp l od ing comp lex i t y )
12 Np = round(Lp∗N/L) ; % lo c a t i o n o f p i e zo
13

14 kp = 1.857∗10^6; % Piezo s t i f f n e s s [N/m]
15 Mtm = 1 . 4 5 6 ;% kg
16 T = Mtm∗9 . 8 1 ;% Tension N
17 CS = pi ∗(0 .000215^2) ; % Fibre cros s s e c t i on area [m^2]
18 rho = 9280∗CS; % mass/ un i t l e n g t h [ kg/m]
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19 VM1 = 1/(2∗L) ∗sqrt (T/ rho )
20 m = rho∗L/N; %Lumped mass
21 k = N∗T/L ; % Lumped s t i f f n e s s
22 w0 = sqrt ( k/m) ;
23

24 % FE SS ( lumped masses )
25 R = eye (N) ; %R(1 ,1) =1; R( round (N/2) , round (N/2) ) =1 ; % Externa l

f o r c e @ middle
26 K = diag ( repmat (2 ,N, 1 ) ) ; K(1 , 1 ) = k ; % S t i f f n e s s matrix
27 for i = 1 :N
28 i f ( i >1)
29 K( i , i −1) = −1;
30 end
31 i f ( i<N)
32 K( i , i +1) = −1;
33 end
34 end
35 K = k∗K; K(Np,Np) = 2∗k + kp ; K(N,N) = k ;
36

37 M = m∗eye (N) ;
38 M(N,N) = Mtm;
39

40 A = [ zeros (N) −M\K; eye (N) zeros (N) ] ;
41 B = [M\R; zeros (N) ] ;
42 C = zeros (2 ,2∗N) ; C(1 ,N+Np)=−kp ;C(2 ,2∗N−1)=k ;C(2 ,2∗N)=−k ;
43 D = zeros (2 ,N) ; D(1 ,Np) = 1 ;
44

45 sys = s s (A,B,C,D) ; % s t a t e X = [ ydot ; y ]
46

47 % Open Loop TF SEN/ACT
48 load ( ’ opts . mat ’ )
49 opts . PhaseWrapping = ’ on ’ ;
50 f igure ; bodeplot ( sys (1 ,Np) ∗k , ’ r ’ , opts )
51

52 % Apply IFF con t r o l
53 FB_gain = −1000000;
54

55 Integrator_TF = t f ( [ 1 ] , [ 1 0 ] ) ;
56 IFF_compensator = FB_gain∗zpk ( Integrator_TF ) ;
57

58 CL = feedback ( sys , IFF_compensator ,Np, 1 ) ;
59

60 % Closed Loop TF SEN/ACT
61 hold on ; bodeplot ( k∗CL(1 ,Np) , ’ k−− ’ , opts ) ;
62 legend ( ’OL ’ , ’CL ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 15) ;
63 t i t l e ( ’ ’ )
64 ylabel ( ’ Phase ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
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65 ylabel ( ’Magnitude ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
66 xlabel ( ’ Frequency ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
67

68 %% Root l o cu s f o r IFF :
69 f igure ; r l o c u s ( sys (1 ,Np) ∗ Integrator_TF , linspace (1 ,600000 ,30) ) ; %

, l i n s p a c e (1 ,2000000 ,200000)
70 xlim ( [ −50 ,3 ] ) ; yl im ( [ 4 6 0 , 4 7 8 ] )
71 grid on

C.4 Model including transmissibility

1 % Sing l e Fibre FE SS model , i n c l u d i n g suspens ion motion
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 close a l l
4 clear a l l
5

6 % Parameters
7 L = 0 . 7 ; % E f f e c t i v e pendulum f i b r e l e n g t h [m]
8 Lp = 0 . 0 2 ; % Co l l o ca t ed pa i r p o s i t i o n
9

10 % Number o f lumped masses
11 N = 35 ; % ( the more , the b e t t e r , but e xp l od ing comp lex i t y )
12 Np = round(Lp∗N/L) ; % lo c a t i o n o f p i e zo
13

14 kp = 1.857∗10^6; % Piezo s t i f f n e s s [N/m]
15 Mtm = 1 . 4 5 6 ;% kg
16 T = Mtm∗9 . 8 1 ;% Tension N
17 CS = pi ∗(0 .000215^2) ; % Fibre c ros s s e c t i on area [m^2]
18 rho = 9280∗CS; % mass/ un i t l e n g t h [ kg/m]
19 VM1 = 1/(2∗L) ∗sqrt (T/ rho )
20 m = rho∗L/N; %Lumped mass
21 k = N∗T/L ; % Lumped s t i f f n e s s
22 w0 = sqrt ( k/m) ;
23

24 % FE SS ( lumped masses )
25 R = eye (N) ; %R(1 ,1) =1; R( round (N/2) , round (N/2) ) =1 ; % Externa l

f o r c e @ middle
26 K = diag ( repmat (2 ,N, 1 ) ) ; % S t i f f n e s s matrix
27 for i = 1 :N
28 i f ( i >1)
29 K( i , i −1) = −1;
30 end
31 i f ( i<N)
32 K( i , i +1) = −1;
33 end
34 end
35 K = k∗K; K(Np,Np) = 2∗k + kp ; K(N,N) = k ;
36
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37 M = m∗eye (N) ;
38 M(N,N) = Mtm;
39

40 A = [ zeros (N) −M\K; eye (N) zeros (N) ] ;
41 B = [M\R; zeros (N) ] ; B = [B zeros (2∗N, 1 ) ] ; B(1 ,N+1) =k/m;
42 C = zeros (3 ,2∗N) ; C(1 ,N+Np)=−kp ;C(2 ,2∗N−1)=k ;C(2 ,2∗N)=−k ; C(3 ,end

) = 1 ;
43 D = zeros (3 ,N+1) ; D(1 ,Np) = 1 ;
44

45 sys = s s (A,B,C,D) ; % s t a t e X = [ ydot ; y ]
46

47 % Open Loop TF SEN/ACT
48 load ( ’ opts . mat ’ )
49 opts . PhaseWrapping = ’ on ’ ;
50 f igure ; bodeplot ( sys (1 ,Np) , ’ r ’ , opts )
51

52 %% Apply IFF con t r o l
53 FB_gain = 1000000;
54

55 Integrator_TF = t f ( [ 1 ] , [ 1 0 ] ) ;
56 IFF_compensator = FB_gain∗zpk ( Integrator_TF ) ;
57

58 CL = feedback ( sys , IFF_compensator ,Np, 1 ) ;
59

60 % Closed Loop TF SEN/ACT
61 hold on ; bodeplot (CL(1 ,Np) , ’ k ’ , opts ) ;
62 legend ( ’OL ’ , ’CL ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 15) ;
63 t i t l e ( ’ ’ )
64 ylabel ( ’ Phase ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
65 ylabel ( ’Magnitude ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
66 xlabel ( ’ Frequency ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
67

68 a = sys ∗ IFF_compensator ;
69 f igure ; bodeplot ( a (1 ,Np) , ’ k ’ , opts ) ;
70 legend ( ’OL ’ , ’CL ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 15) ;
71 t i t l e ( ’ ’ )
72 ylabel ( ’ Phase ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
73 ylabel ( ’Magnitude ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
74 xlabel ( ’ Frequency ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
75

76 f igure ; bodeplot (db2mag ( 6 9 . 3 ) ∗ sys (end , end) , ’ r ’ , opts )
77 hold on ; bodeplot (CL(end , end) , ’ k ’ , opts )
78 ylabel ( ’Magnitude ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
79 ylabel ( ’ Phase ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
80 xlabel ( ’ Frequency ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 17)
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