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Active Vibration Mitigation
of Bladed Structures

With Piezoelectric Patches
by Decentralized Positive
Position Feedback Controller

This paper proposes an active damping system to mitigate the vibration of bladed assem-
blies. The damping system consists of multiple pairs of piezoelectric patches accompa-
nied by a decentralized control configuration. To maximize the control authority, the size
and the location of the patches are optimized based on maximizing the strain energy. In
each pair, one patch is used as a sensor and the other one as an actuator. As the control
plants of such configuration have no high-frequency roll-off, a second-order low-pass fil-
ter known as a positive position feedback (PPF) controller is considered as the control
law. The parameters of the controller are tuned based on maximizing the closed-loop
damping of the first family of modes. This active damping system is implemented on a
monobloc bladed rail which is representative of a portion of bladed drum, i.e., BluM.
Numerical simulations are performed to assess the performance of the designed control
system and experimental tests are carried out to validate the numerical design.
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1 Introduction

Current trends in turbomachinery applications for achieving
higher functional efficiency with lower energy consumption have
led to several changes in the design of bladed assemblies. One of
the main ideas is to reduce the centrifugal loads applied to the
bladed structures. This can be done by lowering the total mass
using new materials, lightweight structural design, or a new fabri-
cation technique. For example, manufacturing the blades on a
drum-like support in a single piece, i.e., BluM can provide a mass
reduction compared to a classical design where the blades were
attached to the support using fixing solutions. This solution how-
ever comes at the price of a very low structural damping leading
to high amplitude vibrations as the blades are subjected to aerody-
namic excitations. An undesirable consequence of this behavior is
to drastically increase the noise propagation and reduce the life-
span of the structure because of high cycle fatigue. To solve the
issue, a vibration-damping device needs to be integrated into the
structures. One of the well-known technique is the friction damp-
ing [1]. As friction dampers are nonlinear systems [2,3], the
damping performance depends on the level of relative motions
and the contact area between the parts [4]. A special attention to
the use of piezoelectric transducers has been given to bladed
structures because of lightweight components added into struc-
tures. There are two common vibration control systems known as
passive and active.

Passive control systems are simply integrated into the structures
with no need for external power sources and additional hardware
for their operations. Piezoelectric patches connected to an electri-
cal network known as shunt damping is a promising technique to
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mitigate the vibration of bladed structures. Basically, the piezo-
electric effect transforms mechanical energy into electrical energy
which is dissipated through the electrical network [5]. Schwarzen-
dahl et al. [6] implemented this technique on a bladed structure
and optimized the parameters of the shunt to minimize the ampli-
tude of the first mode. Mokrani et al. [7] tuned the shunt elements
using the average frequency of the first bending modes family.
Although the passive shunt is an interesting vibration damping
system, its performance is strongly dependent on the electrome-
chanical coupling factor [8].

Active control systems were introduced to overcome the per-
formance limitations of the passive methods since they are less
sensitive to the system’s parameters [9]. They however require
external energy source for their operations. The use of such tech-
niques in order to improve the control authority of the piezoelec-
tric shunt damping was studied on the bladed structures.
Kauffman et al. [10] proposed a semi-active approach using low-
power frequency-switching. The use of negative capacitance was
proposed in Ref. [8] and implemented on a test-rig of a bladed
disk model with eight blades [11]. Note that the negative capaci-
tance is an active electrical device. Tang et al. [12] implemented
an active-passive-hybrid-piezoelectric-network (known as APPN),
which was initially introduced by Agnes [13], on a rotationally
periodic structure. Basically, APPN integrates piezoelectric shunt
damping with an active voltage or charge source to improve the
performance of the system.

In addition, active control systems can be applied by integrating
sensors, actuators, and control units. Despite the potential of such
systems, only a few studies have focused on using such tools for
bladed structures. An active control system has been implemented
on general electric aviation subscale composite fan blades using
piezoelectric patches as sensors and actuators. In this study [14],
the control system has been inspired by the transfer function of a
simple resistive-inductive circuit which is used for the passive
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piezoelectric shunt damping. It has been reported that the advan-
tages of this technique compared to the common passive tech-
nique are the use of an amplifier to achieve a higher actuation
level and the fact that the active control does not require an actual
resistor or inductor, which can be very large-sized at low target
frequencies. A number of studies have proposed active noise con-
trol to reduce the source of engine noise induced by the large fan
at the front of the engine of modern commercial jet aircraft
[15-18]. For example, an active noise control system, designed in
Ref. [19], consists of multiple microphones as sensors, multiple
piezoelectric patches as actuators, and adaptive filters for control-
ling unit.

When piezoelectric sensor and actuator are collocated, the
open-loop transfer function contains an alternating pole-zero con-
figuration which has no high frequency roll-off. Depending on the
strain distribution of a mode at the location of the piezoelectric
patches, the zero of the open-loop transfer function may appear
either after or before the pole. This is an important key in the
design of the active control system. When the zero comes after
pole, positive-position-feedback (PPF) is proposed as an interest-
ing active control law. Although it amplifies the static response
which may lead to a decrease in the stiffness of the structure, the
controller adds the high-frequency roll-off. PPF can be imple-
mented by using a first- or a second-order filter. The second-order
PPF outperforms the first-order PPF in terms of the damping ratio
of a target mode; however, its performance degrades rapidly under
the resonance uncertainty. This technique was implemented on a
cantilever beam when its parameters were optimized based on the
method of maximum damping [20] and Hoo optimization [21].

This work aims to evaluate the performance of second-order
PPF to damp the vibration of bladed structures. In particular, the
focus is on the monobloc bladed rail, which represents a section
of the bladed drum, i.e., BluM. Section 2 provides a finite element
model of the structure. This section also includes the optimal loca-
tion of the piezoelectric patches. The control system is designed
in Sec. 3 and its performance is assessed numerically. Afterward
in Sec. 4, an experimental test is carried out to validate the pro-
posed controller performance on mitigating the resonances of the
first modes family. During the operation of the BluM, there are
some energetic orders which excite significantly the first family.
This is why we focus on this family. The conclusions are drawn in
Sec. 5.

2 System Under Consideration

In Ref. [7], the dynamics of bladed drum known as BluM have
been studied. The BIuM is a part of the low-pressure stage of the
compressor of a jet engine designed by Safran. It has been high-
lighted that one of the main dynamic behavior of the BIluM is high
modal density resonances. The high modal density resonances are
caused by the resonances of the blades present in a narrow fre-
quency range. The challenge is to design a vibration damping sys-
tem that considers all the resonances. There are 72 blades on the
BluM. Modeling and verifying any vibration damping system on
the BluM would be a big step. In this study, we focus on a simpli-
fied bladed structure, called bladed rail, representing a portion of
the BluM with five blades. In Sec. 2.1, we first study the dynamic
behavior of the bladed rail to ensure that the trend of the dynamic
behavior is the same as the main application, i.e., the BluM.

2.1 Numerical Modeling of the Bladed Rail. The BluM is
made of titanium and the blades are attached to the support using
friction welding. Figure 1 shows the manufactured bladed rail
using three-dimensional printing and aluminum material proper-
ties. Note that different material properties and manufacturing
process may move the resonances to slightly a lower or higher fre-
quency, while it is assumed they do not change the mode shape,
qualitatively. The monobloc bladed rail comprises five identical
blades placed on a support. The size and geometry of the blades
are adapted to that of the conventional BluM [7]. As a boundary
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Fig.1 The bladed rail

condition, the two ends of the structure are clamped to rigid sup-
ports using the two holes on each side. The rigid supports are
made of steel with natural frequencies much higher than the
resonances of first family. In addition, the thickness and the cross
section of the support are the same as that of the BluM. Therefore,
the support of the bladed rail is stiffer than that of the BluM.
Although higher stiffness of the support puts the resonances of the
blades closer to each other, it is assumed that the mode shapes of
blade resonances remain the same qualitatively.

Due to the complexity of the structure, the bladed rail has been
modeled based on the finite element method as shown in
Fig. 2(a). The model has been made of two-dimensional shell ele-
ments in structural dynamic toolbox in MATLAB. The normalized
frequencies of the first twenty modes of the structure are shown in
Fig. 2(b). Note that the frequencies are normalized with respect to
the frequency of the first resonance. Clearly, modes can be catego-
rized into two types. The first type corresponds to the mode family
consisting of five resonances with very close frequencies. These
resonances correspond to the blade modes where the blades
vibrate according to one of their cantilever mode shapes as shown
in Fig. 3. Therefore, the maximum motion appears at the blades
for such resonances, while the support is almost motionless. The
mode shapes of the first resonance of the first three families are
presented in Fig. 3. It can be seen that the first, second, and third
families are related to the first bending, first torsion, and second
bending of the cantilever blades, respectively. For all resonances
in each family, the blades experience the same cantilever mode
shape although they can move in-phase or out-of-phase with
respect to the ones in their neighborhood with different amplitude
of motion. This is the consequence of the flexible support. If the
support was infinitely rigid and the blades were exactly identical,
the resonances of a family would have the same frequency and
shape. In addition, the second type of resonances, isolated from
others in Fig. 2(b), represents the modes of the support. In this
case, the blades have only translational motion caused by the
deformation of the support. In this study, the vibration of the first
family of modes is of interest.

2.2 Optimal Location of Piezoelectric Patches. Piezoelec-
tric materials transform mechanical energy into electrical energy
and vice versa. This property allows us to use them as either sen-
sors and/or actuators. When a piezoelectric patch is used as a sen-
sor, the output voltage or charge is proportional to the sum of
mechanical strains experienced by the patch. In the case of actua-
tion, the piezoelectric patch induces a moment of force equivalent
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Fig. 2 (a) Model of the bladed rail structure and (b) normalized resonance frequencies of the bladed assemblies (»1 is the

first bending mode frequency of the first family)
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Fig. 3 Mode shapes of (a) the first resonance of the first family, (b) the first resonance of the second family,

and (c) the first resonance of the third family

to a stress/strain distribution, which is proportional to the applied
voltage. Therefore, to maximize the observability and controll-
ability, the optimal location of these transducers is the area of the
structure where the strain energy is maximized. The strain energy
map of the first five modes corresponding to the first family of
modes is illustrated in Fig. 4. One sees that the strain energy is
maximized close to the root of each blades. However, patches
cannot be placed there, because they can easily disturb the aerody-
namic flow around the blades. To overcome the aforementioned
limitation, it is required to place the transducers on the internal
part of the rail. For this area, the strain energy map is shown in
Fig. 5(a). 1t is clearly visible that a local strain distribution is gen-
erated inside the support below the base of each blade. The local
deformations are separated by an artificial nodal line (highlighted
by gray dashed lines) where no strain is generated. Depending on
the motion of a blade, the deformation is either in tension or in
compression; and subsequently, the charge generated in a piezo-
electric patch is either positive or negative. In order to avoid
charge cancelation in the patches, the size of piezoelectric patches
cannot be greater than the local deformation area.

It should be noted that as the local deformations are caused by
the motion of the blades while the support is not involved glob-
ally, it is assumed that similar dynamic behavior is present on the
real application, i.e., BluM.

The key point to applying highly stable active control law is to
choose a collocated open-loop transfer function. The collocated
system means that the frequency response function (FRF) from
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voltage applied by the actuator to the voltage measured by the
sensor contains alternating pole and zero. In this configuration,
the phase remains always bounded between Odeg and =180 deg
allowing high stability margin in the closed-loop system. This can
be done by placing the piezoelectric sensor and actuator at a loca-
tion where they share the same sign of modal strain. Conse-
quently, one pair of piezoelectric patches is placed inside the
support below the base of each blade at the local strain map as can
be seen in Fig. 5(b).

The strain energy map shown in Figs. 4 and 5 contains the aver-
age of the strain energy in all directions and does include the sign
of the strains. In addition, those strain energy maps are presented
without the piezoelectric patches. To evaluate the strain maps in
different directions and the effect of the piezoelectric patches on
the strain distribution, Fig. 6 shows the strain maps corresponding
to the third mode of the first family in the first two directions.
Note that five pairs of PIC155 patches are modeled. The material
properties of the patches are given in Ref. [22]. Although the
strain maps are shown for one mode, the same conclusions can be
made for other modes as well. As the thickness of the patches is
smaller with respect to other two dimensions, the impact of the
strain in the third direction on the charge of the piezoelectric
patches is negligible. According to Fig. 6, the following conclu-
sions can be made:

e Considering a local deformation, the sign of strain in both
directions is the same and is fixed. Therefore, the local
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Fig. 4 Strain energy map of the first family of modes: (a) first mode, (b) second mode, (c) third mode, (d) fourth

mode, and (e) fifth mode
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Fig. 5 (a) Strain energy map of the internal part of the support
for the first family of modes and (b) configuration of the piezo-
electric patches on the structure

deformation is either in tension or compression for both
directions. This ensures that the charge of both patches in
one pair has the same sign.

e The mass and stiffness of the patches do not disarrange the
strain map of a local deformation, qualitatively.

3 Control Design

The open-loop transfer function from each piezoelectric actua-
tor Va; to its collocated piezoelectric sensor Vs; is shown in Fig. 6.
One sees that the system contains alternating pole-zero configura-
tion with no high frequency roll-off. For each mode, the frequency
of the pole is the same for all pairs because it corresponds to a res-
onance frequency of the blades, while the frequency of the zero
changes. In an active control system, the controllability of a target
mode can be assessed by the frequency difference between its
pole and its zero. In fact, the highest frequency difference will
provide the highest control ability. When the zero of a mode is

021003-4 / Vol. 145, FEBRUARY 2023
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Fig. 6 Strain map in the first direction (the left figure) and the
second direction (the right figure)

placed so close to its pole, not only there is no controllability of
that mode, but also the mode cannot be clearly observed in the
open-loop response. For example, the fourth mode cannot be
observed from the open-loop response of the third loop as shown
in Fig. 7. As a result, the third, the second, the first, the fifth, and
the fourth loops are employed in this study to target the first, the
second, the third, the fourth, and the fifth modes, respectively.
Note that there is no unique solution to the selection of the loops.
As each loop targets one resonance, there will be five decentral-
ized control laws as shown in Fig. 8.

The choice of the control law is dependent on the location of
zeroes with respect to poles in the open-loop transfer function. It
has been shown that the second-order filter known as the positive
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Fig. 7 FRF of the open-loop transfer function from each piezo-
electric actuator to its collocated piezoelectric sensor

position feedback (PPF) is an effective control laws when the
open-loop transfer function starts with a pole. A novel method for
determining the constants of the PPF controller proposed by Pak-
nejad [16] is used in this study. The controller aims to target ith
resonance with a modal stiffness k; and the resonance frequency
;. Therefore, targeting the ith mode of the structure, the control
law is given by

2

8fi %9
Gi(s) = +5———— 1
I( ) S2+26fiwfis+w1%i o

where wy;, éfi’ and gy, are the tuning frequency of the controller,

the damping ratio of the controller, and the feedback gain. These
parameters can be found as follow [16]:

wfi = W; 1\ / 4]112 + 1 (20)

O O
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1 —>Actuator-1
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~>Actuator-4
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G5 —>Actuator-5

Fig. 8 Configuration of the piezoelectric patches for the imple-
mentation of the active control system
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where 7 is the desired damping of closed-loop poles. For the
numerical simulations, the modal stiffness is obtained based on
the orthogonality conditions. For this purpose, a numerical modal
analysis is performed using structural dynamic toolbox to extract
the resonance frequencies, the modal mass matrix, and mode
shapes [23]. Knowing the modal mass and the resonances, the
modal stiffness matrix is obtained. The optimal parameters of
the PPF for each loop are listed in Table 1. In the last column of
the table, it is indicated which loop targets which mode. This
choice is made based on the distance between the frequency of
pole and zero. In active control system, the controllability of a tar-
get resonance can be assessed by the distance between the fre-
quency of the pole and the frequency of the zero. Table 2 shows
the distance between the frequency pole and zero. The selected
loop for each mode is highlighted in yellow color. The selection
of the loops is not unique. One can choose other loops.

Before all the loops are closed at the same time, the perform-
ance of the PPF is evaluated on each loop as a single input single
output. The loop gains for all loops are presented in Fig. 9. The
loop gain is defined as the multiplication of the open-loop transfer
function to the corresponding PPF controller. One sees that the
system is stable for all individual loops with minimum 45 deg
phase margin. Note that the highest loop gain for each loop
appears at the corresponding target mode. In addition, the FRF of
the open-loop transfer function for the first loop is compared to
that of the closed-loop in Fig. 10. Interestingly, the designed PPF
can considerably damp the third mode. Moreover, the controller is
also effective in the other modes. Figure 10 is just an example to
indicate the performance of PPF on the target mode and the other
modes. Similar conclusions can be made on the other loops.

The aim of the designed control system is to reduce the vibra-
tion of the blades around at resonance frequencies of the first fam-
ily. Therefore, the performance index of the system is defined by
a transfer function from an excitation force at the tip of the middle
blade to the displacement at the same location. Figure 11 shows
the FRF of the performance index without the control system and
with the control system when all loops are closed. Similar to the
real application, the modal damping ratio of the primary system is
0.01%. Therefore, it can be seen that amplitudes of the closed-
loop response reduced at least 10 times lower than those of the
primary system.

(20)

4 Experimental Test

In this section, an experimental setup is carried out for validat-
ing the decentralized PPF controller on the bladed rail designed in
Sec. 3. For this purpose, the bladed rail structure has been manu-
factured with aluminum material. Then, five pairs of piezoelectric
patches have been glued at the optimal locations mentioned previ-
ously in Fig. 5(b). Also, two supports have been used to clamp the
structure from both ends. The supports have been designed rigid
enough with a first resonance frequency far from the resonances

Table 1 Designed PPF controller parameters for each loop

Loops wy (Hz) & (%) g n; (%) ki (N/m) Target mode

1 1137.5 7.18 1.7517 x10® 3.6 9.03 x 10° Third
2 1128.0 7.18 1.6653 x 108 3.6 8.59x10°  Second
3 11172 7.18 1.6128 x 10° 3.6 832 x 10° First
4 11463  7.18 2.6009 x 10° 3.6 1.34 x 10° Fifth
5 1143.0 7.18 22924 x10® 3.6 1.18x10°  Fourth
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Table2 Frequencies of pole and zeroes for each mode of the family

Parameter Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz) Mode 5 (Hz)
Loop 1 Poles 1114.1 1125.1 1134.6 1140.1 11434
Zeroes 1117.8 1129.1 1138.3 1142.8 n/a
Difference 3.7 4 2.7 n/a
Loop 2 Poles 1114.1 1125.1 1134.6 1140.1 1143.4
Zeroes 1122.6 1133.8 1134.8 1142 n/a
Difference 8.5 0.2 1.9 n/a
Loop 3 Poles 1114.1 1125.1 1134.6 1140.1 1143.4
Zeroes 1124.1 1129.4 1139.9 1140.2 n/a
Difference 4.3 53 0.1 n/a
Loop 4 Poles 1114.1 1125.1 1134.6 1140.1 11434
Zeroes 11184 1134.1 1136.2 1142.1 n/a
Difference 4.3 9 1.6 2
Loop 5 Poles 1114.1 1125.1 1134.6 1140.1 11434
Zeroes 1114.9 1128.9 1138.1 1142.9 n/a
Difference 0.8 3.8 3.5 n/a
40 107! T . T T T T T T T
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Fig. 11 Performance index of the bladed rail (the transfer func-
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Fig. 9 Numerical FRFs of the loops gains
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Fig. 10 Open loop and closed loop response of loop no. 1
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tion between the middle blade’s force to the middle blade’s tip
displacement) in controlled and uncontrolled condition

of the first family. The pictures of the experimental setup are pre-
sented in Fig. 12.

To perform the experimental tests, a DSPACE MICRO-LABBOX was
used for the purpose of both the data acquisition and the control
system. The control configuration is designed first inside the
graphical sIMULINK environment of MATLAB and then compiled.
The compiled file is uploaded into the CONTROLDESK software con-
nected directly to the micrRo-LABBOX hardware. The system is run-
ning in real-time at a sampling frequency of 20kHz. The
measured data were also recorded at the same sampling fre-
quency. It is interesting to note that such practical implementation
of the active control system is only used to verify the design on
the laboratory scale. This method cannot be used for real applica-
tion, i.e., BluM. On the other hand, as the PPF is a resonator, it is
possible to realize it by means of an analog electric circuit using
operational amplifier. The great advantage of such circuits is that
they can be found on a compact scale, which can be placed inside
the drum part of the structure. The design and verification of those
analog electric circuits are out of the scope of this paper.

The same procedure for designing the PPF controller which has
been done for the numerical study is carried out for the experi-
mental tests in this section. In order to select the best loop for
each mode, it is required to extract the open-loop transfer func-
tions first. For this purpose, an actuator of a pair excites the struc-
ture using a chirp signal within the frequency range of interest,
i.e., 1100 Hz—1400 Hz, while the sensor voltage of the same pair
is measured simultaneously. This test repeats for all pairs. The
FRFs of the open-loop transfer functions for all pairs are shown in
Fig. 13. Interestingly, the FRFs are all collocated containing alter-
nating pole and zero. Moreover, five resonances can be identified
in a short range of frequency. Therefore, the experimental FRFs
are comparable to those of the numerical response shown in
Fig. 8. The resonances are however in a slightly wider range of
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Fig. 12 (a) Experimental setup of bladed rail with detail components: (a)
bladed rail, (b) clamped support, (c) piezoelectric patches’ cables, (d) laser
vibrometer (measuring the middle blades displacement), (e¢) acoustic exciter
no. 1, and (f) acoustic exciter no. 2 and (b) the piezoelectric patches mounted

on the bladed rail

frequency compared to the numerical resonances (Fig. 9). This is
the effect of boundary conditions. In fact, the rigidity of the sup-
port will influence the separation of the resonances in a family.
When the support is more rigid, the resonances of the family are
placed more close to each other. This is the case for the numerical
model as the ideal rigid boundary conditions have been consid-
ered. Using the same method which has been explained in Sec. 3
for selecting the best loop for each mode, the following configura-
tion is selected: the third, the first, the fifth, the second, and the
fourth loops target the first, the second, the third, the fourth, and
the fifth modes, respectively.

T T T T
— First loop
Second loop.
Third loop
Fourth loop
———Fifthloop |
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v,V
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1150 1200 1250 1300 1350 1400

Phase (deg)

L L L L
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Frequency (Hz)

Fig. 13 Experimental FRFs of the open-loop transfer functions
from each piezoelectric actuator to the collocated piezoelectric
sensor for each loop
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An optimal PPF can now be obtained for each loop using
Eq. (2). Then, the performance of the designed control system for
each loop is evaluated as a single input single output system. For
this purpose, the FRFs of the experimental loop gain of each loop
are shown in Fig. 14. It indicates how each controller is effective
in a target mode. In addition, one sees that each control system
ensures the stability of the closed-loop system. To understand the
effective of a PPF on a target mode and other modes, the FRFs of
the open-loop and the closed-loop responses of the first loops are
presented in Fig. 15 as an example. One sees that the second
mode is effectively damped. Also, the damping of the third and
the fourth modes slightly increases.
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Fourth loop|
Fifth loop

4]
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Fig. 14 Experimental FRFs of the loops gains
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Fig. 15 Open loop and closed loop response of loop no. 1
(experimental)

After designing a separate PPF controller for each loop, all of
the loops are closed to evaluate the effectiveness of the decentral-
ized multiple-input and multiple-output controller on the first fam-
ily of mode experimentally. For this purpose, an acoustic
excitation system is considered to excite the structure within the
frequency range of 1150 Hz—1400 Hz. For measuring the output of
the system, a laser vibrometer is used to measure the velocity of
the middle blade’s tip. In this arrangement, the performance index
of the system is defined by the transfer function from the acoustic
excitation signal to the laser vibrometer signal. For making sure
that all of the five modes in the family of mode is excited, two
speakers are placed in a perpendicular shape to excite the structure
properly in different directions.

The FRFs of the performance index of the bladed rail with and
without the decentralized control system is presented in Fig. 16.
First, all of the modes in the first family mode can be observed in
the uncontrolled response. In addition, the proposed decentralized
PPF controller can mitigate effectively the vibration of the five
modes in the first modes family. The first resonance is however
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Fig. 16 The performance index of the bladed rail structure in

uncontrolled and controlled conditions (all the loops are
closed)
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not significantly damped compared to other resonances. This is
because each PPF has a positive impact in terms of damping on
higher modes as shown in Figs. 15 and 10. Therefore, other than
the PPF which targets the first resonance in the third loop, no other
PPF almost adds damping to this mode.

As shown in Fig. 12, an acoustic system excites the structure in
the frequency range of interest. It is needed to ensure that all the
resonances of the first family are excited properly. For this pur-
pose, the coherence of the signal with and without the control sys-
tem is evaluated. The coherence is a statistic that indicates how
much the output is correlated with the input in frequency domain.
Mathematically, it is obtained from the cross spectral-density
between input and output divided by the autospectral density of
both input and output [24]. The value of one shows the most cor-
relation and the value of zero indicates the least correlation.
Figure 16 shows the coherence in the frequency range of excita-
tion. It is almost one for both controlled and uncontrolled
response. This means that there is a good correlation between the
acoustic excitation and the measured response at the tip of the
blade.

5 Conclusion

In this study, an active control system has been proposed to mit-
igate the resonances of the first family modes of the bladed struc-
tures. The control system has been implemented numerically and
experimentally on a bladed rail structure. Piezoelectric patches
have been used for both sensing the motion and actuating the con-
trol force. For obtaining maximum control authority, the size and
location of piezoelectric patches have been optimized based on
maximizing the strain energy. Although locating the patches at
the blade root maximizes the strain energy, it results in important
perturbations of the aerodynamic flow. Therefore, a pair of sen-
sors and actuators is placed below the root of each blade inside
the support. It has been shown that the pairs provide good control
results due to alternating pole and zero pattern in the FRF and
good controllability and observability. A decentralized PPF con-
troller has been designed such that a PPF in a loop targets a cer-
tain mode of the family. Although the PPF as a second-order filter
has been designed to damp one mode, it can be effective to damp
multiple modes of a high modal density resonances system like a
family of resonances of the bladed rail. The efficiency of the pro-
posed control system has been validated experimentally on a man-
ufactured bladed rail.
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