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Abstract

The rising of the CubeSat concept is re-defining the canonical approach to

space mission design. The exponential interest in the use of CubeSats for deep

space missions opens up a wide range of new possibilities along with new tech-

nological challenges. The reduced spacecraft available space combined with

stringent mission requirements drives the search for innovative solutions for

the optimization of the resources on board. On the other hand, new hori-

zons are opening up for CubeSat applications; Libration point missions for

scientific or support purposes seem to be the next step in the development

and refinement of nano-satellite technologies. This work proposes an innova-

tive solution where the stand-alone CubeSat main propulsion system and the

ADCS actuators merge together in a 4-thruster assembly able to provide both

Station-Keeping and Attitude Control for Libration Point missions.

i



Contents

Abstract i

1 Introduction 1

1.1 Work description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Historical review and State of the Art . . . . . . . . . . . . . . . . . . . . . 5

2 Dynamics Model 10

2.1 Circular Restricted Three Body Problem . . . . . . . . . . . . . . . . . . . 10

2.1.1 Problem statement and equations of motion . . . . . . . . . . . . . 10

2.1.2 Jacobi Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Libration points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Orbits around collinear points . . . . . . . . . . . . . . . . . . . . . 16

2.1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.6 Lissajous Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.7 Lyapunov and Halo Orbits . . . . . . . . . . . . . . . . . . . . . . . 24

3 Station-Keeping Strategy 31

3.1 Continuous Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . 36

4 Attitude Control 45

4.1 Fundamentals of Attitude Control . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Kinematics and Dynamics of a Rigid Body . . . . . . . . . . . . . . 46

4.1.2 Non-linear control theory . . . . . . . . . . . . . . . . . . . . . . . . 53

ii



4.2 Attitude tracking control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Sliding-Mode Control - Fundamentals . . . . . . . . . . . . . . . . . 57

4.2.2 Sliding-Mode Control - NFTSM . . . . . . . . . . . . . . . . . . . . 60

5 Control Allocation 69

5.1 Spacecraft thruster configuration . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Allocation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Linear Programming formulation . . . . . . . . . . . . . . . . . . . 75

5.2.2 Control Allocation as NLP problem . . . . . . . . . . . . . . . . . . 81

5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Unconstrained Gimbal Case . . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Constrained Gimbal Case . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Thruster selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Conclusions 121

Bibliography 125

iii



List of Tables

2.1 Lagrangian points coordinates of the Sun-Earth+Moon system . . . . . . . 16

2.2 Lagrangian points coordinates of the Earth-Moon system . . . . . . . . . . 16

2.3 Orbit parameters for the Earth-Moon L1 Lissajous Orbit. . . . . . . . . . . 22

2.4 Orbit parameters for the Sun-Earth/Moon L1 Lissajous Orbit. . . . . . . . 23

2.5 Orbit parameters of the Halo Orbit family in the Earth-Moon system pre-

sented in Fig.(2.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Orbit parameters of the Halo Orbit family in the Sun-Earth/Moon system

presented in Fig.(2.6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Orbit parameters of the Planar Lyapunov family in the Earth-Moon system

presented in Fig.(2.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Orbit parameters of the Planar Lyapunov family in the Sun-Earth/Moon

system presented in Fig.(2.7) . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Standard deviations of control execution and tracking errors. . . . . . . . . 36

3.2 Orbit Parameter of the nominal Halo orbit. . . . . . . . . . . . . . . . . . . 36

3.3 LQG and simulation set up for the continuous optimal control . . . . . . . 37

3.4 Orbit Parameter of the nominal Lyapunov orbit. . . . . . . . . . . . . . . . 39

3.5 LQG and simulation set up for the continuous optimal control on Lyapunov

orbit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Orbit Parameter of the nominal Lissajous orbit. . . . . . . . . . . . . . . . 41

3.7 LQG and simulation set up for the continuous optimal control on Lyssajous

orbit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iv



4.1 Definitions of parameters appearing in Eq.(4.40) and Eq.(4.41) . . . . . . . 62

4.2 NFTSM control parameters used for the simulations. . . . . . . . . . . . . 64

4.3 Attitude tracking perturbation definition. All the disturbances are simu-

lated as Additive White Gaussian Noise with mean values and variances

defined in the table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Spacecraft dimensions, mass and inertia matrix. . . . . . . . . . . . . . . . 71

5.2 Unconstrained gimbals, Halo orbit case - control allocation main results. . 89

5.3 Unconstrained gimbals, Lyapunov orbit case - control allocation main results. 95

5.4 Unconstrained gimbals, Lissajous orbit case - control allocation main results. 99

5.5 Constrained gimbal angle αmax, Halo orbit case - control allocation main

results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Constrained gimbal angle αmax, Lyapunov orbit case - control allocation

main results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 PPT prototypes performance. Isp stands for Specific Impulse and MIP

stands for Minimum Impulse Bit. . . . . . . . . . . . . . . . . . . . . . . . 115

5.8 PPT prototypes performance. Isp stands for Specific Impulse and MIP

stands for Minimum Impulse Bit. . . . . . . . . . . . . . . . . . . . . . . . 116

5.9 Colloid thruster typical performance. Isp stands for Specific Impulse and

MIP stands for Minimum Impulse Bit. . . . . . . . . . . . . . . . . . . . . 117

5.10 Hall thruster typical performance. Isp stands for Specific Impulse and MIP

stands for Minimum Impulse Bit. . . . . . . . . . . . . . . . . . . . . . . . 118

6.1 Procedure achievements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Main advantages and drawback of the approach proposed in the project. . 124

v



List of Figures

1.1 Project workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 CR3BP Reference Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Lagrangian points positions in the co-rotating frame. . . . . . . . . . . . . 15

2.3 Lissajous Orbit around Earth-Moon L1 Lagrangian point in adimensional

coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Lissajous Orbit around Sun-Earth/Moon L1 Lagrangian point in adimen-

sional coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Halo Orbits around Earth-Moon L1. The color-bar refers to the Jacobi

constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Halo Orbits around Sun-Earth/Moon L1. The color-bar refers to the Jacobi

constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Planar Lyapunov Orbits around Earth-Moon L1. The color-bar refers to

the Jacobi constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Planar Lyapunov Orbits around Sun-Earth/Moon L1. The color-bar refers

to the Jacobi constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Reference Halo Orbit for the LQG . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Position deviation evolution in time. . . . . . . . . . . . . . . . . . . . . . 38

3.3 Velocity deviation evolution in time. . . . . . . . . . . . . . . . . . . . . . 38

3.4 Estimation error in position. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Estimation error in velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Control inputs evolution in time. . . . . . . . . . . . . . . . . . . . . . . . 38

vi



LIST OF FIGURES vii

3.7 Reference Lyapunov Orbit for the LQG . . . . . . . . . . . . . . . . . . . . 40

3.8 Position deviation evolution in time. . . . . . . . . . . . . . . . . . . . . . 40

3.9 Velocity deviation evolution in time. . . . . . . . . . . . . . . . . . . . . . 40

3.10 Estimation error in position. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.11 Estimation error in velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.12 Control inputs evolution in time. . . . . . . . . . . . . . . . . . . . . . . . 41

3.13 Reference Lissajous Orbit for the LQG . . . . . . . . . . . . . . . . . . . . 42

3.14 Position deviation evolution in time. . . . . . . . . . . . . . . . . . . . . . 42

3.15 Velocity deviation evolution in time. . . . . . . . . . . . . . . . . . . . . . 42

3.16 Estimation error in position. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.17 Estimation error in velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.18 Control inputs evolution in time. . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Rigid body representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Two reference frame A and B. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Graphical representation of Eq.(4.33) and Eq.(4.35) for n = 2 . . . . . . . 59

4.4 Actual and Desired quaternion evolution along orbit. . . . . . . . . . . . . 65

4.5 Actual and desired angular velocity evolution along the orbit. . . . . . . . 65

4.6 Quaternion error evolution along the orbit. . . . . . . . . . . . . . . . . . . 66

4.7 Control torques M = [τx τy τz]
′ evolution along the orbit. . . . . . . . . . . 66

4.8 Actual and Desired quaternion evolution along orbit. . . . . . . . . . . . . 66

4.9 Actual and desired angular velocity evolution along the orbit. . . . . . . . 66

4.10 Quaternion error evolution along the orbit. . . . . . . . . . . . . . . . . . . 67

4.11 Control torques M = [τx τy τz]
′ evolution along the orbit. . . . . . . . . . . 67

4.12 Actual and Desired quaternion evolution along orbit. . . . . . . . . . . . . 67

4.13 Actual and desired angular velocity evolution along the orbit. . . . . . . . 67

4.14 Quaternion error evolution along the orbit. . . . . . . . . . . . . . . . . . . 68

4.15 Control torques M = [τx τy τz]
′ evolution along the orbit. . . . . . . . . . . 68



LIST OF FIGURES viii

5.1 Actuator configuration. The reference frame O(X,Y,Z) is assumed to be

centerd on the centre of mass of the satellite. The axes are assumed to

be coincident with the principal inertia axes of the spacecraft. Engines E1

and E4 lie on the x-axis while E2 and E3 lie on the y-axis. . . . . . . . . . 71

5.2 Angle convention for E1/E4 thrust direction. . . . . . . . . . . . . . . . . . 72

5.3 Angle convention for E2/E3 thrust direction. . . . . . . . . . . . . . . . . . 72

5.4 Gimbal cone of allowed directions. . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Commanded virtual inputs τc for Halo orbit . . . . . . . . . . . . . . . . . 83

5.6 Commanded virtual inputs τc for Lyapunov orbit . . . . . . . . . . . . . . 84

5.7 Commanded virtual inputs τc for Lissajous orbit . . . . . . . . . . . . . . . 84

5.8 Unconstrained gimbal angles - Halo orbit: evolution of the mapping error:

e = τc − τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.9 Unconstrained gimbal angles - Halo orbit: transient behaviour of engine

thrust levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.10 Unconstrained gimbal angles - Halo orbit: steady state behaviour of engine

thrust levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.11 Unconstrained gimbal angles - Halo orbit: gimbal orientation during the

mission. The right-hand side axis refers to the α angle, the left-hand side

axis concerns the β angle. Conventions for α and β are shown in Section

5.1 Fig.(5.2) and Fig.(5.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.12 Unconstrained gimbal angles - Halo orbit: engine contributions to control

inputs. The title of each pie chart represents the ration between the com-

manded ideal input (denoted by the superscript c) and the produced one

in terms of absolute values. Ratios may exceed unity as only the absolute

values of the contributions are considered, not their sign. . . . . . . . . . . 88

5.13 Unconstrained gimbal angles - Lyapunov orbit: evolution of the mapping

error: e = τc − τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.14 Unconstrained gimbal angles - Lyapunov orbit: transient behaviour of en-

gine thrust levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



LIST OF FIGURES ix

5.15 Unconstrained gimbal angles - Lyapunov orbit: steady state behaviour of

engine thrust levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.16 Unconstrained gimbal angles - Lyapunov orbit: gimbal orientation during

the mission. The right-hand side axis refers to the α angle, the left-hand

side axis concerns the β angle. Conventions for α and β are shown in

Section 5.1 Fig.(5.2) and Fig.(5.3). . . . . . . . . . . . . . . . . . . . . . . 93

5.17 Unconstrained gimbal angles - Lyapunov orbit: engine contributions to

control inputs. The title of each pie chart represents the ration between the

commanded ideal input (denoted by the superscript c) and the produced

one in terms of absolute values. Ratios may exceed unity as only the

absolute values of the contributions are considered, not their sign. . . . . . 93

5.18 Unconstrained gimbal angles - Lissajous orbit: evolution of the mapping

error: e = τc − τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.19 Unconstrained gimbal angles - Lissajous orbit: Thrust envelop of the mission. 97

5.20 Unconstrained gimbal angles - Lissajous orbit: gimbal orientation during

the mission. The right-hand side axis refers to the α angle, the left-hand

side axis concerns the β angle. Conventions for α and β are shown in

Section 5.1 Fig.(5.2) and Fig.(5.3). . . . . . . . . . . . . . . . . . . . . . . 97

5.21 Unconstrained gimbal angles - Lissajous orbit: engine contributions to con-

trol inputs. The title of each pie chart represents the ration between the

commanded ideal input (denoted by the superscript c) and the produced

one in terms of absolute values. Ratios may exceed unity as only the ab-

solute values of the contributions are considered, not their sign. . . . . . . 98

5.22 Control allocation mapping errors for Halo mission case. Each subplot

refers to a specific αmax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.23 Control allocation mapping errors for Lyapunov mission case. Each subplot

refers to a specific αmax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.24 Control allocation mapping errors for Lissajous mission case. Each subplot

refers to a specific αmax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



LIST OF FIGURES x

5.25 Required thrust ranges for the different missions. The colours refer to

different gimbal angle constraints. . . . . . . . . . . . . . . . . . . . . . . . 102

5.26 Maximum thrust provided during mission in Halo, Lyapunov and Lissajous

orbits. The colours refer to different gimbal angle constraints. . . . . . . . 103

5.27 Average thrust provided during mission in Halo, Lyapunov and Lissajous

orbits. The colours refer to different gimbal angle constraints. . . . . . . . 103

5.28 Constrained gimbal with αmax = 10◦ - Halo orbit: evolution of the mapping

error: e = τc − τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.29 Constrained gimbal with αmax = 10◦ - Halo orbit: steady state behaviour

of engine thrust levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.30 Constrained gimbal with αmax = 10◦ - Halo orbit: gimbal orientation dur-

ing the mission. The right-hand side axis refers to the α angle, the left-hand

side axis concerns the β angle. Conventions for α and β are shown in Sec-

tion 5.1 Fig.(5.2) and Fig.(5.3). . . . . . . . . . . . . . . . . . . . . . . . . 106

5.31 Constrained gimbal with αmax = 10◦ - Halo orbit: engine contributions to

control inputs. The title of each pie chart represents the ration between the

commanded ideal input (denoted by the superscript c) and the produced

one in terms of absolute values. Ratios may exceed unity as only the

absolute values of the contributions are considered, not their sign. . . . . . 106

5.32 Constrained gimbal with αmax = 10◦ - Lyapunov orbit: evolution of the

mapping error: e = τc − τ . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.33 Constrained gimbal with αmax = 10◦ - Lyapunov orbit: steady state be-

haviour of engine thrust levels. . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.34 Constrained gimbal with αmax = 10◦ - Lyapunov orbit: gimbal orientation

during the mission. The right-hand side axis refers to the α angle, the left-

hand side axis concerns the β angle. Conventions for α and β are shown

in Section 5.1 Fig.(5.2) and Fig.(5.3). . . . . . . . . . . . . . . . . . . . . . 110



5.35 Constrained gimbal with αmax = 10◦ - Lyapunov orbit: engine contribu-

tions to control inputs. The title of each pie chart represents the ration

between the commanded ideal input (denoted by the superscript c) and the

produced one in terms of absolute values. Ratios may exceed unity as only

the absolute values of the contributions are considered, not their sign. . . . 110

5.36 Constrained gimbal with αmax = 10◦ - Lissajous orbit: evolution of the

mapping error: e = τc − τ . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.37 Constrained gimbal with αmax = 10◦ - Lissajous orbit: steady state be-

haviour of engine thrust levels. . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.38 Constrained gimbal with αmax = 10◦ - Lissajous orbit: gimbal orientation

during the mission. The right-hand side axis refers to the α angle, the left-

hand side axis concerns the β angle. Conventions for α and β are shown

in Section 5.1 Fig.(5.2) and Fig.(5.3). . . . . . . . . . . . . . . . . . . . . . 113

5.39 Constrained gimbal with αmax = 10◦ - Lissajous orbit: engine contributions

to control inputs. The title of each pie chart represents the ration between

the commanded ideal input (denoted by the superscript c) and the produced

one in terms of absolute values. Ratios may exceed unity as only the

absolute values of the contributions are considered, not their sign. . . . . . 113

xi



Chapter 1

Introduction

1.1 Work description

The rising of the CubeSat concept is re-defining the canonical approach to space mission

design. If space missions were previously conceived using a single, large, expensive, multi-

tasking satellite, now the same mission objectives can be achieved by multiple small

satellites in formation flight or constellations or swarms, with incomparable advantages:

first of all, mission objectives can be broken down and assigned individually to several

satellites, thus avoiding the classic performance trade-off typical of conventional satellites.

Moreover, the adoption of Off-The-Shelf Components (COTS) ensures faster, cheaper and

more efficient development process. Cubesats make possible support missions to main

spacecrafts, further expanding the scientific return of the global mission. Since their

first appearance in the space sector to date, CubeSats have been used as technological

demonstrators or Earth observer devices for science purposes. Recently there has been

a shift towards more complex and ambitious missions in deep space. Stand-alone or

formation flying CubeSats have been proposed for interplanetary missions as daughter

ships of conventional mother satellites or directly concieved as principal satellites. In

2018, the Insight mission supported by the two deep-space CubeSats MarCO-A and

MarCO-B set the milestones for deep-space operations of CubeSats.

Many missions involving the use of CubeSats in orbit around the Libration points (also

called Lagrangian points) of the Earth-Moon or Sun-Earth system are currently being

1



1.1. Work description 2

considered. Those equilibrium points in the Restricted Three Body Problem (R3BP) offer

uncommon features for space operations; because their positions is almost constant with

respect to the two attracting bodies, orbits around them can be designed in order to

enable the spacecraft to be always visible from Earth always maintaining a privileged

view on the second body. This characteristic tuns out to be extremely beneficial both for

science missions both for relay and support missions devoted to future space colonisation.

The technological challenges for Cubesats operating in deep space are nonetheless arduous.

The complexity of required operations in conjunction with reliability and robustness to

space environment requisites, become more and more challenging to achieve as the on-

board available space decreases. Especially for the propulsion and attitude control system

it becomes almost impossible to design two separate system acting independently; the

combination of the two tuns out to be the only possible solution in order to provide

propulsion for orbital maneuvers (Station-Keeping) and propulsive attitude control in an

efficient way.

This work aims to address the problematic of the station-keeping/attitude control coupling

in the case of an under-actuated spacecraft in orbit around collinear libration points. The

term ”under-actuated” means a satellite with fewer actuators than the number of degrees

of freedom it is intended to control. Both the station-keeping and the attitude control

are obtained by using only four engines located along the satellite and equipped with

a gimbal system able to direct the thrust produced. Thanks to recent developments in

the field of electric propulsion, a type of continuous control at low thrust level has been

chosen to provide positioning and attitude control. The three main types of libration point

orbits have been taken into consideration in the study, namely: Halo Orbits, Lyapunov

Orbits and Lissajous Orbits. Those families of orbits are compared and evaluated in

terms of control effort in order to highlights the advantages and disadvantages of the

proposed architecture once applied to the most common scenarios concerning missions

around Lagrangian points.

The whole work is developed following the red thread schematically represented in Fig.(1.1).
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Figure 1.1: Project workflow.

Firstly, the nominal trajectories around collinear libration points are derived. Then the

clue topic of station-keeping/attitude control is addressed through a two-step approach:

1. Step 1: High-Level Motion Control. The ideal input forces, required to achieve

satisfactory station-keeping performances, and the ideal input torques, ruling the

satellite attitude evolution along the orbit, are computed independently without

considering any coupling among them. The coupling in fact derives from the adop-

tion of a limited number of actuators to accomplish both tasks. The actuators

properties are not taken into consideration at this stage.

2. Step 2: Control Allocation. Once the traces of ideal forces and moments have been

defined, an optimisation process is carried out in order to map them onto the engines.

By doing so it is derived the optimal combination of engine orientations and thrust

levels in order to achieve the ideal control inputs computed at step 1, or in order

to minimise the error between the actual control inputs and the ideal ones if the
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commanded ideal inputs are out of reach of the engine system.

The report is organized as follows: Chapter 1 continues with an historical review and the

state of the art concerning the fundamental topics covered in the work.

Chapter 2 presents the mathematical formulation of the Restricted Three Body Problem

(R3BP), which is the dynamic model used as baseline framework. The mathematical for-

mulation of the orbits is subsequently exposed, together with the methodologies adopted

to calculate them numerically. The simulated orbits are shown at the end of the chapter,

together with tables grouping their most important parameters.

Chapter 3 focuses on the Station-Keeping strategy used to keep the spacecraft close to its

nominal orbit. The theory behind the methodology adopted is explained at the beginning

of the chapter while the numerical results for each of the orbit chosen, as representative

for the respective family, are presented at the end.

Chapter 4 provides the fundamentals of attitude control and the mathematical back-

ground which lies behind the techniques chosen to accomplish the task; as in the other

cases the numerical results are shown at the end of the chapter with a detailed description

of the parameters used in the simulations.

Chapter 5 deals with the control allocation procedure implemented in the project. Firstly

the optimisation algorithms adopted are properly defined; then the analysis of the results

in terms of engine thrust levels and mapping errors is pursued, for each typology of orbit,

for the following cases:

• Unconstrained gimbal angle.

• Constrained gimbal angle.

Afterwards the selection of the thruster type is carried out based on a detailed comparison

of the Micro Electro-Mechanical System (MEMS) technologies available (or close to be)

on the market.

In Chapter 6 the main conclusions are drawn and further developments are suggested.
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1.2 Historical review and State of the Art

In 1772, the French mathematician, J. L. Lagrange, showed that there are five positions

of equilibrium in a rotating two-body gravity field model; the model is referred as the

Restricted Three Body Problem (R3BP). Those equilibrium points are called ”Lagrangian

Points” or ”Libration Points”. Three out of five lie on the line joining the massive bodies,

called Primaries, while the remaining two form equilateral triangles with the primaries.

All five libration points belong to the orbit plane of the two attractive bodies.

The libration points aroused great interest within the scientific community since the early

dawn of the space era. They offer the unique possibility to design a space mission having

the spacecraft with fixed configuration with respect to two primaries. It enlarges the

mission design possibilities enabling the achievement of objectives which would not be

achievable with classical Keplerian Two Body Problem (TBP) orbits. Moreover, since

the libration points are characterised by an unstable dynamics, they might be exploited

to obtain low-energy interplanetary, lunar, moon-to-moon transfers of practical interest.

Historically it was in 1950 that Arthur C. Clark suggested to use the L2 point of the Earth-

Moon system to broadcast radio and TV signals to the foreseen colonies on the back side

of the Moon. This idea was grasped and developed by Farquhar in 1966 who drew the

first libration point orbit in the history [38], a quasi-periodic Lissajous Orbit. Later, in

1973, Farquhar and Kamel achieved to analytical define a periodic orbit around libration

points called Halo Orbit [19]. The first application of the theoretical studies carried out

by Farquhar and Kamel is the International Sun-Earth Explorer (ISEE) Program [16].

The ISEE mission envisaged three spacecrafts, ISEE-1 and ISEE-2 located in an highly

elliptical orbit around Earth and ISEE-3 in an halo orbit around the Sun-Earth L1 [46].

The incredible success of the ISEE-3 mission (which was extended in 1981 and renamed as

ICE Extended Mission), encouraged the space community to develop new space missions

exploiting the libration point characteristics. The first who seized the opportunity were

the Russians in 1990 with Relict-2 which unfortunately was discarded due to the financial

problems arose from the collapse of the Soviet Union [17]. The 2nd libration point mission

was the SOlar Heliospheric Observatory (SOHO) launched in 1995 and funded by ESA.
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It entered its L1 halo orbit on February 14, 1996, an orbit designed on the heritage left by

ISEE-3. The continuous detailed solar observations available to all via the Web have set

a new standard for solar observation and the mission it is still operative [15]. In 1997 The

Advanced Composition Explorer (ACE) was launched and it is the full-fledged 3rd libration

point mission. ACE was placed into a Sun-Earth L1 Lissajous orbit and it is still operative

[43]. The WIND spacecraft is considered the 4th libration point satellite even if it was

lauched before the ACE, because its orbit is not properly considered as a ”pure” libration

point one. In the new millennium plenty of libration points mission were launched: the

Wilkinson Microwave Anisotropy Probe (WMAP) in 2001, THEMIS-ARTEMIS mission

in 2007, Herschel Space Telescope and Planck Space Observatory in 2009, Chang’e 2 in

2010, the Gaia Space Observatory in 2013, Chang’e 5-T1 Service Module in 2014, the

Deep Space Climate Observatory (DSCOVR) in 2015, LISA Pathfinder (LPF) in 2015,

Queqiao spacecraft in 2018 and Spektr-RG spacecraft in 2019. For the next decade at

least 15 missions are planned to be launched towards libration points.

This incredible interest in deep-space exploration and in libration point missions is driving

also many developers and manufacturers to design affordable and easy-to-develop Cube-

Sats capable of taking on such missions. Since the early 2000s the role of CubeSats in

the space scenario has risen in a predominant way. CubeSats are a subset of SmallSats

(spacecrafts with a mass less than 500 Kg), and are built in standard units of 10 cm ×

10 cm × 10 cm cubes (called a 1U which typically weigh less than 2 kg) and usually are

composed of standardised Commercial Off-The-Shelf (COTS) components. It is precisely

this standardization of size and subsequent CubeSat components such as the spacecraft

structure, electronics, power systems and communications modules that allows them to be

developed, built and launched in an extremely less expansive way with respect to conven-

tional satellites, causing the recent spike in the CubeSat’s popularity [18]. More than 1000

CubeSats were launched from 2001 to date and more than 2500 are planned to lift-off in

the next 6 years. The vast majority of CubeSats are intended for Low Earth Orbit (LEO)

operations but NASA Jet Propulsion Laboratory (JPL), in 2018, set the cornerstone for

the employment of CubeSats in deep-space missions; MarCO-A (Wall-E) and MarCO-B
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(Eva) CubeSats are the first two nano-satellites to operate beyond Earth orbit, in the

deep-space environment. Mars Cube One (or MarCO) was a Mars flyby mission launched

on 5 May 2018 alongside NASA’s InSight Mars lander mission. The role of MarCO-A and

MarCO-B was to provided a real-time communications link to Earth for InSight during its

entry, descent, and landing (EDL) when InSight was out of line of sight from the Earth.

Both spacecraft were 6U CubeSats, and the mission was a test of new miniaturized com-

munications and navigation technologies. Both nano-satellites accomplished succesfully

their mission before the loss of contact happened in January 2019 [41]. For the next years,

dozen of CubeSats mission concepts are under analysis from the major space agencies all

around the world. JPL has already flight-qualified the two CubeSats for its INSPIRE

(Interplanetary Nano-Spacecraft Pathfinder in Relevant Environment) mission and it is

developing several other projects of the kind, notably Lunar Flashlight, Near Earth As-

teroid Scout, LunarIceCube, MarsDROP and NANOSWARM [1]. The European Space

Agency (ESA), for its part, is investigating new mission concepts involving a number of

CubeSats operating in interplanetary space in orther to enhance the scientific return of

the already proposed ESA missions; the most representative ones are Miniaturised Aster-

oid Remote Geophysical Observer (M-ARGO), DustCube, CUBATA, Payload of Advanced

Little Satellites (PALS), Asteroid Geophysical Explorer (AGEX), Lunar Meteoroid Im-

pact Observer (LUMIO), Moon CubeSat for the Analysis of the Radiation Environment

(MoonCARE), CubeSat Low frequency Explorer (CLE) and Lunar Volatile and Mineral-

ogy Mapping Orbiter (VMMO) [7]. Many of them are supposed to be placed in orbits

around libration points.

One of the crucial challenges regarding CubeSat design is to fit all the required compo-

nents in the tiny available space on-board in order to allow the nano-satellite to match

the mission requirements and constraints. Of particular interest is the Attitude and Orbit

Control System (AOCS) whose aim is to provide the necessary torque and force inputs to

control the attitude and position of the spacecraft along its orbit. Generally a sufficient

number of actuators is implemented in order to control separately the spacecraft attitude

and the orbit maintenance (Station-Keeping). This solution grants robustness to external
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perturbations and actuator failures due to the high redundancy of the system, and allows

an independent, not coupled, control of spacecraft attitude from the orbit positioning con-

trol; the main drawback is the wide number of actuators which must fit in the CubeSat

limited space. Moreover the most diffuse AOCS architecture envisages the the adoption

of Reaction Wheels (RW) in conjunction with a certain number of thrusters displaced all

around the spacecraft (or magnetotorques if possible). Reaction wheels are a consolidated

space technology and ensure high performances in terms of pointing accuracy for a moder-

ate cost of On-Board mass, volume occupied and energy consumption; on the other hand

they cannot be boarded without a collateral thruster system devoted to de-saturatation

the RW once they reach their momentum storage limit. Many efforts have been put

into the optimisation of thruster usage for RW de-saturation/station-keeping manoeu-

vres. Both MarCO A and B adopt a RW Assembly unitedly with 8 cold gas thruster

devoted to attitude control and Trajectory Correction Maneuvers (TCMs) [40]; also in

LUMIO project different de-saturation strategies are investigated with an unconventional

approach due to the employment of only four thrusters in order to achieve Moon track-

ing cooperartively with de-saturation procedures [6]. Other projects deal with ”pure”

thrusters attitude control in order to avoid the implementation of RW, such as [13] [21].

Nevertheless the new horizon for high accuracy attitude control and station-keeping sys-

tems is represented by electric propulsion: recent technological advances in the devel-

opment of electric micro-thrusters pave the way to the successful diffusion of all-electric

spacecraft capable of providing high-accuracy pointing, long-term stability of pointing,

orbit maintenance, and long-term orbit maneuvers. In 2015 the feasibility of the concept

was practically demonstrated by the on-orbit demonstrator of the United States Naval

Academy’s BRICSat-P CubeSat that housed four micro-cathode thrusters developed by

the George Washington University in a 1.5U form factor [26] [27]. Moreover concerning

the main propulsion system, electrical engines are asserted as the rightful heir to chem-

ical propulsion systems. Full-electric satellites appeared in the market in 2015 with the

ABS-3A satellite for ABS and the EUTELSAT 115 West B satellite for Eutelsat pro-

duced by Boeing. From 2015 to date more that 40 satellites boarding electrical engines
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were launched. Among them the most famous LISA Pathfinder and BepiColombo mis-

sions embed respectively 8 electrospray thruster for high precision attitude control and

T6 QinetiQ arcject engines for station-keeping and de-orbiting operations; one-fourth of

the rest is represented by electrical propelled CubeSats for near-Earth operations. The

most important research and development initiative in the field is the NASA’s Solar Elec-

tric Propulsion (SEP) program which is developing critical technologies to extend the

length and capabilities of ambitious new science and exploration missions. Alternative

propulsion technologies such as SEP may deliver the right mix of cost savings, safety and

superior propulsive power to enrich a variety of next-generation journeys to worlds and

destinations beyond Earth orbit. To be mentioned in addition to LISA Pathfinder and

BepiColombo missions are the Dawn probe, Deep Space 1 and Hayabusa propelled by ion

engines and Small Missions for Advanced Research in Technology (SMART-1) equipped

with Hall-Effect thrusters [10] [23] [24] [34]. It is evident from those numbers and the

number of research project involved in that electric propulsion is becoming the paradigm

for the space propulsion field for the close future.



Chapter 2

Dynamics Model

2.1 Circular Restricted Three Body Problem

2.1.1 Problem statement and equations of motion

The problem is formulated as it follows: two bodies revolve around their center of mass

in circular orbits under the influence of their mutual gravitational attraction, and a third

body moves attracted by the previous two, without influencing their motion. The Circular

Restricted Three Body Problem (CR3BP) aims to describing the motion of the third body.

The two revolving bodies are called primaries and they have a specific spatial mass

distribution such that they might be considered as point masses; they respective masses

are called m1 and m2 while the mass associated to the third body is called m3. The third

body is called secondary. It is assumed that m3 is much smaller that either m1 and m2 in

such a way that the presence of the third body doesn’t affect the motion of the primaries

[44].

The equation of motions are described with respect to a non-inertial, co-rotating reference

frame O(xyz) whose origin is set to the centre of mass G of the primaries with the x-axis

directed toward m1.; the y-axis lies in the orbital plane while the z-axis complete the

right-hand triad. The constant, inertial angular velocity of the rotating frame is named

Ω and it’s directed along the z-axis [12].

The distance between the primaries, i.e. the radius of the circular orbit of one primary

10
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with respect to the other, is called r12 and it is constant. They are named r, r1, r2

the positions of the third body with respect to CG in the co-rotating reference frame, as

shown in Fig.(2.1).

Figure 2.1: CR3BP Reference Frame

Without loss of generality it is assumed m2 < m1 and it is introduced the following

notation:

M = m1 +m2

π1 =
m1

M
= π

π2 =
m2

M
= (1− π)

(2.1)

It is thus straightforward to derive the position of the primaries with respect to the centre
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of mass, Eq.(2.2c) and Eq.(2.2d), by plugging Eq.(2.2a) into Eq.(2.2b).

Mxg = m1x1 +m2x2 = 0 (2.2a)

r12 = x1 − x2 (2.2b)

x1 = (1− π) r12 (2.2c)

x2 = −π r12 (2.2d)

Then the dynamics of the third mass is expressed according to Eq.(2.3)

m3r̈ = −µ1m3

r31
r1 −

µ2m3

r32
r2 (2.3)

where

r1 =
√

(x− (1− π)r12)2 + y2 + z2 (2.4a)

r2 =
√

(x+ πr12)2 + y2 + z2 (2.4b)

and µ1,2 is the standard gravitational parameter of the respective primary. Expressing r̈

in the non-inertial, co-rotating reference frame, Eq.(2.5)

r̈ = (ẍ− 2Ωẏ − Ω2x)x̂+ (ÿ + 2Ωẋ− Ω2y)ŷ + z̈ẑ (2.5)

it is possible to derive the EoMs in their scalar form [12]:



ẍ− 2Ωẏ − Ω2x = −µ1(x+ (π − 1)r12)

r31
− µ2(x+ πr12)

r32

ÿ + 2Ωẋ− Ω2y = −µ1

r31
y − µ1

r32
y

z̈ = −µ1

r31
z − µ1

r32
z

(2.6a)

(2.6b)

(2.6c)

Defining the Three Bodies Potential Energy as:
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U =
(µ1

r1
+
µ2

r2

)
+

1

2
Ω2(x2 + y2) (2.7)

Eq.(2.6) might be re-written as:


ẍ− 2Ωẏ = U/x

ÿ + 2Ωẋ = U/y

z̈ = U/z

(2.8)

which might also be expressed in vectorial notation, Eq.(2.9):

∂2r

∂t2
= ∇U − 2Ω× ∂r

∂t
(2.9)

It is furthermore possible to rewrite the EoMs in their adimensional formulation which

gives the simplest form of the differential equations set [44]. Introducing

x̃ =
x

r12
; ỹ =

y

r12
; z̃ =

z

r12
; t̃ = Ωt; r̃1 =

r1
r12

; r̃2 =
r2
r12

(2.10)

and considering that in the dimensionless form the Gravitational Constant G = 1, so that

π1,2 = µ1,2, Eq.(2.7) and Eq.(2.8) read:

Ũ =
1

2
(x̃2 + y2) +

1− µ
r̃1

+
µ

r̃2
(2.11)



¨̃x− 2 ˙̃y = Ũ/x̃

¨̃y + 2 ˙̃x = Ũ/ỹ

¨̃z = Ũ/z̃

(2.12)

where it is set µ = µ2 and thus µ1 = 1− µ.

It is worth remarking that in Eq.(2.11), µ1,2 represent the adimensional standard gravi-

tational parameter which coincides with the mass ratio π1,2 defined in Eq.(2.1).
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2.1.2 Jacobi Constant

Differently from the Two Bodies Problem, the CR3BP is characterized by a single inte-

gral of motion which is called the Jacobi Integral and its related constant called Jacobi

Constant C.

It is here derived by multiplying Eq.(2.6a) times ẋ, Eq.(2.6b) times ẏ and Eq.(2.6b) times

ż and then summing the results up together obtaining:

1

2
v2 − 1

2
Ω2(x2 + y2)− µ1

r1
− µ2

r2
= −2C (2.13)

By using the potential definition of Eq.(2.7), Eq.(2.13) might be reformulated as:

C = 2U − v2 (2.14)

where v2 = ẋ2 + ẏ2 + ż2.

The adimensional expression of the Jacobi constant is:

C̃ = 2Ũ − ṽ2 (2.15)

with ṽ2 = ˙̃x2 + ˙̃y2 + ˙̃z2.

2.1.3 Libration points

Although the EoMs have no closed form solution, as it exists just one integral of motion

for a phase space of dimension 6, they might be used to find the equilibrium points of the

system. The equilibrium points of the system are called ”Lagrangian points” or ”Libration

points” and are defined by the conditions:

˙̃x = ˙̃y = ˙̃z = ¨̃x = ¨̃y = ¨̃z = 0 (2.16)

Substituting Eq.(2.16) in Eq.(2.12) yields
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x̃ =
(1− µ)(x̃+ µ)

r̃1
3 +

µ(x̃− (1− µ))

r̃2
3

ỹ =
(1− µ)

r̃1
3 ỹ +

µ

r̃2
3 ỹ

0 =
(1− µ)

r̃1
3 z̃ +

µ

r̃2
3 z̃

(2.17a)

(2.17b)

(2.17c)

which is equivalent to impose ∇U = 0.

The solutions of Eq.(2.17) are the location of the Lagrangian points, whose name conven-

tion refers to Fig.(2.2).

Figure 2.2: Lagrangian points positions in the co-rotating frame.

The coordinates relative to the equilateral Lagrangian points L4 and L5 are found by

solving Eq.(2.17a) and Eq.(2.17b) and are expressed by Eq.(2.18):

L4, L5 : x = µ− 1

2
, y = ±

√
3

2
, z = 0 (2.18)

Regarding the collinear points L1, L2 and L3, their coordinates are found by setting y = 0

and Eq.(2.17a) may be reformulated as [12]:

f(µ, x̃) = 0 (2.19)

where
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f(µ, x̃) =
1− µ
|x̃+ µ|

(x̃+ µ) +
µ

|x̃+ µ− 1|3
(x̃+ µ− 1)− x̃ (2.20)

The locations of the Lagrangian points for the Sun-Earth+Moon system and Earth-Moon

system are presented in Tab.(2.1) and Tab.(2.2)

x̃ ỹ

L1 -0.990027 0
L2 -1.010034 0
L3 1.000001 0
L4 -0.499997 -0.866025
L5 -0.499997 0.866025

Table 2.1: Lagrangian points coordi-
nates of the Sun-Earth+Moon system

x̃ ỹ

L1 -0.836915 0
L2 -1.155682 0
L3 1.005063 0
L4 -0.487849 -0.866025
L5 -0.487849 0.866025

Table 2.2: Lagrangian points coordi-
nates of the Earth-Moon system

2.1.4 Orbits around collinear points

This section is based on the non-dimensional form of the EoMs and, for sake of simplicity

on notation, the tilde characterizing adimensional quantities is omitted.

The EoMs expressed by Eq.(2.12) have no closed form solution, thus a numerical approach

is required in order to determine orbits around the Lagrangian points. There exists a vast

majority of different type of periodic and quasi-periodic orbits around the collinear points

L1, L2 and L3 among which the most known ones are [14] [28]

1. Lissajous Orbits.

2. Planar Lyapunov Orbits.

3. Halo Orbits.

Those typologies of orbits born as analytical solutions of approximated EoMs; more pre-

cisely, Lissajous orbits are the solution of the first order approximation of Eq.(2.12) while

Lyapunov and Halo ones derive from its third order approximation. However all the ana-

lytical solutions are not accurate enough to catch the advocated trajectory due to the high
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non-linearity behaviour of the equations; a numerical scheme is thus required to refine the

analytical solution and get the desired trajectory.

Scope of this section is to briefly summarize the procedure adopted to define and design

of such typologies of orbits.

Lissajous Orbit

The analytical formulation of Small-Size Lissajous Orbits comes directly from the lin-

earized EoMs [44]:

in order to study the motion around any of the Libration points L(a, b) (where a and

b are the coordinates of the Libration points in the co-rotating, dimensioneless system,

whose values are listed in Tab.(2.1) and Tab.(2.2)), a new set of coordinates (ξ, η, ζ) is

introduced such that:

ξ = x− a η = y − b ζ = z (2.21)

Moreover, the function U is expanded as a Taylor series around L giving:

U = U(a, b) + Ux(a, b)ξ + Uy(a, b)η +
1

2
Uxx(a, b)ξ

2 + Uxy(a, b)ξη

+ Uxz(a, b)ξζ +
1

2
Uyy(a, b)η

2 + Uyz(a, b)ηζ +
1

2
Uzz(a, b)ζ

2 +O(3)

(2.22)

Substituting Eq.(2.21) and Eq.(2.22) in Eq.(2.12) and neglecting higher order terms,

Eq.(2.12) takes the form of a set of linear variational equations which, using the state

space formalism, reads:

ẋ = Ax (2.23)

where



2.1. Circular Restricted Three Body Problem 18

x =



ξ

η

ζ

ξ̇

η̇

ζ̇


A =

03x3 I3x3

Uij C

 Uij =


U0
xx U0

xy U0
xz

U0
yx U0

yy U0
yz

U0
zx U0

zy U0
zz

 C =


0 −2 0

2 0 0

0 0 0

 (2.24)

and U0
ij = Uij(a, b).

The solution of Eq.(2.23) is of the form:

ξ =
4∑
i=1

Aie
λit

η =
4∑
i=1

Bie
λit

ζ =
6∑
i=5

Cie
λit

(2.25)

where

λ1,2 = ±

√√√√−2 +
U0
xx + U0

yy

2
+

√(U0
xx + U0

yy

2

)2
+ (U0

xxU
0
yy)

2 = ±λ ∈ R (2.26a)

λ3,4 = ±i

√√√√
+2−

U0
xx + U0

yy

2
+

√(U0
xx + U0

yy

2

)2
+ (U0

xxU
0
yy)

2 = ±iω ∈ iR (2.26b)

λ5,6 = ±i
√
U0
zz = ±iν ∈ iR (2.26c)

and

Bi = αiAi αi =
λ2i − U0

xx

2λi
(2.27)

where Ai and Ci depend on initial conditions.
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As evidenced by Eq.(2.25) and Eq.(2.26) the motion in the z-axis is decoupled by the

one in x-y plane. Each λi is an eigenvalue of matrix A and, considering Eq.(2.26a), the

here-discussed family of orbit is naturally unstable as generally presents an eigenvalue

(λ1) whose real part is grater than zero. Nevertheless it is possible to properly tune the

initial condition such that A1 = A2 = 0 by setting:

ξ̇ =
η0λ3
α3

η̇ = α3λ3ξ0 (2.28)

The result is a periodic motion both in x-y plane and z-axis, as λ3,4,5,6 are purely imaginary

numbers, and an overall quasi-periodic motion is achieved as the oscillation frequencies ω

and ν are in general rationally independent.

The quasi-periodic solution might be expressed as Eq.(2.29) by applying Eq.(2.21) to

Eq.(2.25), where Ax,z represents the oscillation amplitude in the x,z direction with respect

to the Lagrangian point position and k = α3.:


x = −Axcos(ωt+ φ)

y = kAxsin(ωt+ φ)

z = Azsin(νt+ ψ)

(2.29a)

(2.29b)

(2.29c)

Lyapunov and Halo Orbits

As demonstrated previously, the linearized EoMs allow stable motion under a proper

tuning of the initial conditions. Moreover the in-plane motion and the out of plane

motion are characterized by rationally independent oscillation frequencies (ω for the x-y

dynamics and ν for the out of plane dynamics), resulting in a quasi-periodic 3D dynamics.

Lyapunov and Halo orbits are periodic orbit around Libration points which exploit the

non-linear contribution of the system to produce equal eigen-frequencies. The analytical

definition refers to the work carried out by Richardson [36] for the design of the nominal

orbit of the ISEE-3 mission. The difference between Lyapunov and Halo trajectories relies

on the excursion on the out of plane direction: Lyapunov orbits are planar, Halo orbits
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are fully three dimensional.

The EoMs are firstly expanded in a truncated third order Linsted-Pointcaré series and

then the frequencies corrections are used to cancel out the secular terms appearing in the

equations. The complete procedure is presented in [36]. The final, third order solution is:

x = a21A
2
x + a22A

2
z − Axcos(ωt+ φ) + (a23A

2
x − a24A2

z)cos(2ωt+ φ)

+ (a31A
3
x − a32AxA2

z)cos(3ωt+ φ)

(2.30a)

y = kAxsin(ωt+ φ) + (b21A
2
x − b22A2

z)sin(2ωt+ φ)

+ (b31A
3
x − b32AxA2

z)sin(3ωt+ φ)

(2.30b)

z = Azcos(ωt+ φ) + d21AxAz(cos(2ωt+ φ)− 3)

+ (d32AxA
2
x − d31A3

z)cos(3ωt+ φ)

(2.30c)

where x, y, z, ω, φ, Ax, Az and k refers to Eq.(2.29).

Moreover, for Halo orbits, a constraints between Ax and Az is introduced and takes the

form:

l1A
2
x + l2A

2
z + ∆ = 0 (2.31)

All the coefficients l1, l2, ∆, aij, bij, dij are function of the dimensionless mass parameter

µ introduced in Eq.(2.11). The complete definition of the coefficients can be found in [36].

Numerical Correction Scheme

As previously stated, the analytical solutions so far presented are not accurate enough to

deal with the high non-linear behaviour of the system; if any state belonging to the analyt-

ical solution is used as initial conditions for the integration of the full EoMs (Eq.(2.12)),

the simulation yields a divergent solution. Nevertheless, these initial conditions repre-

sents a good starting point for further corrections carried out by the Shooting Technique

algorithm which is here discussed [8] [50].
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The full EoMs, Eq.(2.12), present a symmetric behaviour such that given a solution

expressed as x(t) = [ x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t) ] it is guaranteed the existence of a

second solution x(−t) = [ x(−t), y(−t), z(−t), ẋ(−t), ẏ(−t), ż(−t) ]. Thus a trajectory

that crosses perpendicularly the y = 0 plane twice is a periodic orbit [50].

So let’s consider a first guess for the initial conditions x0 = [ x0, 0, z0, 0, ẏ0, 0 ] whose

components come directly from the analytical solutions; the shooting technique method

exploits the symmetry property to correct x0 in order to have an orbit which crosses

perpendicularly the y = 0 plane, thus a periodic orbit.

In order to express it, the flow operator Φ(x0, t) definition is introduced, Eq.(2.32), as

well as its first order expansion, Eq.(2.33):

x(t) = Φ(x0, t) (2.32)

Φ(x0 + ∆x, T + ∆t) = Φ(x0, T ) +
[∂Φ(x0, T )

∂x

]
∆x+

[∂Φ(x0, T )

∂t

]
∆t (2.33)

where T is the time of the first return to the x-z plane of the flow operator, i.e:

Φ(x0, T ) = [ x̄, 0, z̄, ˙̄x, ˙̄y, ˙̄z ] (2.34)

In Eq.(2.33) it appears the State Transition Matrix (STM) Ψ(t), called Monodromy Matrix

for periodic systems, whose definition and its dynamics are expressed by Eq.(2.35) and

Eq.(2.36):

Ψ(t) =
∂Φ(x0, t)

∂x
(2.35)

∂Ψ(t)

∂t
= FΨ(t) (2.36)

By imposing Φ(x0 + ∆x, T + ∆t) to match the periodicity condition in Eq., i.e.

Φ(x0 + ∆x, T + ∆t) = [ x′, 0, z′, 0, ẏ′, 0 ]′ (2.37)

and considering the equations where the components of Φ(x0 + ∆x, T + ∆t) are zero,
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the problem might be re-formulated as:

A∆x∗ = b (2.38)

A =


Ψ21 Ψ25 ˙̄y

Ψ41 Ψ45 ¨̄x

Ψ61 Ψ65 ¨̄z

 ∆x∗ =


∆x

∆ẏ

∆t

 ∆b =


0

− ˙̄x

− ˙̄z


where no correction on z0 are imposed. Eq.(2.38) is then solved for ∆x∗ and the new

initial condition for the iterative procedure is:

xnew0 = xold0 + ∆x∗ (2.39)

until the final accuracy is achieved.

Halo orbits computation follows exactly the so far presented procedure; otherwise Lya-

punov orbits are planar so x0 is imposed to have no corrections in Eq.(2.38) and thus the

order of the system is reduced. At each iteration the Shooting Technique is required to

integrate a differential system of order n+n2 (EoMs and STM dynamics); for halo orbits

the full order is 42 while for Lyapunov orbits it is equal to 20.

2.1.5 Results

The three orbit types are computed around the Libration Point L1 of both the Earth-Moon

System and Sun− Earth/Moon system.

2.1.6 Lissajous Orbits

Two Lissajous orbits are simulated according to the procedure presented in Section 2.1.4.

Ax [Km] Az [Km] ω [ rad
s

] ν [ rad
s

] C

4000 1000 2.334 2.2688 3.194

Table 2.3: Orbit parameters for the Earth-Moon L1 Lissajous Orbit.
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Ax [Km] Az [Km] ω [ rad
s

] ν [ rad
s

] C

40000 10000 2.0864 2.0152 3.001

Table 2.4: Orbit parameters for the Sun-Earth/Moon L1 Lissajous Orbit.

Figure 2.3: Lissajous Orbit around Earth-Moon L1 Lagrangian point in adimensional
coordinates.

Figure 2.4: Lissajous Orbit around Sun-Earth/Moon L1 Lagrangian point in adimensional
coordinates.
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2.1.7 Lyapunov and Halo Orbits

A set of Planar Lyapunov and Halo orbits is presented for both the Earth-Moon and

Sun-Earth/Moon system around the Lagrangian point L1. The orbits are parameterised

as function of their respective Jacobi constant value.

Halo Orbits

Figure 2.5: Halo Orbits around Earth-Moon L1. The color-bar refers to the Jacobi con-
stant.
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Figure 2.6: Halo Orbits around Sun-Earth/Moon L1. The color-bar refers to the Jacobi
constant.
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C Period x0 z0 v0

3.167352 2.748506 -0.8234 0.0288 -0.1390

3.164973 2.750344 -0.8235 0.0334 -0.1430

3.162251 2.752424 -0.8235 0.0381 -0.1474

3.159189 2.754729 -0.8236 0.0429 -0.1521

3.155791 2.757242 -0.8238 0.0477 -0.1572

3.152061 2.759942 -0.8239 0.0525 -0.1624

3.148007 2.762799 -0.8242 0.0574 -0.1679

3.143634 2.765780 -0.8244 0.0623 -0.1735

3.138952 2.768844 -0.8247 0.0673 -0.1792

3.133969 2.771941 -0.8251 0.0724 -0.1850

3.128697 2.775011 -0.8255 0.0775 -0.1908

3.123146 2.777981 -0.8260 0.0826 -0.1967

3.117329 2.780763 -0.8265 0.0879 -0.2025

3.111259 2.783251 -0.8271 0.0932 -0.2082

3.104950 2.785315 -0.8278 0.0985 -0.2139

3.098418 2.786798 -0.8285 0.1039 -0.2195

3.091677 2.787507 -0.8293 0.1094 -0.2249

3.084743 2.787202 -0.8301 0.1149 -0.2302

3.077632 2.785585 -0.8311 0.1205 -0.2353

3.070360 2.782278 -0.8321 0.1262 -0.2403

Table 2.5: Orbit parameters of the Halo Orbit family in the Earth-Moon system presented
in Fig.(2.5)
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C Period x0 z0 v0

3.000827 3.059721 -0.988836 0.000768 -0.008928

3.000826 3.059571 -0.988838 0.000890 -0.008960

3.000824 3.059399 -0.988840 0.001012 -0.008997

3.000823 3.059203 -0.988843 0.001135 -0.009038

3.000821 3.058983 -0.988846 0.001257 -0.009083

3.000819 3.058739 -0.988849 0.001380 -0.009133

3.000817 3.058471 -0.988852 0.001504 -0.009186

3.000814 3.058177 -0.988856 0.001627 -0.009244

3.000812 3.057856 -0.988861 0.001751 -0.009306

3.000809 3.057509 -0.988865 0.001875 -0.009371

3.000806 3.057134 -0.988871 0.002000 -0.009440

3.000803 3.056731 -0.988876 0.002126 -0.009513

3.000800 3.056298 -0.988883 0.002252 -0.009589

3.000796 3.055834 -0.988889 0.002378 -0.009669

3.000792 3.055338 -0.988897 0.002505 -0.009751

3.000789 3.054809 -0.988905 0.002632 -0.009837

3.000785 3.054246 -0.988913 0.002760 -0.009926

3.000780 3.053647 -0.988922 0.002888 -0.010017

3.000776 3.053011 -0.988932 0.003017 -0.010111

3.000771 3.052336 -0.988943 0.003147 -0.010207

Table 2.6: Orbit parameters of the Halo Orbit family in the Sun-Earth/Moon system
presented in Fig.(2.6)
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Planar Lyapunov Orbits

x [-]

y
 [
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Figure 2.7: Planar Lyapunov Orbits around Earth-Moon L1. The color-bar refers to the
Jacobi constant.
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Figure 2.8: Planar Lyapunov Orbits around Sun-Earth/Moon L1. The color-bar refers to
the Jacobi constant.
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C Period x0 v0

3.185289 2.702407 -0.830159 -0.059617

3.184270 2.706069 -0.829187 -0.068746

3.183116 2.710245 -0.828241 -0.077767

3.181833 2.714925 -0.827323 -0.086668

3.180428 2.720092 -0.826431 -0.095434

3.178910 2.725729 -0.825568 -0.104052

3.177288 2.731814 -0.824733 -0.112505

3.175572 2.738318 -0.823926 -0.120778

3.173775 2.745212 -0.823148 -0.128855

3.171909 2.752458 -0.822399 -0.136712

3.169987 2.760014 -0.821680 -0.144356

3.168024 2.767836 -0.820991 -0.151740

3.166034 2.775870 -0.820332 -0.158863

3.164033 2.784060 -0.819704 -0.165706

3.162036 2.792346 -0.819107 -0.172255

3.160058 2.800663 -0.818542 -0.178493

3.158117 2.808945 -0.818008 -0.184408

3.156225 2.817121 -0.817506 -0.189987

3.154399 2.825122 -0.817036 -0.195218

3.152651 2.832876 -0.816600 -0.200092

Table 2.7: Orbit parameters of the Planar Lyapunov family in the Earth-Moon system
presented in Fig.(2.7)
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C Period x0 v0

3.000897 3.011429 -0.989965 -0.000139

3.000897 3.011433 -0.989962 -0.000161

3.000897 3.011437 -0.989959 -0.000183

3.000897 3.011442 -0.989955 -0.000205

3.000897 3.011447 -0.989952 -0.000227

3.000897 3.011453 -0.989949 -0.000249

3.000897 3.011459 -0.989946 -0.000271

3.000897 3.011466 -0.989942 -0.000293

3.000897 3.011473 -0.989939 -0.000315

3.000897 3.011481 -0.989936 -0.000337

3.000897 3.011489 -0.989933 -0.000359

3.000897 3.011498 -0.989930 -0.000381

3.000897 3.011508 -0.989926 -0.000402

3.000897 3.011518 -0.989923 -0.000424

3.000897 3.011528 -0.989920 -0.000446

3.000897 3.011539 -0.989917 -0.000468

3.000897 3.011551 -0.989913 -0.000490

3.000897 3.011563 -0.989910 -0.000512

3.000897 3.011576 -0.989907 -0.000534

3.000897 3.011589 -0.989904 -0.000556

Table 2.8: Orbit parameters of the Planar Lyapunov family in the Sun-Earth/Moon
system presented in Fig.(2.7)



Chapter 3

Station-Keeping Strategy

Orbits around Libration Points generally presents an unstable behaviour; in the presence

of systematic errors and uncertainties, as well as external perturbations, the free motion

of the satellite tends to diverge from the desired nominal trajectory. An active Station-

Keeping Strategy it is thus required to control the spacecraft in its motion around the

Lagrangian point ; part of the strategy objective is to optimize the fuel consumption

needed to keep the spacecraft in a close vicinity of the orbit. The first part of the design

of High-Level Motion Control is thus faced in this chapter. As stated in Section 1.1,

the high-level motion control is devoted to the definition of the ideal commanded virtual

control inputs required for station-keeping and attitude control purposes. This chapter is

centered on the firsts.

Many strategies have been previously investigated by other authors; a detailed and exhaus-

tive survey upon station-keeping techniques may be found in [28]. Among the wide set of

strategies, the Continuous Optimal Control Strategy [2][9][32], based on Linear Quadratic

(Gaussian) Regulator (LQG/LQR) is addressed in this study. It is based on Optimal

Control Theory which enables the designer to perform trade-offs between fuel consump-

tion and tightness of the control. Moreover it represents the baseline method which more

sophisticated algorithms are based on. The continuous optimal control algorithm com-

putes low-thrust continuous control during the whole duration of the mission (eventually

switched on-off by a ”Bang-Bang Controller” when some conditions are satisfied) which

makes it the ideal candidate for electric propulsion based Attitute & Orbit Control System

31
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(AOCS). Moreover it must be capable of handling bounded external perturbations, as well

as tracking and control execution errors.

3.1 Continuous Optimal Control

In the context of Optimal Control Theory, the problem of designing a particular control

law forcing the system to follow a particular reference trajectory is known as Tracking

Problem. The nominal trajectory is supposed to be known a priori for each time instant.

It is firstly required to linearise the dynamics of the spacecraft, Eq.(2.12), with respect to

the nominal orbit, Eq.(3.1a), by introducing the deviation vector δr, Eq.(3.1b)

δr̈(t) = −2k̂ × δṙ(t) +Urr(t)δr(t) + e(t) +O(δr)2 (3.1a)

δr(t) =


x(t)− xr(t)

y(t)− yr(t)

z(t)− zr(t)

 (3.1b)

where xr(t), yr(t), zr(t) are the non-dimensional coordinates of the reference orbit at time

t while Urr(t) and e(t) are defined as:

Urr(t) =


U∗xx U∗xy U∗xz

U∗yx U∗yy U∗yz

U∗zx U∗zy U∗zz

 e(t) = ∇U |xr −−2k̂ × δṙn(t)− r̈n (3.2)

with U∗ij = Uij|xr

By doing so, Eq.(3.1a) might be reformulated in the usual state space formulation for a

Linear Time Variant (LTV) System, Eq.(3.3)

ẋ = F (t)x+G(t)u+E(t) (3.3)

where
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x =

δr
δṙ

F (t) =

03x3 I3x3

Urr 2Ω

Ω =


0 −2 0

2 0 0

0 0 0

E(t) =

03x1

e

G(t) =

03x1

I3x1

 (3.4)

It has to be noticed that F (t) and E(t) are periodic with the orbit period T , and for the

expression ofG(t) three-axes control is assumed. Regarding the error matrix E(t), as well

as the error vector e(t), they account for the error on the acceleration on the analytical

expression of the nominal orbit [9]; in the case the nominal orbit is computed through a

numerical procedure they become equal to zero and disappear from Eq.(3.3).

The tracking problem is intended to find the optimal control u∗ such that the cost function

J, defined in Eq.(3.5), is minimised [3].

J =

∫ tf

t0

1

2

[
x′Qx+ u′Ru

]
dt+ x′(tf )Hx(tf ) (3.5)

In Eq.(3.5), Q, H andR are appropriate weighting matrices. The solution of the problem

takes the expression of:

u∗ = −K(t)x− β(t) (3.6)

where the Gain matrix K(t) and the Bias correction β(t) are computed as in Eq.(3.7a)

and Eq.(3.7b).

K(t) = R−1G′S(t) (3.7a)

β(t) = R−1G′b(t) (3.7b)

S(t) is the solution of the Periodic Algebraic Riccati Equation (PARE), Eq.(3.8), and b(t)

is the solution of Eq.(3.9).



3.1. Continuous Optimal Control 34

Ṡ + SF + F ′S +Q− SGR−1G′S′ = 0 S(T ) = H (3.8)

ḃ′ + b′
(
F −GC

)
−E′S = 0 b′(T ) = 0 (3.9)

The device encharged of tune properly the control inputs is named Regulator and its

performance quantity is represented by the Gain Matrix K(t). Once K(t) is computed

according to the Optimal Control Theory, it is then referred to as Linear Quadratic Reg-

ulator (LQR).

In the presence of disturbances and measurement errors, the precise state vector cannot

be known, it is thus necessary to introduce a new element in the system control design,

called Observer, whose role is to estimate the state reducing the noise influence. Among

the several way to design the Observer, the one that is based on the minimization of a

quadratic cost function, which weights the noise influence in terms of stochastic quantities,

leads to the so called Optimal Observer, also known as Kalman Filter. The combination

of the Linear Quadratic Regulator (LQR) and the Kalman Filter inside a control system

is named Linear Quadratic Gaussian Compensator.

To design the regulator and the Kalman filter the reference equations are the perturbed

EoMs, i.e. the standard EoMs of Eq.(3.3) where the Gaussian White Noises, ε and η, are

introduced to perturb the output equation and the state itself. Eq.(3.3) then reads as

Eq.(3.10):

ẋ = Fx+G(u+ ε) (3.10a)

y = Cx+ η (3.10b)

Considering the design of the regulator in the presence of stochastic quantities, the cost

function of Eq.(3.5) is reformulated as J = E[x′Qx+u′Ru], where E[−] is the Expected

Value operator. The solution to the minimization problem leads to the same solution that
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for the deterministic case, the same K matrix solution of Eq.(3.8). The optimal control

input is now defined thus as Eq.(3.11):

u∗ = −K(t)x̂ (3.11)

where x̂ is the Estimated State coming from the observer. The observer state space dy-

namics, which express the evolution of the estimation in time, is represented by Eq.(3.12)

ˆ̇x = F̂ x̂+ Ĝu+Ly (3.12)

with F̂ and Ĝ are the state space matrix of the observer and L is the observer design

matrix. The estimation error is introduced as e = x − x̂ and its dynamics reads as

Eq.(3.13).

ė = (F −LC)e+Gε+Lη (3.13)

It has to be noticed that in Eq.(3.13), it is imposed that F̂ = F − LC and Ĝ = G in

order to avoid the error evolution to depend directly from the state or the input.

The quadratic cost function associated to the observer is then defined as:

Jobs = E[e′e] (3.14)

and its minimization yields the optimal values of the design matrix L, expressed in

Eq.(3.15a), with P the solution of the Riccati Equation Eq(3.15b).

L = PC ′W−1
nn (3.15a)

Ṗ = FP + PF ′ +GWεεG
′ − PC ′W−1

nn CP P (0) = σee(0) (3.15b)

In Eq.(3.15), Wnn and Wεε are the Covariance Matrices of, respectively, η and ε.
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3.1.1 Numerical Implementation

The Linear Quadratic Gaussian (LQG) regulator is implemented for all the orbit families

presented in Section 2. The control execution errors as well as the tracking errors are

implemented in the algorithm as White Gaussian Noise (WGN) whose standard devia-

tions are listed in Tab.(3.1). By doing so, the control inputs and the state measurement

become stochastic quantities having a Mean Value µ determined by the algorithm with a

standard deviation σ determined by the perturbation itself.

Uncertainty on Symbol Value

Position along x σxx 1.5 [Km]

Position along y σyy 2.5 [Km]

Position along z σzz 15 [Km]

Velocity along ẋ σẋẋ 1
[
mm
s

]
Velocity along ẏ σẏẏ 1

[
mm
s

]
Velocity along ż σżż 3

[
mm
s

]
Control input ux uy uz σuu 10−9 [g]

Table 3.1: Standard deviations of control execution and tracking errors.

The choice of the values presented in Tab.(3.1) is consistent with [9] [22] [25]. For each

orbit type, a particular reference orbit is chosen as nominal path in order to compare

the results to a specific reference. The results of a sample simulation are then given to

demonstrate the efficacity of the method.

Halo Family

It is chosen, as nominal path, a Southern Halo Orbit around the Earth-Moon Lagrangian

point L1 whose parameters are listed in Tab.(3.2).

C Period x0 z0 v0 Az [Km]

3.05811 2.7719 -0.833951 -0.135648 -0.247853 42592

Table 3.2: Orbit Parameter of the nominal Halo orbit.
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The orbit in consideration is selected in order to compare the results with [32]. The set-up

of the control algorithm is consistent with [32] and its parameters are listed in Tab.(3.3).

It is introduced an initial deviation δx0 to simulate a potential injection that might occur

during the orbit insertion.

Parameter Value

Q diag([2.25; 2.25; 1.75; 1.75; 1.25; 1.25])

R diag([0.0002; 0.034; 0.034])

H diag([2.25; 2.25; 1.75; 1.75; 1.25; 1.25])

δx0 [0.0005;-0.0005;-0.0005;-0.0130;-0.0005;0.0005]

Integration Time 5.06 [-] / 22 days

Table 3.3: LQG and simulation set up for the continuous optimal control

The nominal orbit representation, as well as the evolution in time of the control inputs,

deviations and error estimations in positions and velocities are presented from Fig.(3.1)

to Fig.(3.6).

Figure 3.1: Reference Halo Orbit for the LQG
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Figure 3.2: Position deviation evo-
lution in time.
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Figure 3.3: Velocity deviation evo-
lution in time.
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Figure 3.4: Estimation error in po-
sition.
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Figure 3.5: Estimation error in ve-
locity.
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Figure 3.6: Control inputs evolution in time.

The total cost in terms of control effort is ∆V = 15.4301 [m
s

]. The deviation from the
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nominal state, both in terms of position and velocity, converge to zero with an approximate

settling time of one orbit period (T = 2.7719, i.e. 12 days). The error on the estimation

remains bounded close to zero.

Lyapunov Family

The Planar Lyapunov orbit of Fig.(3.7), determined by the parameters listed in Tab.(3.4),

is chosen as the nominal trajectory for the LQG algorithm. It refers to the Earth-Moon

Lagrangian point L1 and its sizes are comparable to the reference Halo Orbit of [32].

C Period x0 v0 Ay [Km]

3.1442 2.872 -0.814621 -0.222206 50000

Table 3.4: Orbit Parameter of the nominal Lyapunov orbit.

Consistently with [32], the control parameters are selected as in Tab.(3.5).

Parameter Value

Q diag([2.25; 2.25; 1.75; 1.25])

R diag([0.0002; 0.034])

H diag([2.25; 2.25; 1.75; 1.25])

δx0 [0.0005;-0.0005;-0.0130;-0.0005]

Integration Time 5.06 [-] / 22 days

Table 3.5: LQG and simulation set up for the continuous optimal control on Lyapunov
orbit.

The results are presented from Fig.(3.8) to Fig.(3.12). It is worth underlining how the

deviation from the nominal trajectory, both in terms of position and velocity, converge

to zero with a settling time of around 12 day, around one orbit period. Also in this case,

the state estimation is able to tackle the noise effects remaining bounded close to the real

value (e −→ 0)
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Lyapunov Orbit

Figure 3.7: Reference Lyapunov Orbit for the LQG
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Figure 3.8: Position deviation evo-
lution in time.

Time [days]

V
e
lo

c
it
y
 d

e
v
ia

ti
o
n
s
 [
m

/s
]

Figure 3.9: Velocity deviation evo-
lution in time.
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Figure 3.10: Estimation error in po-
sition.
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Figure 3.11: Estimation error in ve-
locity.
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Figure 3.12: Control inputs evolution in time.

Lissajous Family

The Lissajous orbit defined in [11] is taken as nominal orbit. The main parameters of the

orbit are shown in Tab.(3.6)

C Period y0 ẋ0 Ay [Km] Az [Km]

3.1995 2.6916 -0.009105 -0.005926 -3500 3500

Table 3.6: Orbit Parameter of the nominal Lissajous orbit.

As no indication on the control tuning is provided by [11], arbitrary values are chosen to

regulate the LQG regulator. Their values are presented in Tab.(3.7)

Parameter Value

Q I6x6

R I3x3

H I6x6

Integration Time 10.7663 [-] / 47 days

Table 3.7: LQG and simulation set up for the continuous optimal control on Lyssajous
orbit.

No injection error is here considered in order to focus on the operational-life of the satellite

and on the effect of the residual error coming from the linearization of the EoMs; differently

from Halo and Lyapunov orbits, Lissajous orbit equations are derived from the linearized

EoMs and no numerical correction scheme is applied. A residual approximation error is
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thus presents and forces the active control to intervene to keep the spacecraft in the desired

trajectory, even in the abscence of injection errors nor disturbances. Fig.(3.14) shows the

nominal Lissajous orbit while from Fig.(3.16) to Fig.(3.18) the results concerning the

LQG control are presented.

Figure 3.13: Reference Lissajous Orbit for the LQG
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Figure 3.14: Position deviation evo-
lution in time.
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Figure 3.15: Velocity deviation evo-
lution in time.
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Figure 3.16: Estimation error in po-
sition.
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Figure 3.17: Estimation error in ve-
locity.
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Figure 3.18: Control inputs evolution in time.

The total cost, for a simulation period of 47 days (which is four times the oscillation period

in the x-y plane) is ∆V = 95
[
m
s

]
. The result obtained for the Lissajous trajectory is not

comparable with the ones obtained for Halo and Lyapunov orbits. As mentioned before,

the most relevant factor driving the behaviour of the control action is the truncation

error affecting the nominal trajectory itself. Differently from Halo and Lyapunov families,

here the control is not able to lead back the actual spacecraft trajectory on the nominal

one. As highlighted in Fig.(3.14), the spacecraft is stabilized in a trajectory close to

the nominal one but its position deviation never goes to zero. The imprecision of the

nominal trajectory impacts significantly on the cost of the station-keeping; even if the

simulation period is higher with respect to the one used for Halo and Lyapunov orbits the

costs remains remarkably higher compared to the one required by the other orbits. The
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comparison of the station-keeping costs emphasises the importance of the accuracy on

nominal trajectory computation; for such highly non-linear system, numerical correction

procedures are mandatory in order to filter out the truncation errors which represent the

most significant disturbance acting on the spacecraft dynamics.

Nevertheless, the control algorithm is able both to keep the state estimation close to the

real value both to ensure the spacecraft to remain close to the reference trajectory.



Chapter 4

Attitude Control

The attitude control represents one of the core-field during the satellite design. Generally,

from the payload fairing to the EOL (End Of Life), the attitude of the satellite has to

respect precise constraints and the satellite itself has to be driven in the desired attitude

complaining the accuracy tolerances coming from the requirements of other subsystems.

The ADCS (Attitude Determination and Control System) is the satellite subsystem whose

role is to determine and control the orientation of the spacecraft, enabling it to perform

slew manoeuvres (rest-to-rest manoeuvres) or to track a specified desired attitude trajec-

tory.

In the previous chapter the satellite is proven to be stabilized in its orbit around the

Libration point via Continuous Optimal Control. If the first step of the study is the

development of an efficient station-keeping procedure, an efficient attitude tracking control

algorithm is the second. It is necessary to develop a relative easy and robust control

algorithm to guide the attitude of the spacecraft to track a specified orientation depending

on the mission requirements. Although for an under-actuated satellite station-keeping and

attitude tracking are coupled, this chapter is devoted to present the development of the

attitude control alone in the context of the High-Level Motion Control framework, as

it is done for the station-keeping case, in order to have an insight about its properties,

advantages and disadvantages.

In the first part of this chapter the basis of Attitude Control is addressed; the Euler

equations are derived, DCM and quaternion representations are explained to justify their

45
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choice as attitude parameters in the control algorithm and the basis of non-linear control

theory is presented. Then the second part is devoted more specifically to the control

algorithm chosen for the attitude tracking task.

4.1 Fundamentals of Attitude Control

4.1.1 Kinematics and Dynamics of a Rigid Body

Euler’s rotational equations of motion

Figure 4.1: Rigid body representation.

Before introducing the kinematic relations and the EoMs governing the rotation of a rigid

body, four concepts have to be defined:

1. Centre of Mass (CoM): the position of the centre of mass for a rigid body xg is

defined as:

xg =

∫
V
ρxpdτ

Mtot

(4.1)

where V is the volume of the rigid body, ρ is the density of the infinitesimal volume

dτ , xp is the position of a generic point P belonging to the body and Mtot is the

total mass of the rigid body. If ρ = cst. the CoM coincides with the baricentre of

the body.
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2. Momentum: the momentum of a rigid body Q is defined as:

Q =

∫
V

ρvpdτ = Mtotvg (4.2)

where vp is the velocity of a generic point P belonging to the rigid body and vg is

the CoM velocity.

3. Inertia Matrix : the inertia matrix IO with respect to a reference frame O(X,Y,Z)

of a rigid body is defined as:

IO =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 Iii =

∫
v

ρ(xj + xk)
2dτ Iij = −

∫
v

ρxixjdτ (4.3)

where xi,j,k are the components of xp and i, j, k are natural indices ranging from 1

to 3. Iii are called Inertia Moments while Iij are called Inertia Products.

Considering a rotation of the reference O(X,Y,Z) frame through a rotation matrix

R to a new reference frame O(X’,Y’,Z’), the inertia matrix is transformed according

to Eq.(4.4).

I ′O = R′IOR (4.4)

Moreover it is always possible to find an orthonormal base (i.e. a reference frame)

such that:

I ′O =


Ix 0 0

0 Iy 0

0 0 Iz

 (4.5)

In this case the axis of the reference frame are called Principal Inertia Axes and Ix,

Iy and Iz are the Principal Inertia Moments.
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4. Angular Momentum: the angular momentum ΓO of a rigid body with respect to a

reference frame O(X,Y,Z) is defined as:

ΓO = xg ×Q+ Igω (4.6)

where ω is the angular velocity of a reference frame jointed to the body and centered

to the body CoM.

Based on the above presented concepts the Second Law of Dynamics, describing the

behaviour of a rotating body, might be introduced:

dΓO
dt

= Q× ẊO +M e
O (4.7)

where ẊO is the velocity of the observation point expressed in inertial coordinates and

M e
O represents the resultant external moments acting on the rigid body with respect to

the observation point O.

In the case the observation point O is chosen to coincide with the CoM of the rigid body

and the reference frame centered in O is aligned with the Principal Inertia Axes, Eq.(4.7)

simplifies (Eq.(4.8)) and takes the form of the well-known Euler Equations, Eq.(4.9):

dΓg
dt

= M e
g (4.8a)

dΓg
dt

=
d

dt
(Igw) (4.8b)

dΓg
dt

= Ixẇxî+ Iyẇy ĵ + Izẇzk̂ +w × Γg (4.8c)


Ixẇx + (Iz − Iy)wzwy = Mx

Iyẇy + (Ix − Iz)wzwx = My

Izẇz + (Iy − Ix)wxwy = Mz

(4.9a)

(4.9b)

(4.9c)

In Eq.(4.8), î, ĵ, k̂ represent the principal inertia axes versors. In vector notation Eq.(4.9)
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reads:

Jw = −w × Jw +M (4.10)

Attitude parameters and kinematics

The Euler Equations are non-linear equations ruling the evolution of the angular velocity

of the body in time subjected to external torques. It is miss to link the angular velocity to

the attitude of the rigid body; there are a number of ways to accomplish this task. There

representations include Direct Cosine Matrices (DCM), Euler Angles, Quaternions and

Gibbs vector and Modified Rodriguez Parameters (MRP). Among all those possibilities,

DCM and Quaternions are here presented as they are the representations adopted in this

study.

Figure 4.2: Two reference frame A and B.

Consider a reference frame A with a right-hand set of three orthogonal unit vectors {â1,

â2, â3} and a reference frame B with another right-hand set of three orthogonal unit

vectors {b̂1, b̂2, b̂3}, as shown in Fig.(4.2). Basis vectors {b̂1, b̂2, b̂3} of B are expressed in

terms of basis vectors {â1, â2, â3} of A as follows [4]:


b̂1

b̂2

b̂3

 =


C11 C12 C13

C21 C22 C23

C31 C32 C33



â1

â2

â3

 = A


â1

â2

â3

 (4.11)
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where Cij = b̂i · âj is called direction cosine and A is called Direction Cosine Matrix. The

matrix A is a rotation matrix and it implies that AA′ = I and det(A) = 1. The DCM

allows switching from the representation of a vector in one reference frame to another

reference frame. Considering a generic vector xa expressed in the reference frame A, its

formal expression in the reference frame B is given by Eq.(4.12a). Considering multiple

rotations a new reference frame C is introduced and the expression which allow switching

from A to C passing from B is given in Eq.(4.12c).

xb = Axa (4.12a)

xc = A1xb (4.12b)

xc = A1Axa = A2xa −→ A2 = A1A (4.12c)

Eq.(4.12c) is also referred as the multiplication rule. It allows always to pass from a fixed

inertial reference frame to the body fixed one. Given the desired attitude Ad it is thus

possible to define the Attitude Error matrix Ae which represent the attitude error between

the actual attitude A and the desired one expressed by Ad.

Ae = AA′d (4.13)

The attitude evolution in time might be obtained by differentiating the DCM definition

(Eq.(4.11)) in time. It yields to the relation between angular velocity and attitude changes.

Starting from Eq.(4.11) it is defined B =

[
b̂1 b̂2 b̂3

]′
and N =

[
â1 â2 â3

]′
where it

is assumed that the reference frame A is inertial and it is referred to as N . Eq.(4.14) and

Eq.(4.15) show the rest of the procedure.

B = AN −→ A′B = N

d

dt
(A′B) =

d

dt
N −→ Ȧ′ = −A′ḂB′

(4.14)
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Ḃ =


˙̂
b1

˙̂
b2

˙̂
b3

 ˙̂
bi = w × b̂i Ḃ = −W̃B W̃ =


0 −w2 w2

w3 0 w1

−w2 w1 0

 (4.15)

Ȧ = −W̃A (4.16)

In Eq.(4.15), W̃ is called the Skew-Symmetric or Hat-map Matrix of the vector w.

Eq.(4.16) might be integrated in time with the standard integrator. However, due to

numerical errors, the matrix A after some steps loses its orthogonality. In order to avoid

using or developing complex structure-preserving numerical integration schemes, quater-

nion representation is preferred because of its intrinsically properties and robustness to

integration.

Quaternions were developed by William Rowan Hamilton in 1843 as extension to complex

numbers. A quaternion q̂ is defined as:

q̂ = q1i+ q2j + q3k + q4 (4.17)

where i, j, k are imaginary numbers such that:

i2 = j2 = k2 = −1

jk = −kj = i

ki = −ik = j

ij = −ji = k

(4.18)

Quaternions are usually represented by composition of a scalar part q4 and a vector

part q such that q̂ = [q q4]. Quaternions representing rotations are subjected to the

normalization constraint such that:

q21 + q22 + q23 + q24 = 1 (4.19)

Quaternions are used to parametrise rotations but they have no physical meaning so
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they are not intuitive. Quaternions express rotations using 4 parameters, differently from

DCM representation which relies on 9 parameters. As the number of parameters is not

a minimal set, quaternions are not affected by singularities in the representation (which

happens if Euler angles, MRP or Gibbs vector ase used) and they remains easy to handle

and manipulate. They can be related to other rotation parametrisations by mean of

specific relations; in the case of DCM the relation reads:

A = (q24 − q′q)I + 2qq′ − 2q4Q̃ (4.20)

and the inverse representation is represented by Eq.(4.21). It must be noticed that quater-

nions have no singular condition even in the inverse transformation. In fact, should q4

become zero it is always possible to evaluate one of the other components of the the

quaternion which is surely different from zero but to Eq.(4.19) and then evaluate the

remaining three components. The set of alternative inverse transformations can be easily

found in [47].



q1 = 1
4q4

(A23 − A32)

q2 = 1
4q4

(A31 − A13)

q3 = 1
4q4

(A12 − A21)

q4 = ±
√

1 + A11 + A22 + A33

(4.21)

Consecutive rotations are expressed through quaternion multiplication; considering two

consecutive rotations expressed by the quaternions p̂ and r̂ the overall rotation q̂ is given

in Eq.(4.22)

q̂ = p̂r̂ = p4r4 + p4r + r4p+ P̃ r (4.22)

The attitude error is expressed as the quaternion error q̂e defined as Eq.(4.23), where q̂

represents the actual attitude and q̂d is the desired attitude.
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q̂e =



q4d q3d −q2d −q1d

−q3d q4d q1d −q2d

q2d −q1d q4d −q3d

q1d q2d q3d q4d


q̂ (4.23)

Eq.(4.23) is nothing more than the matrix representation of the quaternion multiplication

rule applied to the attitude error case.

The quaternion kinematics, which links the angular velocity of the rigid body to the

quaternion evolution in time, is obtained by substituting Eq.(4.20) into Eq.(4.16) and

reads explicitly:



q̇1

q̇2

q̇3

q̇4


=

1

2



0 w3 −w2 w1

−w3 0 w1 w2

w2 −w1 −0 w3

−w1 −w2 −w3 0





q1

q2

q3

q4


(4.24)

or equivalently:


q̇ = −1

2
W̃q + 1

2
q4w

q̇4 = −1
2
w′q

(4.25)

The inverse relation is given in Eq.(4.26).

w1 = 2(q̇1q4 + q̇2q3 − q̇3q2 − q̇4q1)

w2 = 2(q̇2q4 + q̇3q1 − q̇1q3 − q̇4q2)

w3 = 2(q̇3q4 + q̇1q2 − q̇2q1 − q̇4q3)

(4.26)

4.1.2 Non-linear control theory

Non-linear control theory has its roots in the more general theory of dynamical systems

where the Lyapunov’s theorems are of primary importance. The concepts of Equilibrium

Points of a non-linear system and of Stability of equilibrium points has to be properly
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defined as they are fundamental to understand the Lyapunov’s theorems which represent

the milestones of control theory. In this section the above mentioned concepts and theorem

are presented. The definitions and theorem formulations refer to [4].

Equilibrium Point

Consider a nonlinear dynamic system described by

ẋ = f(x, t) (4.27)

where x = (x1 . . . xn) is the state vector. An equilibrium point of this dynamic system is

a point x∗ such that

f(x∗, t) = 0 ∀t

Lyapunov Stability

Consider an autonomous (time is not an explicit variable) non-linear dynamic system

ẋ = f(x) x(0) = x0 (4.28)

defined on an open set containing the origin and f is continuous on this open set. Then

an equilibrium point x∗ is said to be:

1. Lyapunov stable if for any ε > 0 there exists a real positive number δ(ε, t0) such that

||x(t0)− x ∗ || ≤ δ ⇒ ||x(t)− x ∗ || ≤ ε ∀t ≥ t0 (4.29)

where ||x|| denotes the Euclidean norm of a vector. Moreover if δ does not depend

on t0, then the equilibrium point is said to be uniformly Lyaounov stable.

2. locally asymptotically stable if it is Lyapunov stable and

||x(t0)− x ∗ || ≤ δ ⇒ x(t) −→ x ∗ as t −→∞ (4.30)
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3. globally asymptotically stable if it is Lyapunov stable and x(t) −→ x∗ as t −→ ∞ for

any initial conditions x(t0).

Lyapunov’s First Stability Theorem

1. If the origin x = 0 of a linearized system is asymptotically stable, then the equilib-

rium point x∗ of the original non-linear system, that has been linearized about, is

also asymptotically stable.

2. If the origin x = 0 of the linearized system is unstable, then the equilibrium point

x∗ of the original non-linear system, that has been linearized about, is also unstable.

It is important to note, however, that the Lyapunov stability of the equilibrium

point at the origin x = 0 of the linearized system does not implies the Lyapunov

stability of the equilibrium point x∗ of the non-linear system.

The fist Lyapunov’s theorem is extremely important as it defines which pieces of informa-

tion might be extrapolated from a linearization procedure about the original non-linear

system.

Lyapunov’s second stability theorem

Consider an autonomous non-linear system described by Eq.(4.28) where x∗ is an equi-

librium point. If there exists in some finite neighborhood Γ of the equilibrium point x∗ a

positive-definite scala function V (x) with continuous first partial derivatives with respect

to x and t such that the following conditions exist:

1. V (x) ≥ 0 for all x 6= x∗ in Γ, V (x∗) = 0 for all t.

2. Ė(x) ≤ 0 for all x 6= x∗ in Γ and for all t

then the equilibrium point x∗ is Lyapunov stable. If in addition

1. Ė(x) is not identically zero along any solution x of Eq.(4.28) other than x∗ then

the equilibrium point x∗ is locally asymptotically stable.
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If in addition

1. there exists in the entire state-space a positive-definite function V (x) which is radi-

ally bounde, i.e. V (x) −→∞ as ||x|| −→ ∞, then the equilibrium point x∗ is globally

asymptotically stable, i.e. x(t) −→ x∗ as t −→∞ for any initial conditions x(t0).

Such a positive-definite function V (x) is called Lyapunov function.

The theorem provides only sufficent conditions for checking the stability of an equilibrium

point of a non-linear dynamic system and does not provide a method for determining a

positive-definite Lyapunov function for a given non-linear system.

4.2 Attitude tracking control

Spacecraft manoeuvres characterised by a rest-to-rest motion are referred in literature as

slew manoeuvres and in control theory they are treated as a regulation problem. Once the

requirement is to track a time dependant attitude trajectory the problem is referred to as

tracking control problem. Tracking control encompasses regulation as the latter represent

a specific case on the former by setting the desired attitude to a constant and the desired

angular velocity to zero.

In the wide range of possible method to apply, [29] quotes the Variable-Structure Control,

also referred as Sliding-Mode Control, as an optimal compromise between robustness to

uncertainties and disturbances and simplicity in design. According to [29], optimal control

methods, which are based on solving two-point boundary value problems are excellent

method for analysis purposes but they cannot be implemented in real spacecraft mission

as they cannot be executed in real time. Feedback methods overcome this issue but their

major drawbacks are that they are not general as they have to be properly specialised

depending on the mission and are sensitive to noise effects, modeling errors or external

disturbances.

As mentioned before, robust and relative easy controllers are found in the framework of

the sliding-mode techniques. The reasons adduced by [29] has convinced the author to

adopt a sliding-mode controller to face the tracking problem.
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A brief overview of the sliding-mode control is here presented; later is presented the

typology of sliding-mode control chosen to solve the tracking problem as well as the

results coming from the simulation carried out to validate the procedure.

4.2.1 Sliding-Mode Control - Fundamentals

Sliding-mode control is based on the intuitively idea that it is much easier to design an

efficient control for a 1st-order system, be it nonlinear or uncertain than it is for a nth-

order system. Accordingly a particular transformation in model description is introduced

which allows nth-order problems to be replaced by equivalent 1st-order problems [42]. The

control law is then derived by the analysis conducted on the equivalent 1st-order system

and it is generally composed by a nominal part and an additional terms aimed at dealing

with model uncertainty and undesired behaviours of the control input (such as chattering

phenomena).

The concepts are presented for SISO systems which allows a direct and intuitive expla-

nation of the main aspects of nonlinear control design.

So, consider the single-input dynamic system [42]

x(n) = f(x) + b(x)u (4.31)

where the scalar x is the output of interest, the scalar u is the control input, x is the state

vector. The function f(x), in general non-linear, is not exactly known but the extent of

the imprecision on f(x) is upper bounded by a known continuous function of x ; similarly,

the control gain b(x) is not exactly known, but is of known sign and is bounded by known,

continuous functions of x. The control problem is to get the state x to track a specific

time-varying state xd in the presence of model imprecision on f(x) and b(x).

Let ∆x = x − xd be the tracking error in the variable x, and let ∆x the tracking error

vector defined as:

∆x = x− xd =

[
∆x ∆ẋ . . . ∆x(n−1)

]′
(4.32)
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It is then introduced a time-varying surface S(t) in the state-space R(n) defined by the

scalar equation s(x, t) = 0 where

s(x, t) =
( d
dt

+ λ
)n−1

∆x (4.33)

and λ is a strictly positive constant. Being the initial conditions to Eq.(4.31) given as:

x(0) = xd(0) (4.34)

the equation s(∆x, t) = 0 represents a linear differential equation whose unique solution is

∆x = 0. It means that the problem of tracking x = xd is equivalent to that of remaining

on the surface S(t) ∀t > 0. Effectively, the problem of tracking the n-dimensional vector

xd is replaced by a 1st-order stabilization problem in s.

The simplified, 1st-order problem of keeping the scalar s at zero can now be achieved by

choosing the control law u of Eq.(4.31) such that outside of S(t) [42]

1

2

d

dt
s2 ≤ −η|s| (4.35)

where η is a strictly positive constant. Eq.(4.35) states that the squared distance to the

surface, as measured by s2, decreases along all system trajectories in the phase-space and

usually it is referred as sliding condition. Moreover, satisfying Eq.(4.35) automatically

implies that the closed-loop system is globally asymptotically stable from Lyapunov’s Sec-

ond Stability Theorem. In fact, considering as candidate Lyapunov function V (s) = 1
2
s2

it is easy to check that if the sliding condition is satisfied, Lypunov’s theorem conditions

are too.

Once on the surface the system trajectories remain on the surface (the surface represents

thus an invariant set) and the dynamic of the system when is in the so called sliding mode

(i.e. when the state lies on the sliding surface s) can be written as:

ṡ = 0 (4.36)
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It is worth noticing from Eq.(4.35) that disturbances and uncertainties can be handled

by the method while still keeping and invariant set as Lyapunov conditions (V̇ < 0) are

still verified even if a perturbation is applied on s.

The last remark concerning the sliding condition is that, if Eq.(4.34) is not exactly verified,

the surface S(t) will nonetheless be reached in a finite time smaller than |s(t=0)|
η

.

As shown by Fig.(4.3) the part of the state-trajectory outside the sliding surface is called

Reaching Phase or Mode while when on the sliding surface it is named Sliding Phase or

Mode.

Figure 4.3: Graphical representation of Eq.(4.33) and Eq.(4.35) for n = 2

By solving Eq.(4.36) formally for the control input, it is obtained an expression for u

called the equivalent control ue which can be interpreted as the continuous control law

that would maintain ṡ = 0 if the dynamics were exactly known [42]. It must be noticed

that Eq.(4.36) cn be solved explicitly for u as it involves the first time-derivative of s

which accounts for up to the n-th - 1 derivative of x; in ṡ thus appears x(n) and therefore

u according to Eq.(4.31).

In order to satisfy sliding condition despite uncertainty on the dynamics f , or other

external disturbances, a discontinuous term udis has to be added across the surface s = 0.

The optimal performance is achieved by expressing udis = k ·sign(s) for some scalar k but
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at the price of a significant chattering behaviour of the control system. A good alternative

function is the saturation function with a varying boundary layer thickness ε such that

u = ue − k · sat(s, ε) sat(s, ε) =


1 for s > ε

s

ε
for |s| ≤ ε

−1 for s < −ε

(4.37)

The tracking performance is sub-optimal compared to using the signum function but it

provides a good trade-off between robustness and practical implementation for a smoothed

control input. [29].

4.2.2 Sliding-Mode Control - NFTSM

The sliding-mode control implemented in this study refers to the family of the so called

Non-singular Fast Terminal Sliding Mode (NFTSM) controllers. The fundamental idea

that rules the controller design is the same as for the classical sliding-mode controllers

(described in the previous section); the main difference rely on the choice of the sliding

surface which, in the case of NFTSM, is not linear. The main attraction of such approach

over the conventional sliding mode control (SMC) is the finite time convergence and the

improved steady state accuracy. Nevertheless the choice of a non-linear sliding surface

presents two shortcomings [45]:

1. presence of singularities in control

2. slow convergence speed for the remotely located system states

The NFTSM arises as an efficient solution to eliminate those drawbacks and represents a

general and global method applicable to all possible circumstances.

The governing equations presented in Sec.(4.1.1) must be slightly manipulated in order

to be implemented in the method. Actually the angular velocity error between reference

frame and a desired reference frame is required to be established, as well as its dynamics.

Starting from the definition of attitude error matrix in Eq.(4.13) the angular velocity error

is determined according to Eq.(4.38).
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d

dt
Ae =

d

dt
(AA′d) =

d

dt
AA′d +A

d

dt
(Ad)

′

− W̃eAe = −W̃AA′d +A(−W̃dAd)
′ = −W̃Ae +AeW̃d

− W̃e = −W̃ +AeW̃dA
′
e = −W̃ + ˜Aewd

we = w −Aewd

(4.38)

Then substituting Eq.(4.38) and its derivative into Eq.(4.10) yields:

Jẇe = −(we +Aewd)× (we +Aewd) + J(we ×Aewd −Aeẇd) +M (4.39)

Thus Eq.(4.23), Eq.(4.25) and Eq.(4.39) are the equations ruling the attitude error dy-

namics of the spacecraft and represent the cardinal equations of NFTSM.

For the control design purpose the following assumptions are made [45]:

1. In the spacecraft mission, the quaternion q and the body angular velocity vector

w are measurable and available throughout the space mission for attitude control

design.

2. The desired attitude frame angular velocity wd and its first time derivative ẇd are

bounded, and the bounds are known.

3. eventual uncertainties of modeling (inertia) or external disturbances are bounded

and the bound limit is known in advance.

The non-linear sliding surface is designed according to Eq.(4.40) and the control law

design refers to Eq.(4.41).

s = sigρ(we) +Csigρ(qe) +Dqe (4.40)

M(t) = −K1s−K2sig
l(s) + T (4.41)

where
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T = (we +Aewd)× (we +Aewd)− J0(we ×Aewd −Aeẇd)

−J0

2ρ
(ρCdiag(|qe|ρ−1) +D)(qe4I + Q̃e)sig

2−ρ(we)

and the other definitions are listed in Tab.(4.1).

s [s1 s2 s3]
′ ∈ R3

C diag(c1, c2, c3) with ci > 0 ∀i

D diag(d1, d2, d3) with di > 0 ∀i

K1 diag(k11, k12, k13) with k1i > 0 ∀i

K2 diag(k21, k22, k23) with k2i > 0 ∀i

ρ ∈ (1, 2)

l ∈ (0, 1)

sigρ(ξ) [|ξ1|sign(ξ1), |ξ2|sign(ξ2), |ξ3|sign(ξ3)]
′

Table 4.1: Definitions of parameters appearing in Eq.(4.40) and Eq.(4.41)

In order to demonstrate the finite time stable equilibrium of Eq.(4.40) and Eq.(4.41) the

following lemma, which can be interpreted as an extension to Lyapunov’s second theorem,

is here reported [45].

Lemma:[39] for a continuous system ẋ = f(x), f(0) = 0 x ∈ Rn, suppose there exists

a continuous positive definite function V : Rn −→ R, a real number a > 0 and α ∈

(0, 1) and an open neighborhood U0 ⊆ Rn of the origin such that an extended Lyapunv

description is defined by

V̇ (x) + aV (x) + bV α(x) ≤ 0 (4.42)

Then the origin is a finite time stable equilibrium. If U0 = Rn, then the origin is a globally

finite time stable equilibrium. Further, depending on the initial state x(0) = x0, the origin

can be achieved in finite time t1 given by

t ≤ 1

a(1− α)
ln
aV 1−α(x0) + b

b
(4.43)
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The finite-time convergence proof is structured in two parts: firstly it is demonstrated the

attitude states will converge to the equilibrium in finite time once the attitude trajectory

falls on s = 0; the candidate Lyapunov function is selected as V1 = qeq
′
e. Then it is

proved the finite time stability in reaching phase, where the candidate Lyapunov function

reads V2 = 1
2
s′Js. The detail if the proof might be found in [45].

Results

The simulations are based on the results obtained from the Station-keeping Continuous

Optimal Control (LQG) presented in Sec.(3.1). Both reference orbits and the control

tuning reflect those used in Sec.(3.1) and the results are used to generate the baseline

track for the attitute tracking problem.

Eq.(4.40) and Eq.(4.41) require the knowledge of the desired angular velocity wd and

acceleration ẇd. It is thus necessary to define the Spacecraft Desired Attitude along the

orbit. Two are the most natural choices: the first one requires the satellite to constantly

point the lighter primary of the R3BP which means the Moon in the Earth-Moon system

or the Earth in the Sun-Earth system. The second, conversely, envisages the satellite

to point to the heavier one. Depending on mission objectives one solution may be more

convenient than the other; for this project it is chosen to orient the satellite towards the

lighter primary, which is also the closer body to L1 and L2. The desired attitude is thus

computed by means of DCM whose components are determined by fixing the satellite

body axes in the following way:

1. The x-axis of the desired body reference frame is aligned to the vector joining the

spacecraft with the smaller body, in the direction of the smaller body.

2. The desired y-axis of the body frame belongs to the plane defined by the x-axis and

the vector joining the spacecraft position to the libration point.

3. The desired z-axis of the body frame completes the right-handed triad.

The actual position of the spacecraft along its motion around the libration point is given

by the combination of the nominal trajectory position and the position deviation arising
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from LQG analysis. Once the DCM is determined along the orbit, it is applied Eq.(4.21)

to pass from DCM to quaternion representation. Consequently Eq.(4.26) is used to extract

the desired angular velocity along the orbit and, numerically differentiating the result, the

desired angular acceleration. It must be noticed that, due to the fact that the reference

frame is not inertial, the rotation velocity of the latter has to be taken into consideration

once computing wd.

Numerical differentiation is accomplished using central finite difference scheme for the

interior point of the set and forward/backward finite difference scheme for the boundary

points.

What is left is to define the NFTSM control parameter values, which are listed in

Tab.(4.2), and the disturbance torques acting on the spacecraft. Tab.(4.3) summarise

the disturbances affecting attitude determination and control input execution, as it is

done in Chapter 3 for the LQG algorithm. Each quaternion measure is perturbed by

adding to the nominal value an Additive Gaussian White Noise (AGWN) having mean

value µN = 0 and variance σNN = 1e− 9. Execution errors are simulated adding AGWN

characterised by µD = 0 and σDD = 1e− 8 [gm], to each of the M components. The sim-

ulation starts with an initial error of the 5% with respect to desired attitude and angular

velocity.

J0 = J diag(22.7 23.3 24.5) [Kg·m2]

ρ 1

l 0.99

C diag(0.42 0.42 0.42)

D diag(1.9 1.9 1.9)

K1 diag(7 7 7)

K2 diag(0.5 0.5 0.5)

q̂0 q̂d

w0 [0 0 0]’

Table 4.2: NFTSM control parameters used for the simulations.
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Initial error
δq0 = 0.05·qd0

δw0 = 0.05 ·wd0

Affected quantities AWGN parameters

δq1
µNN = 0

δq2

δq3
σNN = 1e−9

δq4

δM1 µDD = 0

δM2

σDD = 1e−8 [gm]
δM3

Table 4.3: Attitude tracking perturbation definition. All the disturbances are simulated
as Additive White Gaussian Noise with mean values and variances defined in the table.

• Halo orbit: from Fig.(4.4) to Fig.(4.7) the attitude evolution as well as the control

effort required by the attitude control system is presented.
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Figure 4.4: Actual and Desired
quaternion evolution along orbit.
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Figure 4.5: Actual and desired an-
gular velocity evolution along the
orbit.
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Figure 4.6: Quaternion error evolu-
tion along the orbit.

Figure 4.7: Control torques M =
[τx τy τz]

′ evolution along the orbit.

As it is shown by Fig.(4.4) and Fig.(4.5), the attitude tracking is accomplished perfectly

by the NFTSM controller. Excect for the beginning, when the angular velocity has to

link up with the initial desired value, the quaternion error is kept close to zero with a

very modest control effort.

• Lyapunov orbit: the results concerning the attitude tracking control for a Lya-

punov orbit are shown from Fig.(4.8) to Fig.(4.11).
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Figure 4.8: Actual and Desired
quaternion evolution along orbit.
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Figure 4.9: Actual and desired an-
gular velocity evolution along the
orbit.
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Figure 4.10: Quaternion error evo-
lution along the orbit.

Figure 4.11: Control torques M =
[τx τy τz]

′ evolution along the orbit.

The characteristic of being planar is reflected both in the evolution of angular velocity

and quaternion. The first two components of q̃ and w are not influenced at all by the

dynamics and keep their values constant to zero. Being a planar orbit in fact it is just w3

that is requested to vary in order to track the desired attitude. Also in this case, with a

slightly more significan control effort at the beginning, the NFTSM controller is able to

keep the spacecraft attitude close to the reference trajectory.

• Lissajous orbit: for the Lissajous case the results are shown from Fig.(4.12) to

Fig.(4.15).
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Figure 4.12: Actual and Desired
quaternion evolution along orbit.
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Figure 4.13: Actual and desired an-
gular velocity evolution along the
orbit.
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Figure 4.14: Quaternion error evo-
lution along the orbit.

Figure 4.15: Control torques M =
[τx τy τz]

′ evolution along the orbit.

Differently from the Halo case and Lyapunov case, the Lissajous trend of angular velocity

and quaternion is slightly more oscillatory. This evidence might be explicated considering

the results obtained in Sec.(3.1). Because Lissajous orbit are analytical and are charac-

terized by a truncation error, the position deviation and the control inputs oscillates in

order to stabilise the spacecraft in a trajectory close to the nominal, never reaching it;

this peculiarity is reflected also in the trace left by the desired (and consequently actual)

angular velocity/quaternion trajectory. Nevertheless the NFTSM controller is able to

keep the spacecraft orientation on the desired path with modest control effort.

As depicted by the results above reported, the NFTSM control is extremely efficient

,both in terms of convergence time both in terms of control effort, on commanding the

spacecraft attitude to follow a particular desired trajectory. The method is general and

applicable to whatever circumstance the mission implies; it has not been introduced any

uncertainty upon the inertia matrix but, thank to the proofs developed in [45], it is proven

that bounded uncertainties might be tolerated by the method. Moreover, the choice on

the definition of the desired attitude trajectory is completely subjective and may vary

depending on the mission; also in this case the method is proven to run whatever attitude

trace is selected.



Chapter 5

Control Allocation

With Chapter 3 and Chapeter 4, High Level Motion Control is succesfully completed;

the spacecraft is able to stay close to the reference orbit and maintain orientation despite

external disturbances and tracking and execution errors. The overall mission control

objectives are matched. What is missing now is to map the desired control forces and

moments onto actuator actions. This procedure is called Control Allocation and its objec-

tive is to coordinate the different effectors (devices incharged of producing control inputs)

such that they together produce the desired virtual control efforts, if possible; otherwise,

the objective is shifted to minimise the error between the actual produced control inputs

and the ideal ones.

The main goal of the work is to demonstrate the feasibility of station-keeping and attitude

control using the minimum number of actuators possible. Station-keeping requires forces

to act on the spacecraft which can be generated, in deep-space, only by thrusters. It is

thus chosen to avoid the adoption of classical Reaction Wheels (RW) or Control Moment

Gyroscopes (CMG) assemblies and rely only on four electrical gimbaled thrusters. The

field has been reduced to electric propulsion because it is the only technology available

capable of continuous, fine low thrust activity, indispensable features for the purposes

of the project. Even if recent developments in micro-chemical propulsion systems allow

precise responses to commanded inputs, the low efficiency in terms of energy conversion

(expressed by the Specific Impulse Isp) would require an enormous amount of propellant

to grant the control objectives throughout the duration of the mission. Electric propulsion

69
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can in fact boast specific impulses up to 100 times higher than chemical propulsion.

It is at this level that the coupling between station-keeping and attitude control arises.

It is thus of paramount importance to understand how the coupling effect influences the

behavior of the control system. The thruster configuration and the allocation procedure

must be capable of handling technological gimbal limitations. Ideally, a 2-DOFs gimbal

could orient the engine thrust all over the semi-sphere centered on the engine location and

opposite to the satellite body, but practical technological issues prevent the achievement

of such performance. Gimbals have a limited opening angle which narrow the field of

possible thrust directions. For this reasons, two scenarios are simulated for each kind of

orbit:

1. Unconstrained gimbals.

2. Constrained gimbals.

The term ”unconstrained” means that the gimbal has no restriction as regards its open-

ing angles; oppositely, ”constrained” stands for limited allowed directions achievable by

gimbal mechanisms.

5.1 Spacecraft thruster configuration

The first design choice to face is the location of the thrusters on the spacecraft. The system

must be able to provide input forces and torques along each direction of the the body

reference frame without any a priori preference. Among the infinite number of possibility,

the configuration shown in Fig.(5.1) appears to be the more versatile and robust to any

typology of mission.
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Figure 5.1: Actuator configuration. The reference frame O(X,Y,Z) is assumed to be
centerd on the centre of mass of the satellite. The axes are assumed to be coincident with
the principal inertia axes of the spacecraft. Engines E1 and E4 lie on the x-axis while E2
and E3 lie on the y-axis.

Engine 1 (E1) and Engine 4 (E4) are located along the x-axis of the body reference frame.

Engine 2 (E2) and Engine 3 (E3) are located along the y-axis. The body reference frame

O(X,Y,Z) represented in Fig.(5.1) is supposed to be aligned with the principal inertial

axes of the satellite and centered on its Centre of Mass (CoM). Each of the engines is

equipped with a 2-Degrees Of Freedom (DOFs) gimbal which allows thrust vector control

on each thruster. The CubeSat designed for the LUMIO mission [6] is taken as baseline

case; the dimensions, mass and inertia matrix are listed in Tab.(5.1).

Quantity Value Units

a 20 cm

b 30 cm

Mass 25 Kg

Inertia J diag(22.7 23.3 24.5) Kg m2

Table 5.1: Spacecraft dimensions, mass and inertia matrix.

The angle convention used to describe the orientation of the thrust produced by the
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engines refers to Fig.(5.2) for E1 and E4 and to Fig.(5.3) for E2 and E3.

Figure 5.2: Angle convention for E1/E4 thrust direction.

Figure 5.3: Angle convention for E2/E3 thrust direction.

It is thus possible to draw the Thrust Matrix T , i.e. the matrix that links the engine

thrusts to the produced global forces and moments acting on the spacecraft. Eq.(5.1)

shows the relation between the produced control inputs τ and the engine thrust level

vector η. In Eq.(5.1) Fi for i = x, y, z is the produced control force along x, y and z-axis,

Mi for i = x, y, z is the produced control torque along x,y and z-axis and ηi for i = 1, . . . , 4

is the thrust magnitude of the i-th engine. Eq.(5.2) shows explicitly the mathematical
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definition of T for the chosen configuration and angle convention; s and c stand for sin

and cos functions.

τ = Tη τ =



Fx

Fy

Fz

Mx

My

Mz


η =



η1

η2

η3

η4


(5.1)

T =



cα1 sα2cβ2 sα3cβ3 cα4

sα1cβ1 cα2 cα3 sα4cβ4

sα1sβ1 sα2sβ2 sα3sβ3 sα4sβ4

0 a(sα2sβ2) −a(sα3sβ3) 0

b(sα1sβ1) 0 0 −b(sα4sβ4)

−b(sα1cβ1) −a(sα2cβ2) a(sα3cβ3) b(sα4cβ4)


(5.2)

5.2 Allocation Techniques

In Eq.(5.2) the unknowns to be determined are: η1, η2, η3, η4, α1, α2, α3, α4 and β1, β2,

β3, β4. In other words, it must be computed the thrust level of the engines η and the ori-

entation of the gimbals described by α =

[
α1 α2 α3 α4

]′
and β =

[
β1 β2 β3 β4

]′
.

In order to solve this task there exist plenty of methods; it is firstly necessary to introduce

the classical notation of control allocation problem.

The design of control algorithms is often divided into several levels. First, a high level

motion control algorithm is designed to compute a vector of virtual inputs τc to the

mechanical system. The virtual inputs are usually chosen as a number of forces and

moments that equals the number of degrees of freedom that the motion control system

wants to control, m, and such that the basic requirement of controllability is met. For

a wide range of mechanical systems, this leads to a dynamic model that is linear in the
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virtual input and can be written as Eq.(5.3) [20]:

ẋ = f(x, t) + g(x, t)τ

y = l(x, t)

(5.3)

where f , g, l are functions generally of the state vector x ∈ Rn and time t, and y is the

output vector of the system. τ is the vector of virtual control inputs that should equal

the the output command τc of the high-level motion control algorithm, i.e. τ = τc. For

the specific case of the project, τc is the vector condensing the ideal control forces and

moments computed from station-keeping and attitude tracking control analyses in Chapter

3 and Chapter 4 while τ is the produced control input coming from the combination of

engines thrust, Eq.(5.1).

Second, a control allocation algorithm is designed in order to map the vector of com-

manded virtual input forces and moments τc into individual effector forces or moments

such that the total forces and moments generated by all effectors amounts to the com-

manded virtual input τc. The relation between virtual control inputs and effector action

u is described by Eq.(5.4), which in this context takes the form of Eq.(5.5).

τ = h(u,x, t) (5.4)

τ = T (α,β)η (5.5)

Eq.(5.5) is the basic equation which rules the control allocation problem. The objective

in fact is to optimise α, β and η such that τ = τc with the minimum possible effort in

terms of engine thrusts. The optimisation problem thus reads:

min
α,β,η

f(α,β, η) = ||η||

subjected to


τ = τc = T (α,β)η

η ≥ 0

(5.6)

In the case the primary objective turns out to be unfeasible and constrains are not re-

spected, the control allocation algorithm focuses on the secondary objective of minimising
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the error between the produced control command τ and the desired τc. It reads:

min
α,β,η

f(α,β, η) = |τc − T (α,β)η|

subjected to η ≥ 0

(5.7)

Eq.(5.6) and Eq.(5.7) are the most general mathematical expression of the control allo-

cation goals. Anyway it must be noticed that the following problem formulation presents

some undesirable mathematical characteristics (from an optimisation point of view):

firstly in Eq.(5.6) the constraints are highly non-linear, as it can be noticed from Eq.(5.5);

secondly, in Eq.(5.7) non-linear constraints of Eq.(5.6) appear in the cost function f(α,β, η)

which additionally is defined by means of the L1 − norm, adding extra non-linearities to

the problem. The presence of non-linearities forces the adoption of non-linear optimisa-

tion algorithms which guarantee the convergence to local minimum solutions only under

specific assumptions. Moreover they are extremely sensible to the choice of the starting

point required to initiate the process; thus, depending on the goodness of initial guess,

algorithm performances can strongly be affected and different solutions achieved with-

out any chance of control. These characteristics are enhanced by the presence of strong

non-linearities in the problem.

Therefore, it is necessary to find an alternative formulation of the problem to avoid the

non-linearities depicted before. The following sections presents the alternative formula-

tions used to run the optimisation process. In fact it is possible to demonstrate that

in case of unconstrained gimbal angles, the problem 5.6 and 5.7 can be posed in Linear

Programming (LP) formulation; non-linearities in this case are completely circumvented

and LP algorithms are employed to find the solution. In case of constrained gimbal angles

small non-linearities need to be introduce in the constrains; it is thus required to adopt

Non-Linear Programming (NLP) algorithms.

5.2.1 Linear Programming formulation

Mathematical foundations

The general mathematical programming problem is written as:
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min
x
f(x)

subjected to


hi(x) = 0 ∀i = 1 . . .m

gj(x) ≤ 0 ∀j = 1 . . . r

x ∈ S

(5.8)

where f(x) is the cost function, hi(x) is the i-th equality constraint, gj(x) is the j-th

inequality constraint ans S is the defined space which the unknown x belongs to. Once

the problem is characterised by a cost function linear in the unknowns and the constraints

consist in linear equalities and inequalities, the problem is called Linear Programming

(LP) Problem. The standard formulation of a LP problem is:

min
x
f(x) = c′x

subjected to


Ax = b

x ≥ 0

(5.9)

By means of slack variables and specific expedients, linear inequalities can be embedded

in 5.9, as well as the so called free variables (not constrained to be non-negative). So con-

sidering the constraints, a solution is said to be feasible if it satisfies the set of constraints.

Moreover under the

• Full Rank Assumption: the m×n matrix A with m ≤ n has m lineraly independent

rows.

it is possible to give the definition of (degenerate) basic solution:

• Definition: given the set of m simultaneous linear equations in n unknowns

Ax = b

let B be any non-singular m ×m sub-matrix made up by columns of A. Then if

all the n − m components of x not associated to columns of B are set equal to
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zero, the solution to the resulting set of equations is said to be a basic solution with

respect to the basis B. The components of x associated with columns of B are

called basic variables. If one or more basic variables in a basic solution have value

zero the solution is said to be a degenerate basic solution.

Mathematically Eq.(5.10) explains the definition of basic solution xbs.

Ax = b =⇒
[
B C

]xbxc
 = b =⇒


Bxb = b

Cxc = 0

=⇒


xb = B−1b

Cxc = 0

=⇒ xbs =

xb0


(5.10)

It is possible to demonstrate that under the Full Rank Assumption the system Ax = b

has at least one basic solution.

Based on these considerations the Fundamental Theorem of Linear Programming is here

presented. It is the keystone all the linear programming algorithms.

• Fundamental Theorem of Linear Programming : given a linear program as

min
x
f(x) = c′x

subjected to


Ax = b

x ≥ 0

(5.11)

where A is a m× n matrix of rank m, then:

– if there is a feasible solution, there exists a basic feasible solution.

– if there exists and optimal feasible solutions, there exists also an optimal basic

feasible solution.

The main result of the theorem is that it converts the LP problem into a seek over the set

of basic solutions which are then compared to extract the one which minimise the cost



5.2. Allocation Techniques 78

function. It is possible to demonstrate that the basic solution set has at most n◦B.S. basic

solutions, where n◦B.S. may be computed by Eq.(5.12):

n◦B.S. =
n!

m!(n−m)!
(5.12)

Linear Programming algorithms are extremely easy to implement and fast in execution

which makes them ideal candidates for solving control allocation problems.

Control Allocation as LP problem

The Control Allocation problem expressed in Eq.(5.6) may be rewritten in LP formulation

only when the gimbals are not affected by any opening angle restriction; conversely, the

case of unconstrained gimbal angles is solved using LP algorithms. As it is stated in the

previous section, the non-linearities affecting the problem 5.6 lie in the explicit formulation

of the thrust matrix T , Eq.(5.2), where sine and cosine functions of the unknown angles

appear in all the equations; they derive from the trigonometric decomposition of the

thrust vector along the three body axes. But since the angles are not constrained there

is no need to explicitly insert them into the mapping equation Eq.(5.5); it is in fact far

more convenient decompose the thrust vector of each engine as simply:

Fi =

[
Fxi Fyi Fzi

]
(5.13)

where the subscript i stands for the i-th engine. By doing so, the original unknown set{
ηi αi βi

}
is replaced by

{
Fxi Fyi Fzi

}
for each engine. Angles no longer appear

in the problem formulation as well as non-linearities. The new unknowns are the thrust

magnitudes produced by the engines along the body axes.

Firstly we define the function s(x)

s(x) =


x if x > 0

0 if x ≤ 0

(5.14)

Then each thrust component of each engine, Fij, is decomposed into:
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F+
ij = s(Fij) F−ij = −s(−Fij) (5.15)

so that

Fij = F+
ij + F−ij (5.16)

where i = x, y, z and j = 1 . . . 4. Particularly, with regard to F−x1, F
+
x4, F

+
y2 and F−y3,

their value can not be different from zero as it would result in thruster firing inside the

spacecraft.

The new set of unknowns is thus:

x =

[
Fx1 F+

x2 F−x2 F+
x3 F−x3 Fx4 F+

y1 F−y1 Fy2 Fy3

F+
y4 F−y4 F+

z1 F−z1 F+
z2 F−z2 F+

z3 F−z3 F+
z4 F−z4

] (5.17)

The cost function f(x) to minimize is written as:

f(x) =Fx1 + F+
x2 − F−x2 + F+

x3 − F−x3 − Fx4 + F+
y1 − F−y1 − Fy2 + Fy3

+ F+
y4 − F−y4 + F+

z1 − F−z1 + F+
z2 − F−z2 + F+

z3 − F−z3 + F+
z4 − F−z4

(5.18)

which in vector notation reads:

f(x) = c′x (5.19)

with

c′ =

[
1 1 −1 1 −1 −1 1 −1 −1 1

1 −1 1 −1 1 −1 1 −1 1 −1

] (5.20)

The control allocation constraints are formulated as:
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F c
x = Fx1 + F+

x2 + F−x2 + F+
x3 + F−x3 + Fx4

F c
y = F+

y1 + F−y1 + Fy2 + Fy3 + F+
y4 + F−y4

F c
z = F+

z1 + F−z1 + F+
z2 + F−z2 + F+

z3 + F−z3 + F+
z4 + F−z4

M c
x = a(F+

z2 + F−z2)− a(F+
z3 + F−z3)

M c
y = b(F+

z1 + F−z1)− b(F+
z4 + F−z4)

M c
z = −b(F+

y1 + F−y1)− a(F+
x2 + F−x2) + a(F+

x3 + F−x3) + b(F+
y4 + F−y4)

(5.21)

which in vector notation read:

τc = Ax (5.22)

with

A =



11×6 01×14

01×6 11×6 01×8

01×14 a1×2 −a1×2 01×2

01×12 b1×2 01×4 −b1×2

01×2 −a1×2 a1×2 −b1×2 01×2 b1×2 01×8


(5.23)

which must be added the bound constraints to, expressed in Eq.(5.24).

0 ≤ Fx1 ≤ ∞

0 ≤ F+
x2 ≤ ∞

−∞ ≤ F−x2 ≤ 0

0 ≤ F+
x3 ≤ ∞

−∞ ≤ F−x3 ≤ 0

−∞ ≤ Fx4 ≤ 0

0 ≤ F+
y1 ≤ ∞

−∞ ≤ F−y1 ≤ 0

(5.24)
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−∞ ≤ Fy2 ≤ 0

0 ≤ Fy3 ≤ ∞

0 ≤ F+
y4 ≤ ∞

−∞ ≤ F−y4 ≤ 0

0 ≤ F+
z1 ≤ ∞

−∞ ≤ F−z1 ≤ 0

0 ≤ F+
z2 ≤ ∞

−∞ ≤ F−z2 ≤ 0

0 ≤ F+
z3 ≤ ∞

−∞ ≤ F−z3 ≤ 0

0 ≤ F+
z4 ≤ ∞

−∞ ≤ F−z4 ≤ 0

The problem is definitely well-posed to be handled by LP algorithms. The numerical

results and their discussion are reported in Section 5.3.

5.2.2 Control Allocation as NLP problem

When gimbal angle limitations have to be taken into account it is necessary to introduce

non-linear constraints in the problem formulation. As it was highlighted previously, the

angles are the responsible of such non-linearities.

In order to keep the formulation as close as possible to Linear Programming one, it is

added to the previous LP formulation (kept unaltered) the angle limitations expressed as

force magnitude ratios. More precisely, gimbals are limited to move inside the cone aligned

to the gimbal axis and, whose opening is defined by the maximum allowable angle. The

cone angle then defines the maximum ratio between the projection of the thrust onto the

cone axis and the force projection onto the plane defined by the cone axis itself. Fig.(5.4)

explains the concept.
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Figure 5.4: Gimbal cone of allowed directions.

Since the cone axis of E1-E4 coincides with the spacecraft body x-axis, and the cone

axis of E2-E3 coincides with the body y-axis, the non-linear constraints can easily be

represented by means of the thrust components along the CubeSat body axes, Eq.(5.25).

√
F 2
y1 + F 2

z1

Fx1
≤ tan(αmax1 )

−
√
F 2
x2 + F 2

z2

Fy2
≤ tan(αmax2 )√

F 2
x3 + F 2

z3

Fy3
≤ tan(αmax3 )

−

√
F 2
y4 + F 2

z4

Fx4
≤ tan(αmax4 )

(5.25)

The cost function remains unaltered with respect to LP formulation, as well as the other

constraints and bounds. NLP algorithm must be used in order to deal with the new non-

linear constraints. For the project, the Interior-Point Method is chosen for the simulations.

Numerical results and their discussion are presented in Section 5.3.
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5.3 Numerical results

This section represent the core part of the control allocation procedure and it is intended

to validate the project baseline idea. Two different cases are exposed; the first, the

Unconstrained Gimbal case, is the ideal scenario from a technological point of view where

the thrust vectoring control is able to span the whole available space. The second, the

”Constrained Gimbal” case, takes into consideration the practical technological issues

which affect orientation mechanisms for deep-space missions.

The commanded virtual inputs τc used are the control forces and moments computed

in Chapter 3 and Chapter 4. Correspondingly, the nominal orbits chosen are the ones

adopted in Chapter 3 whose features are listed in Tab.(3.2), Tab.(3.4) and Tab.(3.6).

The commanded virtual forces of Chapter 3, which were expressed in the co-rotating

reference frame, are translated into body reference frame coordinates using the Direct

Cosine Matrix evaluated along the orbit. For sake of completeness, the ideal input traces

τc are presented from Fig.(5.5) to Fig.(5.7), for each nominal orbit.

Figure 5.5: Commanded virtual inputs τc for Halo orbit.
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Figure 5.6: Commanded virtual inputs τc for Lyapunov orbit.

Figure 5.7: Commanded virtual inputs τc for Lissajous orbit.
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5.3.1 Unconstrained Gimbal Case

The ideal traces are mapped onto the engines using LP Dual-Simplex Algorithm. Since

the CubeSat dynamics is affected by initial errors, a transient region dominated by strong

virtual commanded control efforts is present. In this region the control algorithm acts

decisively to guide the spacecraft to its nominal path. In order to better highlight the

engines behaviour, the mapping results in the transient zone and in the steady-state zone

is analysed separately, as the engine thrust levels differ by several order of magnitudes

from one region to the other.

Halo Orbit

The control allocation procedure produces satisfactory results as the commanded virtual

inputs τc are perfectly matched by proper coordination of gimbal directions and engine

thrusts. As it can be noticed in Fig.(5.8) the error between produced control efforts and

ideal ones remains practically zero throughout the entire mission.

Fig.(5.9) and Fig.(5.10) shows the engine thrust envelops of the mission. In Fig.(5.11) the

gimbal mechanism envelops are presented.

Significant pieces of information are condensed also in Fig.(5.12). The overall contribu-

tion of each engine to each control input is reported by means of pie charts where the

comparison of respecitve influences upon control degrees of freedom (DOFs) turns out to

be easier and more intuitive to be caught. It must be noticed that the overall produced

control input may exceed the amount requested by the high level motion control; this is

due to the fact that engines are free to operate in opposite mode, i.e. they can produce

forces and moments which cancel out the contributions coming from other engines. Only

the absolute values of the contributions are considered, not their sign as they represent

the real work provided by each thruster. Referring to Fig.(5.12) the superscript c refers

to the commanded virtual control input and for each pie chart it is reported the ration

between the produced control input and the commanded ideal one.
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Figure 5.8: Unconstrained gimbal angles - Halo orbit: evolution of the mapping error:
e = τc − τ .

Figure 5.9: Unconstrained gimbal angles - Halo orbit: transient behaviour of engine thrust
levels.
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Figure 5.10: Unconstrained gimbal angles - Halo orbit: steady state behaviour of engine
thrust levels.
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Figure 5.11: Unconstrained gimbal angles - Halo orbit: gimbal orientation during the
mission. The right-hand side axis refers to the α angle, the left-hand side axis concerns
the β angle. Conventions for α and β are shown in Section 5.1 Fig.(5.2) and Fig.(5.3).
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Figure 5.12: Unconstrained gimbal angles - Halo orbit: engine contributions to control
inputs. The title of each pie chart represents the ration between the commanded ideal
input (denoted by the superscript c) and the produced one in terms of absolute values.
Ratios may exceed unity as only the absolute values of the contributions are considered,
not their sign.

From the results proposed by Fig.(5.8) to Fig.(5.11) it is possible to draw some important

considerations.

Firstly, it’s good to point it out, the engine configuration and the control allocation

strategy are perfectly capable of achieving the goals for which they were designed. In

the case of a mission in Halo orbit adopting unconstrained thrust vectoring control, the

project baseline idea is proved to work properly.

Afterwards, it is good to analyze how the dual-simplex algorithm exploits the propulsion

system resources to match the commanded virtual inputs. Engine E1, which is intuitively

the most suitable to compensate for the demands along the positive x-axis direction is

almost completely out of control roles. In its place, Engines E2, E3 and E4 intervene in a

predominant manner in every degree of freedom (DOF). E1 thus appears to be used just

for small corrections in specific directions throughout the duration of the mission, as it

can be deduced by its thrust level and orientation. In fact, E1 positions never deviates

from the noteworthy angles of 0◦ and 90◦ for α1, and 0◦, 90◦, 180◦ and 270◦ for β1.
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Max. Error

eFx = 2.98e-18

eFy = 1.79e-17

eFz = 4.33e-18

eMx = 5.13e-21

eMy = 6.41e-18

eMz = 1.10e-18

Thrust Range

E1 = [8.06e-06 - 0] [N]

E2 = [1.59e-04 - 1.29e-07] [N]

E3 = [0.052 - 3.63e-06] [N]

E4 = [0.059 - 0] [N]

Average Thrust

E1 = 8.8752e-09 [N]

E2 = 5.6868e-05 [N]

E3 = 2.3598e-04 [N]

E4 = 2.2711e-04 [N]

Global Av. Thrust 1.2999e-04 [N]

Global Max. Err 1.79e-17

Max. Thrust TMAX = 0.059 [N]

Table 5.2: Unconstrained gimbals, Halo orbit case - control allocation main results.

E4, on the contrary, plays a dominant role in all degrees of freedom that it is able to

intervene on. In the transient region, together with engine E3, it is the primary responsible

of the control effort of the satellite. Once the transient ends, its behaviour gets closer to

engine E1. Similarly to engine E1, E4 is used mainly to produce control action aligned to

the satellite body reference frame. Considering the big drop in thrust magnitude between

transient and steady state phases, E4 seems to be adopted mainly during the former phase,

after which E2 and E3 seem to be assuming its control duties. It is possible to conclude

that the transient phase is mainly ruled by the combination of not-aligned engines (in this

case E3 and E4), while during the steady state, E2 and E3 aligned engines can handle
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the bulk of the required control effort. Finally, engines E2 and E3 appear to operate in a

more coordinate manner in the steady state phase. Because they are preferred to E1 and

E4 in steady state conditions, their thrust direction has a more fluctuating trend with

respect to E1 and E4 which suggests a multi-tasking control role. If engine E1 and E4 are

commanded to provide ”impulsive”, efficient control inputs over one degree of freedom at

a time, engine E2 and E3 appear to cover more DOFs using intermediate thrust directions

(i.e. not properly aligned with body axes). Such behaviour would explain their higher

thrust magnitude in steady state conditions. The last consideration concerns the ratios

in Fig.(5.12); the control in Fy and Fz appears to be sensitively affected by cancellation

effects, i.e. engines produce control inputs which cancel out the effects produced by other

engines. Particularly the control for Fy turns out to be quite ”inefficient”.

Tab.(5.2) summarise the most relevant results.
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Lyapunov Orbit

Also for missions in Lyapunov orbit the propulsion system coordinated by the allocation

algorithm is able to produce the required commanded virtual inputs τc. Fig.(5.13) shows

clearly that mapping errors are kept practically to zero throughout the whole mission.

As it is done for the Halo case, Fig.(5.14) and Fig.(5.15) present the thrust envelops of the

four engines while Fig.(5.16) shows gimbal ones. Similarly to the previous case, the control

contribution of each engine with respect to each control DOF is evaluated in Fig.(5.17).

It shall always be noted that the contribution is evaluated in absolute values, thus the

ratio between produced control effort and required one may exceed unity as cancellations

arising from opposite sign contributions are not taken into account.

Figure 5.13: Unconstrained gimbal angles - Lyapunov orbit: evolution of the mapping
error: e = τc − τ .
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Figure 5.14: Unconstrained gimbal angles - Lyapunov orbit: transient behaviour of engine
thrust levels.

Figure 5.15: Unconstrained gimbal angles - Lyapunov orbit: steady state behaviour of
engine thrust levels.
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Figure 5.16: Unconstrained gimbal angles - Lyapunov orbit: gimbal orientation during the
mission. The right-hand side axis refers to the α angle, the left-hand side axis concerns
the β angle. Conventions for α and β are shown in Section 5.1 Fig.(5.2) and Fig.(5.3).

Figure 5.17: Unconstrained gimbal angles - Lyapunov orbit: engine contributions to
control inputs. The title of each pie chart represents the ration between the commanded
ideal input (denoted by the superscript c) and the produced one in terms of absolute
values. Ratios may exceed unity as only the absolute values of the contributions are
considered, not their sign.
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Also for the nominal Lyapunov orbit, the control allocation procedure is capable of co-

ordinating the engine directions and thrusts to keep the spacecraft close to its nominal

orbit and orient it properly during the whole mission. The control allocation objectives

are perfectly reached and no mapping errors affect the spacecraft dynamics.

Similarly to the Halo orbit case, the engine E1 plays a marginal role in the spacecraft

control. The values of α1 keep on oscillating between 0◦ and 90◦ degrees as well as β1

which often reach 270◦ as well. As it was for the precedent case, E1 is exploited for

small corrections, while the bulk of the control task is devoted primarily to E4 during

the transient phase and to E2 and E3 in the steady state region. Fig.(5.17) highlights

the key role of E4 in providing the required control effort. During the transient period,

the control allocation algorithm makes intensively use of E4 to deliver the vast majority

of the amount of control forces and moments needed by the high level motion control.

Not surprisingly, the thrust level of E4 is several order of magnitude greater than the one

provided by the other thrusters. It must be kept in mind that it is during the transient

period that the largest amount of control actions is requested, thus, as this task pours

more into E4, the contribution of E4 results preponderant compared to the contribution

of other engines. It is interesting to note how after the transient, where the α4 position

slightly varies around 180◦ and E4 provides the greatest amount of thrust, the engine gets

practically shut down (such consideration comes from the α4 value which is set to zero);

in turn E3 starts working providing almost the entire control effort needed, in conjunction

with E2 and E1. The gimbal angle β4 provide significant pieces of information only when

α4 is different form 0◦, values that is used in the simulation as indication of the engine

inactivity; E4 working with α4 = 0 would result the engine firing on the spacecraft body.

During the period of activity of E4, β4 never strays from 90◦ and 270◦, which explain why

My is uniquely supplied by this engine. In steady state conditions, the control allocation

procedure behaves similarly to the Halo case. E1 is mainly used to perform small impulsive

corrections along the body axes of the spacecraft. E4 is turned off, except at the end when

it performs small corrections, and the control of the spacecraft is mainly entrusted to E2

and E3. Differently from the Halo case, here the control allocation achieve to provide all



5.3. Numerical results 95

the control inputs in an efficient way; all the ratios in Fig.(5.17) are close to unity which

means that almost no cancellation occur.

Tab.(5.3) summarise the most relevant results.

Max. Error

eFx = 1.19e-17

eFy = 8.42e-18

eFz = 1.24e-17

eMx = 1.27e-20

eMy = 1.86e-18

eMz = 1.26e-18

Thrust Range

E1 = [5.14e-06 - 0] [N]

E2 = [6.05e-04 - 0] [N]

E3 = [1.7e-04 - 0] [N]

E4 = [0.079 - 5.75e-12] [N]

Average Thrust

E1 = 4.3513e-09 [N]

E2 = 4.6553e-05 [N]

E3 = 6.7360e-05 [N]

E4 = 2.8664e-04 [N]

Global Av. Thrust 1.0014e-04 [N]

Global Max. Err 1.24e-17

Max. Thrust TMAX = 0.079 [N]

Table 5.3: Unconstrained gimbals, Lyapunov orbit case - control allocation main results.
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Lissajous Orbit

Definitely Lissajous results confirm the functioning of the procedure. The baseline idea

of the project is completely proved to work when gimbal angles are not constrained. No

mapping errors arise also in the Lissajous case, as it can be noticed from Fig.(5.18) The

control allocation results are exposed from Fig.(5.19) to Fig.(5.21). As it is staded in

Chapter 2, Lissajous orbits are defined analytically and no numerical scheme is used for

their simulation. It results in a significant approximation error which implies a tougher

control effort to keep the spacecraft close to its nominal orbit. It implies also that there

is no transient period in terms of control efforts; the control is always called to correct

the spacecraft position throughout the mission and initial errors do not require stronger

control inputs to be accommodated, compared to the ones used just for station-keeping

purposed.

Figure 5.18: Unconstrained gimbal angles - Lissajous orbit: evolution of the mapping
error: e = τc − τ .
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Figure 5.19: Unconstrained gimbal angles - Lissajous orbit: Thrust envelop of the mission.
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Figure 5.20: Unconstrained gimbal angles - Lissajous orbit: gimbal orientation during the
mission. The right-hand side axis refers to the α angle, the left-hand side axis concerns
the β angle. Conventions for α and β are shown in Section 5.1 Fig.(5.2) and Fig.(5.3).



5.3. Numerical results 98

Figure 5.21: Unconstrained gimbal angles - Lissajous orbit: engine contributions to control
inputs. The title of each pie chart represents the ration between the commanded ideal
input (denoted by the superscript c) and the produced one in terms of absolute values.
Ratios may exceed unity as only the absolute values of the contributions are considered,
not their sign.

Lissajous results confirm the marginal role of engine E1. Also in this case the E1 thrust

magnitude has lower values with several orders of magnitude of difference with respect to

the other engine thrusts. Nonetheless, the E1 feeble contributes appear to have a non neg-

ligible impact on My control. Generally, the control effort is more equally allocated among

E2, E3 and E4. The role of the latter, except in My, is downsized to the advantage of E2

and E3 which take on most of the control work. Since E4 remains the principal actuator

handling My control, β4 keeps dwelling at around 90◦ and 270◦ but in a looser way with

respect to previous cases; intermediate values of β4 appear clearly and quite frequently

from Fig.(5.20). The same consideration is valid for E1 attitude. The thrust vectoring

control of E2 and E3 is always requested to span almost the entire space allowable in

order to properly contribute to all the control DOFs. The Lissajous control allocation is

affected by engine cancellation effects which characterise all the control degrees.

Finally, Tab.(5.4) condenses the main results of the Lissajous case.
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Max. Error

eFx = 1.02e-20

eFy = 1.16e-20

eFz = 1.45e-20

eMx = 1.08e-21

eMy = 3.64e-22

eMz = 1.09e-21

Thrust Range

E1 = [1.73e-05 - 0] [N]

E2 = [4.23e-05 - 6.53e-09] [N]

E3 = [2.22e-05 - 1.74e-09] [N]

E4 = [1.35e-05 - 0] [N]

Average Thrust

E1 = 1.4193e-08 [N]

E2 = 8.5341e-06 [N]

E3 = 3.7916e-06 [N]

E4 = 1.0648e-06 [N]

Global Av. Thrust 3.3512e-06 [N]

Global Max. Err 1.16e-20

Max. Thrust TMAX = 4.23e-05 [N]

Table 5.4: Unconstrained gimbals, Lissajous orbit case - control allocation main results.

5.3.2 Constrained Gimbal Case

In the present case the gimbal mechanisms are not allowed to span all the space at their

disposal. They are limited to move inside a cone aligned with the gimbal axis whose

opening coincides with the maximum permitted angle. Fig.(5.4) represents graphically

the concept. This section, together with ”Unconstrained Gimbal Case” part, represent the

core foundation of the work; unlike the latter, here practical technological limitations are

taken into account so it takes on an important meaning from a practical point of view. For

each orbit case, the control allocation procedure is tested for different angle limitations

which are: αmax = 45◦, αmax = 20◦, αmax = 10◦ and αmax = 5◦ degrees. In the first part
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of the section, mapping errors and engines thrust ranges are compared for all the values

of αmax and for all the orbits. The intent is to underline the effects that αmax has on the

satellite dynamics in terms of control effort and perturbation production. Nevertheless, a

detailed report of all the results concerning all the αmax values for all the orbit considered

so far, would lead to an overly disperse discussion; for sake of compactness, considering the

recent developments pursued by NASA in CubeSat gimbal technologies [31], αMAX = 10◦

is used as representative case to present the results in details, in the same way it is done

for the unconstrained gimbals case.

Global results

Figure 5.22: Control allocation mapping errors for Halo mission case. Each subplot refers
to a specific αmax.
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The mapping errors produced by the allocation procedure during the mission in Halo,

Lyapunov and Lissajous orbits are presented from Fig.(5.23) to Fig.(5.24). Each subplot

refers to a specific case of αmax. Thrust magnitude information is collected in Fig.(5.25),

Fig.(5.26) and Fig.(5.27). Specifically, Fig.(5.25) shows the thrust ranges without distinc-

tion among the engines; the minimum thrust and the maximum thrust here appearing are

the minimum and maximum thrust magnitudes among all the engines during the whole

mission period. Fig.(5.26) and Fig.(5.27) collect the information regarding the change in

maximum and average thrust due to increasingly stringent angle constraints. Maximum

and average thrust are computed among all the engines for the entire mission duration.

Figure 5.23: Control allocation mapping errors for Lyapunov mission case. Each subplot
refers to a specific αmax.
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Figure 5.24: Control allocation mapping errors for Lissajous mission case. Each subplot
refers to a specific αmax.

Halo

Lyapunov

Lissajous

Figure 5.25: Required thrust ranges for the different missions. The colours refer to dif-
ferent gimbal angle constraints.
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Figure 5.26: Maximum thrust pro-
vided during mission in Halo, Lya-
punov and Lissajous orbits. The
colours refer to different gimbal an-
gle constraints.

Figure 5.27: Average thrust pro-
vided during mission in Halo, Lya-
punov and Lissajous orbits. The
colours refer to different gimbal an-
gle constraints.

Fig.(5.22) to Fig.(5.24) confirms the validity of the procedure for Halo and Lyapunov cases.

The mapping errors are way below the noise values used in the high-level motion control

design to simulate control execution errors; it is thus possible to conclude that station-

keeping, attitude control and allocation strategies are capable of successfully control the

spacecraft during its mission, both with unconstrained gimbals, both with constrained

ones. Unfortunately, as far as the Lissajous case is concerned, huge mapping errors are

produced specially during the first part of the mission. Those errors are several order of

magnitude more significant with respect to the noise accounted in Chapter 3 and Chapter

4. This would probably bring the satellite to diverge from the nominal orbit as well as

from the desired attitude. In order to asses if the methodology proposed in this work is

be able to accommodate such errors, a second iteration should be carried out with the

mapping errors inserted as disturbances in the high-level motion control algorithms, but

it is out of the scope of the project.

Nevertheless, Fig.(5.25) to Fig.(5.27) point out some important features. As it was ex-

pected, the average thrust required increases as the angle constrains become tighter and

tighter, for all the mission orbits. In particular, the Lyapunov case suffers a dramatic rise

in the value of average thrust once gimbals are limited to an opening angle of αmax = 5◦.
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Since the maximum thrust is not affected by such a peak, it is possible to affirm that an

important performance degradation occurs in terms of fuel consumption; in fact, in order

to match the commanded virtual inputs, the propulsion system is required to work almost

five time more intensively with respect to the cases with looser constraints. Halo and Lis-

sajous orbits anyway do not present such a drastic change in performance. Moreover the

average thrust in the Lissajous case is expected to be higher in magnitude compared to

the other orbits (because Lissajous orbits are analytically computed, without adopting

any numerical correction scheme), but it is not the case. The most plausible cause of

this evidence is that the control process is not able to achieve the required control effort,

especially at the mission beginning, where the influence of initial errors is significant; the

engines do not work at full power which is then reflected in the values of the average

thrust, causing also significant mapping errors to occur. It is worth noticing also how, in

the Halo case, the reduction of control freedom pushes the control allocation algorithm to

exploit more equally the engines; although the maximum thrust recorded for αmax = 10◦

and αmax = 5◦ is decisively less than for the other cases, the average thrust values are

higher. It means that the allocation procedure tends to share more equally the required

control work among the engines, more than focusing on a particular one to provide the

bulk of the effort. The comparison between global average thrust levels of unconstrained

and constrained cases confirms what is stated so far; the maximum thrust values are lower

in the constrained that in the unconstrained case while the average thrust values remain

almost unchanged. It is symptom of a change in resource exploitation by the control sys-

tem. Shared effort is preferred to single bulk contribution, as it was in the unconstrained

case.

Results for αmax = 10◦

If in the unconstrained gimbal case, most of the thrust is provided at the very beginning

of each mission in order to cancel out the effects of initial errors, in the present case

generally significant peaks of thrust are requested throughout the entire mission. There

is no more a net separation between a transient and a steady state region, thus a separate
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analysis of them loses meaning.

• Halo Orbit:

Figure 5.28: Constrained gimbal with αmax = 10◦ - Halo orbit: evolution of the mapping
error: e = τc − τ .

Figure 5.29: Constrained gimbal with αmax = 10◦ - Halo orbit: steady state behaviour of
engine thrust levels.
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Figure 5.30: Constrained gimbal with αmax = 10◦ - Halo orbit: gimbal orientation during
the mission. The right-hand side axis refers to the α angle, the left-hand side axis concerns
the β angle. Conventions for α and β are shown in Section 5.1 Fig.(5.2) and Fig.(5.3).

Figure 5.31: Constrained gimbal with αmax = 10◦ - Halo orbit: engine contributions to
control inputs. The title of each pie chart represents the ration between the commanded
ideal input (denoted by the superscript c) and the produced one in terms of absolute
values. Ratios may exceed unity as only the absolute values of the contributions are
considered, not their sign.
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Max. Error

eFx = 8.14e-14

eFy = 7.08e-14

eFz = 2.75e-15

eMx = 9.72e-16

eMy = 1.15e-15

eMz = 8.85e-16

Thrust Range

E1 = [0.0032 - 9.21e-16] [N]

E2 = [0.0086 - 7.37e-17] [N]

E3 = [0.014 - 7.33e-15] [N]

E4 = [0.0158 - 6.81e-15] [N]

Average Thrust

E1 = 8.4201e-05 [N]

E2 = 1.0182e-04 [N]

E3 = 1.1065e-04 [N]

E4 = 9.2767e-05 [N]

Global Av. Thrust 9.7359e-05 [N]

Global Max. Err 8.14e-14

Max. Thrust TMAX = 0.0158 [N]

Table 5.5: Constrained gimbal angle αmax, Halo orbit case - control allocation main
results.

The error analysis presented in Fig.(5.28) proves the validity of the method. The

control allocation procedure, and the high-level motion control, are perfectly capable

of control the spacecraft in Halo orbit around a collinear libration point. As stated

previously, the control effort is more equally shared among all the engines; there is

no preponderant contribution of a particular thruster in any of the control degrees

of freedom, as it is shown in Fig.(5.31). In the present case, engine E1 leaves

the marginal role it appears to assume in the unconstrained case in favour of a

central one in almost all the control degrees, together with all the other engines.

It is worth noticing also how gimbal orientations tend to cover more completely
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the allowable direction space with respect to the unconstrained case, where the

thrust vectoring control is more locked to particular positions. As it is expected,

significant cancellations affect the spacecraft control. All the ratios between the

global produced forces or moments and the requested ones deviate from unity; it

means that in order to produce the commanded virtual input engines provide a

global contribution which exceeds the nominal request of about the 50%, for the

present case, which may also get close to 100% for Fx and Fy. Oppositely, control

DOFs which can be achieved by a specific couple of actuators, i.e. Mx and My,

appear to be provided in a more efficient way.

Tab.(5.5) summarises the results.

• Lyapunov Orbit:

The control system is successfully capable of commanding the spacecraft also in the

case of the nominal Lyapunov trajectory selected for the project. It presents the

same features already highlighted for the Halo case. The engines are requested to

work in a more cooperative manner with respect to unconstrained angle scenario,

as it can arise from Fig.(5.35). Moreover the gimbal mechanisms span completely

all the directions at their disposal remaining confined inside the respective cones

having αmax = 10◦. Also in the present case the control effort is sensibly higher

with respect to the required one. Cancellation evidences appear in the control of Fx

and Fy, where it is provided almost more than the double required force. Contrary,

the control in Mx and My is achieved in a more efficient way, as the ratios in

Fig.(5.35) remain close to unity.
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Figure 5.32: Constrained gimbal with αmax = 10◦ - Lyapunov orbit: evolution of the
mapping error: e = τc − τ .

Figure 5.33: Constrained gimbal with αmax = 10◦ - Lyapunov orbit: steady state be-
haviour of engine thrust levels.



5.3. Numerical results 110

1
 [

d
e

g
]

1
 [

d
e

g
]

2
 [

d
e

g
]

2
 [

d
e

g
]

3
 [

d
e

g
]

3
 [

d
e

g
]

4
 [

d
e

g
]

4
 [

d
e

g
]

Figure 5.34: Constrained gimbal with αmax = 10◦ - Lyapunov orbit: gimbal orientation
during the mission. The right-hand side axis refers to the α angle, the left-hand side axis
concerns the β angle. Conventions for α and β are shown in Section 5.1 Fig.(5.2) and
Fig.(5.3).

Figure 5.35: Constrained gimbal with αmax = 10◦ - Lyapunov orbit: engine contributions
to control inputs. The title of each pie chart represents the ration between the commanded
ideal input (denoted by the superscript c) and the produced one in terms of absolute values.
Ratios may exceed unity as only the absolute values of the contributions are considered,
not their sign.
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Tab.(5.6) summarises the results.

Max. Error

eFx = 1.69e-13

eFy = 4.04e-14

eFz = 3.20e-18

eMx = 1.39e-15

eMy = 8.86e-16

eMz = 1.02e-15

Thrust Range

E1 = [0.0191 - 8.28e-16] [N]

E2 = [0.0243 - 2.41e-15] [N]

E3 = [0.0196 - 1.03e-14] [N]

E4 = [0.0340 - 1.39e-18] [N]

Average Thrust

E1 = 1.0386e-04 [N]

E2 = 8.1969e-05 [N]

E3 = 1.0519e-04 [N]

E4 = 1.4310e-04 [N]

Global Av. Thrust 1.0853e-04 [N]

Global Max. Err 1.69e-13

Max. Thrust TMAX = 0.0340 [N]

Table 5.6: Constrained gimbal angle αmax, Lyapunov orbit case - control allocation main
results.
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• Lissajous Orbit:

Figure 5.36: Constrained gimbal with αmax = 10◦ - Lissajous orbit: evolution of the
mapping error: e = τc − τ .

Figure 5.37: Constrained gimbal with αmax = 10◦ - Lissajous orbit: steady state behaviour
of engine thrust levels.
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Figure 5.38: Constrained gimbal with αmax = 10◦ - Lissajous orbit: gimbal orientation
during the mission. The right-hand side axis refers to the α angle, the left-hand side axis
concerns the β angle. Conventions for α and β are shown in Section 5.1 Fig.(5.2) and
Fig.(5.3).

Figure 5.39: Constrained gimbal with αmax = 10◦ - Lissajous orbit: engine contributions
to control inputs. The title of each pie chart represents the ration between the commanded
ideal input (denoted by the superscript c) and the produced one in terms of absolute values.
Ratios may exceed unity as only the absolute values of the contributions are considered,
not their sign.
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In the Lissajous case the control allocation procedure fails to produce satisfactory

results. The mapping errors at the beginning of the mission reach non-negligible

values requiring a second iteration of the entire process to asses the method to be

capable of handling them, but this is out of the scope of the project. Moreover, the

control system is unable to find appropriate directions withing the allowable range

in order to control the spacecraft; the optimisation algorithm converge to unfeasible

solutions whatever starting point is given as initial guess. The only reasonable

justification which could explain such behaviour relies on the intrinsic properties of

the Lissajous orbit; analytical approximation errors which are shown in Chapter 3

and Chapter 4 to drive the control system to perform stronger control actions, also

lead the allocation procedure to the impossibility of finding a proper solution to

accommodate the control input requests. The procedure is definitely not validated

for the Lissajous nominal orbit selected in the work. For this reason no significant

results may be extrapolated from the Lissajous case analysis.

5.4 Thruster selection

The main goal of this section is to carry out an exhaustive analysis of electric propulsion

technologies, currently available or under development, on which to base a preliminary

selection of the thrusters considering the results of Chapter 5. Firstly an overview of

electrical micropropulsion systems is presented in order to figure out the main drivers of

the selection. The most important features characterising each type of engine are exposed

as well as the technological peculiarities, advantages and disadvantages.

Compared with conventional propulsion systems, micropropulsion systems have the fol-

lowing two characteristics in general.

1. The thrust and impulse range covered is relatively small with order of magitudes of

mN-µN and mNs-µNs.

2. Volume and weight are relatively small. Generally, weight is in kilograms or lower

orders of magnitude.



5.4. Thruster selection 115

The propulsion system is actually a mechanical system which turns different forms of

energy into kinetic energy. As regards electric propulsion, it uses the means of electric

heating, electromagnetic, or electrostatic to accelerate the propellant, and emerging with a

high-velocity jet-flow. Miniaturised electric propulsion system often are referred as Micro

Electro-Mechanical Systems (MEMS) technologies. There is a wide range of different

MEMS propulsion units which exploit different principles to produce a net force.

• Pulsed Plasma Thruster (PPT):

The PPT is one of the earliest researched electric thrusters. In the 1950s pulsed

plasma thruster technology began to be developed and applied. In 1964 in the Soviet

Zond-2 satellite, it was used in flight tests for the first time [37]. Because it relies

on an electromagnetic field to accelerate the plasma to produce thrust, it belongs

more specifically to the category of electromagnetic thruster. The working principle

of PPT is that a circuit charges the capacitor to a sufficiently high voltage which

in turn discharges between the cathode and the anode rod sleeve. It generates

high temperatures which heat the exposed portion of the propellant to make it

decompose. Subsequently the decomposed gas is ionized and the joint action of its

own magnetic and dynamic pressure produce the gas acceleration towards outside

which results in a net thrust on the spacecraft. Tab.(5.7) collects the performance

of the most advanced micro PPT prototypes on the market [49] [35].

Properties DawgStar PPT µPPT at AFRL

Thrust form Pulse Pulse

Thrust [µN] < 112 10

Isp [s] 500 -

MIP [Ns] 5.6e-5 -

Thrust to Power ratio [µN/W] 8.3 -

Mass [Kg] 3.95 < 0.1

Table 5.7: PPT prototypes performance. Isp stands for Specific Impulse and MIP stands
for Minimum Impulse Bit.
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The main advantages and drawbacks of this technology are [5]:

1. Advantages: firstly, it is able to provide relatively high specific impulse.

Moreover it does not require for high-pressure reservoirs and cryogenic devices,

which simplifies the system architecture and reduce the occupied volume.

2. Disadvantages: the propellant get frequently contaminated and it is not

consumed uniformly. Moreover the system is capable of sustain low working

frequencies and, though it is characterised by high specific impulse, the amount

of energy required to carry out the process is substantial.

• Field Emission Electric Propulsion (FEEP):

FEEP is an electrostatic electric propulsion, which relys on a high-voltage electro-

static field accelerating charged ions to produce thrust. At present, no information

is available about FEEP for flight tests [49]. Solid propellant is stored in the trans-

mitter storage chamber until needed, when the reservoir chamber is heated to liquefy

the propellant typically low melting point metals. The liquid metal moves then to

the emitters where the presence of an accelerating electric field causes the metal to

win the surface tension and accelerate. Tab.(5.8) collects the theoretic performances

of FEEP according to [35]

Properties FEEP (Cesium) FEEP (Indium)

Thrust form Continuous Continuous

Thrust [µN] 0.1-1200 1-100

Isp [s] 7000-11000 10000

MIP [Ns] 1e-9 < 1e− 8

Thrust to Power ratio [µN/W] 16-20 15

Mass [Kg] 2.2 2.5

Table 5.8: PPT prototypes performance. Isp stands for Specific Impulse and MIP stands
for Minimum Impulse Bit.

The main disadvantage of FEEP for small satellite applications is that it requires

an excessively high operating voltage.
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• Colloid Thruster:

The colloid thruster is another electric propulsion system that was studied earlier,

and is categorized as electrostatic. However, because of its higher operating voltage

and the huge volume of the system needed to obtain a large advance, its study was

not extensive. Recently, with the development of technology, colloid technologies

arouse fervent attention in the scientific community once again. It works similar to

FEEP and also uses high voltage to accelerate charged particles to produce thrust.

Differently from the latter, colloid thrusters use more conductive liquid as working

fluid.

Tab.(5.9) summarises the typical colloid thruster performance.

Properties Performances

Thrust form Continuous

Thrust [µN] 0.1-1200

Isp [s] 7000-11000

MIP [Ns] 1e-9

Thrust to Power ratio [µN/W] 16-20

Mass [Kg] 2.2

Table 5.9: Colloid thruster typical performance. Isp stands for Specific Impulse and MIP
stands for Minimum Impulse Bit.

Many research activities have been carried out in the last decade regarding colloid

thruster systems [48] [30] [33]. However, the problematic high voltage requirement

still represent a big challenge for practical applications.

• Hall Thruster:

Hall thrusters belong to electrostatic electric propulsion. They have been widely

researched in Russia, Europe, Japan, and the United States. Their technologies

and applications are mature among electric propulsions. The basic structure of a

Hall thruster is composed of an annular solenoid, injector anode, a plasma chamber,

and a cathode. Electrons emitted from the cathode initially move to the anode in
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the electric field strength. They are captured during movement by a magnetic field

in the plasma chamber. Propellant gas (usually xenon) is injected from the anode

to plasma chamber, where it is ionized due to the effect of the electrons. Once the

anode gas is ionized, it will be accelerated and fly out in the electric field, producing

thrust. Typical Hall thruster performance parameters are listed in Tab.(5.10) [49].

Properties Performances

Thrust form Continuous

Thrust [µN] > 4e− 3

Isp [s] > 1200

MIP [Ns] 1e-3

Thrust to Power ratio [µN/W] 60

Mass [Kg] 0.9

Table 5.10: Hall thruster typical performance. Isp stands for Specific Impulse and MIP
stands for Minimum Impulse Bit.

Available hall thrusters on the market unfortunately present a severe limitations:

the thrust range is way higher the theoretic value reported in Tab.(5.10) which

makes it a still unripe technology for CubeSat application. However comparing the

Technology Readiness Level in conjunction with engine weight, power demand and

Isp, with the other micropropulsion technologies, hall thrusters appears as the ideal

candidate for nano-satellite propulsion in the close future.

To sum up everything, it is possible to conclude that:

The PPT system has a simple structure, and is low cost with good stability. Especially,

PPT system technology is relatively mature, has found many practical applications, and

has worked reliably. Also, the PPT system has a higher specific impulse, and can provide

small and repeatable pulse impulse. However, the main drawbacks are that the mass

of PPT systems is generally large, the thrust to power ratio is low and it is affected

generally by plume contamination problems. In addition, the working principles of PPT
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are complex requiring a perfect tuning of electromagnetic and electric effects which need

further in-depth analysis.

FEEP has a high specific impulse, small thrust, and it can provide a slight pulse impulse.

Although there is no formal FEEP propulsion system used in space flight test, very similar

technology (like the indium ion emission propulsion on MIR, GEOTAIL and EQUATOR-

S satellites) have been proven for space missions. FEEP’s drawback is that its pushing

power ratio is low, and a high operating voltage. It also has the problem of pollution

plumes.

The colloid thruster system turns out to be very suitable for small satellites propulsion.

It is simple to design, resulting in low cost and high stability. It uses an inert propellant

which is a great advantage for long-term tasks. It is promoted further because it can

provide a wide range of thrust and specific impulses. Its drawback is that it has a low

ratio of pushing power with higher operation voltage than FEEP. Moreover, as the other

technologies, it is affected by pollution plume problems.

Finally, Hall thruster advantages include its higher specific impulse and high thrust power

ratio. Meanwhile, the Hall thruster is the most mature system of the electric thruster

systems. Differently for the other thruster types, it has lower risk of a contamination

plume. Its disadvantage is the poor quality and the large, complex structure [49].

All the technologies presented so far are still under development, so it is not possible to

select a particular engine for the missions analysed in this project. Moreover, nowadays

technologies are far to respect the constraints imposed by the results of Chapter 3 Chapter

4.3 and Chapter 5. The thrust range results request fine thrust tuning spanning from µN

to mN , in conjunction with high impulse bit accuracy. Among the MEMS technologies,

whose properties are listed from Tab.(5.7) to Tab(5.10), pulsed plasma thrusters seem to

be the least suitable solution to be applied to the types of missions proposed. Conversely

both FEEP, Colloid and Hall thrusters present interesting properties: the first two are

characterised by astonishing thrust ranges supported by low MIP and incredibly high

specific impulses. However the drawbacks previously listed drive the interest upon the

hall thrusters. Definitely the combination of performance, technology readiness level and
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practical features makes the hall thruster the preferred choice to be implemented for

the station-keeping attitude control of a stand-alone CubeSat in orbit around collinear

libration points.



Chapter 6

Conclusions

The design of the High-Level Motion Control laws and Control Allocation procedures is

carried out and tested on the orbits selected as representative for the three main categories

of orbits around collinear libration points: Halo orbits, Lyapunov orbits and Lissajous

orbits. The decoupled station-keeping and attitude controls produce satisfactory results

maintaining the spacecraft position and orientation on the desired track in spite of the

presence of external disturbances. Without considering the coupling of the two control

systems, which emerges from the adoption of only four engines for all control purposes,

it is possible to derive the ideal control forces and moments to control the spacecraft

during its mission without significant issues. However, the problematic is just submitted

to the Control Allocation procedure. It is at this level that the commanded virtual forces

and moments have to be matched simultaneously by a proper coordination of thrust

magnitudes and orientations. An optimisation process has to be carried out in order to

find the best solution in terms of mapping error production and fuel consumption.

The results coming from this type of approach are satisfactory and suggest a more in-

depth development of the theme. This approach is capable of governing the spacecraft

properly in two out of three cases, i.e. in the Halo case and Lyapunov case. Both station-

keeping and attitude control objectives are achieved in an efficient way; the propulsion

system composed of just four actuators is adequately exploited to face the multi-tasking

role of positioning and attitude control and resistance to external disturbances. Both

in the ideal case where gimbal mechanisms are free to span the entire available space,
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both in the case where practical limitations concerning gimbal orientations are taken into

account, the control system is capable of controlling the spacecraft in its journey. On

the contrary for the selected Lissajous orbit, the control allocation algorithm is not able

to coordinate the engines to match the control requirements once gimbals are limited

to maximum opening angles. The reasons for this failure are mainly dictated by the

intrinsic properties of the Lissajous orbit definition. In this project Lissajous trajectories

are computed analytically by linearising the CR3BP equations of motion around the

libration points. Differently from Halo and Lyapunov orbits, no numerical correction

schemes are applied to compute the desired Lissajous trajectory. It leads to the presence

of non-negligible approximation errors which requires a different level of control effort. In

the context of CR3BP, the bulk of the control effort for Halo and Lyapunov trajectories

is mainly condensed at the spacecraft orbit insertion in order to deal with the presence

of initial errors; once the insertion transient ends, required control input magnitudes

drastically drop to relatively small values. In the Lissajous case instead, linearisation

errors force the control system to intervene decisively throughout the entire mission.

The overall required force do not stick around precise directions but keep on changing

its orientation; this kind of situation is absolutely inadequate for the control allocation

procedure which tries to match a continuous changing force with a more steady, overall

required moment. The excess of freedom offered in the ideal case where gimbals are free

to move, manages to compensate the unsteady behaviour of the required control force;

once gimbals get constrained, the control system fails to achieve its goals.

Tab.(6.1) summarises the achievements of the proposed approach to the coupling of

station-keeping and attitude control for an under-actuated CubeSat in orbit around li-

bration points.

Orbit Unconstrained gimbals Constrained gimbals

Halo X X

Lyapunov X X

Lissajous X ×

Table 6.1: Procedure achievements.
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The approach appears to be very efficient for preliminary analyses. The station-keeping

and the attitude controls are designed separately and than integrated lately by means of

the allocation procedure. There is no constraint on the selection of the high-level control

algorithms whose performances may be analysed separately. This feature grants design

freedom, which is essential during the early phases of mission developments. Moreover,

since the allocation algorithm is completely detached from high-level motion control pro-

cedures, this approach enables the designer to analyse many different combinations of

control techniques to figure out the most suitable for its particular mission. The method

turns out to be extremely general and it can be easily transposed to other typologies

of missions. Obviously orbit selection directly impacts on virtual control requirements

but since the allocation technique is independent from the high-level control formulation,

there is no limit to its applicability. Moreover the optimisation algorithms used during the

allocation phase may account for many different constraints. In the context of this work

it is followed a top-down approach: the outputs of the control system design have served

as drivers for the thruster selection. For this reason constrains on thrust magnitude are

omitted in order to find out the nominal thrust envelope of the mission. However if the

choice of the engine is already known a priori, the control allocation procedure is able to

account for them with any practical issue. Obviously, a major drawback of the approach

is that during the high-level motion control design no information is provided about the

engines limitations, which can be accounted for only during the last phase. Unfeasible

requirements are not noticed until the control allocation procedure takes place, as it is

happened for the constrained gimbal case of Lissajous trajectory. It is left up to the engi-

neer experience to recognise since the beginning if the techniques adopted in the high-level

phase produce traces which can be subsequently matched by the propulsion system via

control allocation optimisation.

With regard to the techniques adopted in this work some important considerations can

be drawn. First of all, it is clear the paramount importance of numerical correction

schemes for orbit determination. The CR3BP equations of motion are extremely sensi-

tive to errors: small perturbations of the solution may cause large errors after few orbit
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Table 6.2: Main advantages and drawback of the approach proposed in the project.

Advantages Disadvantages
1) Generality: the approach can be ex-
tended to whatever space mission. The
high-level motion control and the allo-
cation procedure may be designed to
achieve the mission requirements, no
matter what kind of mission it is.
2) Design freedom: the four core parts
of the procedure, i.e. orbit design,
station-keeping control law, attitude
control law and control allocation are
not related by the problem formula-
tion. Their structures are independent
of each other

1) Top-Down flow: there is no informa-
tion about the influence that lower level
constraints have on higher level results.
2) On-line implementation: the method
requires the knowledge of the positions
occupied by the spacecraft in its jour-
ney. Since this is a requisite, an on-line
implementation for on-board operation
is not feasible.

revolutions. The single shooting technique used to compute Halo and Lyapunov orbits

in this project works well for limited simulation periods; the cumulative numerical error

due to machine accuracy leads to orbit divergence after approximately 5-6 orbit revolu-

tions. For longer simulation Multiple Shooting Techniques have to be adopted. Orbits

computed analytically bring to unsatisfactory results. Then, the control algorithms for

station-keeping and attitude control are tuned in order to respond quickly and resolutely

to initial errors; this causes a strong control effort condensed in a small amount of time.

The satellite is rapidly brought back to its nominal behaviour, ready to perform the task

it is designed for. It would be interesting to better analyse how a looser control would

impact on the propulsion system and on the mission concept of operations. It has to be

noticed that, since the spacecraft nominal attitude is determined by the knowledge of the

future actual trajectory of the spacecraft, the method do not work as an on-line control

procedure. The procedure applicability is restricted to design purposes, and this repre-

sents the second major disadvantage of the methodology. Tab.(6.2) is intended to give a

briefly overview of the main advantages and disadvantages of the proposed approach.

This project represent a preliminary step in the analysis of the control of under-actuated

spacecrafts in orbit around collinear libration points. Further developments are required

to properly characterise the performance of such kind of control. Above all, a failure

tolerance analysis would be of fundamental importance to asses the robustness of the
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method. Failure scenarios would have to consider both thruster failures both gimbal ones,

as movable mechanical parts undergoing the harsh deep-space environment are easily

prone to fails. Moreover, the adoption of more sophisticated control algorithms could

increase the performance in terms of thruster exploitation, fuel consumption ad tightness

of the control. From the consideration pointed out so far, the Model Predictive Control

(MPC) appears as the ideal candidate to substitute the LQG algorithm used for the

station-keeping. It would path the way also for a practical implementation on-board.

Of great interest would be also the comparison of different optimisation algorithms for

control allocation. It would be interesting to analyse how the propulsion system resources

are coordinated differently by the different algorithms used. Finally,
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