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This paper is divided into two parts. The first part presents recent measurements of ground motion in the

LHC tunnel at CERN. From these measurements, an update of the ground motion model currently used in

accelerator simulations is presented. It contains new features like a model of the lateral motion and the

technical noise. In the second part, it is shown how this model can be used to evaluate the seismic response

of a linear accelerator in the frequency domain. Then, the approach is validated numerically on a regular

lattice, taking the dynamic behavior of the machine alignment stage and the mechanical stabilization of

the quadrupoles into account.
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I. INTRODUCTION

The basic principle of future compact linear colliders is
to accelerate two beams of elementary particles (electrons,
positrons) before colliding them at an interaction point.
These machines are expected to be extremely long, and be
composed of a series of accelerating structures and electro-
magnets (of various sizes) with fields focusing the beams.
The number and quality of the collisions relies on the
capability of the machine to control the size and direction
of the beams with extreme precision, not only at the
interaction point, but also in the whole machine. To this
purpose, each of the electromagnets should be extremely
stable and capable to point in the right direction. Actually,
the main source of excitation is the ground vibrations
transmitted to the quadrupoles [1–3]. They have basically
two origins: earth activity and cultural noise. The first one
is a superposition of waves arising, among others, from
valley resonances and ocean resonances, known as micro-
seismic waves. It results in a coherent motion of the ground
in the very low frequency range [below �2 ðHzÞ]. The
second contribution results from the human activities,
e.g., cooling system or ventilation. It is dominant above a
few Hertz, and usually not coherent. Actually, the coher-
ence between different points in the tunnel is an essential
characteristic for linear colliders, because a fully coherent
motion of the whole line would not affect its performances.
More precisely, let us consider a line of quadrupoles rep-
resented in Fig. 1 (sometimes also called lattice). L denotes
the length of the line and d the distance between
quadrupoles.

Depending on the wavelength of the ground waves �, the
relative motion between quadrupoles can be divided into
three categories, as shown in Table I.

Therefore, the better the knowledge of the ground vi-
bration, the more precise will be the prediction of the

accelerator performances and the more adapted will be
the counteractions to the seismic excitations.
The motivation of this paper is twofold: first, to update

the ground motion model of the LHC tunnel, and include
new features like local excitations and a model of the
ground motion in the lateral direction; second, to show
how the model can be used to study the seismic response of
a linear accelerator, and evaluate the beam vibration when
the support dynamics is taken into account.
The paper is organized as follows. Section II reviews the

basic mathematical quantities used for the characterization
of the ground motion. Section III presents the measure-
ments of the ground motion performed in the LHC tunnel.
Section IV presents the new model of the ground motion
calibrated on these measurements. Section Vexplains how
to use the model to evaluate the seismic response of a linear
accelerator and presents a numerical validation of the
model on a regular focusing lens–open space–defocusing
lens–open space (FODO) lattice. Finally, Sec. VI draws the
conclusions.

II. GROUND VIBRATIONS BACKGROUND

A. Absolute motion

Let xðtÞ be the time history of the vertical motion of the
ground at one point. The periodicity of the signal can be
estimated by measuring its autocorrelation function [4]

Rxxð�Þ ¼
Z 1

�1
xðtÞxðtþ �Þdt: (1)

FIG. 1. Lattice of quadrupoles.
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The Fourier transform of Rxxð�Þ is called the power
spectral density (PSD) �xxð!Þ (or simply �x) of xðtÞ

�xxð!Þ ¼
Z 1

�1
Rxxð�Þe�i!�d�: (2)

The root mean square (RMS) value is given by

�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ þ1

�1
�xxð!Þd!

s
(3)

which is infinite because the ground motion is not a sta-
tionary signal. However, one can still calculate the contri-
bution to �x above a given angular frequency ! by

�xð!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

!
�xxð�Þd�

s
: (4)

As explained in the Introduction, the correlation be-
tween the motion of different points is also an important
quantity for the evaluation of the performances of linear
accelerators. Let xðtÞ and yðtÞ be the vertical motion of two
points separated by a distance L. One can define their
cross-spectral density or mutual spectral density by

�xyð!Þ ¼
Z 1

�1
Rxyð�Þe�i!�d� (5)

and the normalized power spectral density is defined by

�xyð!Þ ¼ �xyð!Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xxð!Þ�yyð!Þ

q : (6)

The real part of (6) is called the correlation and its module
is called the coherence.

B. Relative motion

For the alignment of a linear accelerator, it is also
interesting to know the relative motion of the ground
between different locations in the tunnel. Let dðtÞ ¼
x1ðtÞ � x2ðtÞ be the relative motion between two points
located at a distance L, the power spectrum of the dðtÞ is
given by

�ð!; x1; x2Þ ¼ lim
T!1

1

T

��������
Z T=2

�T=2
dðtÞe�i!tdt

��������2

¼
Z 1

�1
Rddð�Þe�i!�d�: (7)

Typically, at low frequencies, the amplitude of this spec-
trum is smaller than�x1x1ð!Þ or�x2x2ð!Þ: it grows in !�2

instead of !�4 [5]. At higher frequencies (typically higher
than a few Hertz) the correlations disappear and the spectra
become similar. It is possible to show [6] that �ð!;LÞ is
related to the usual spectrum by

�ð!; x1; x2Þ ¼ �x1x1ð!Þ þ�x2x2ð!Þ ��x1x2ð!Þ
��x2x1ð!Þ: (8)

Assuming that the spectra of the signals are the same
�x1x1ð!Þ ¼ �x2x2ð!Þ ¼ �xxð!Þ, Eq. (8) becomes

�ð!; x1; x2Þ ¼ �xxð!Þ2f1� Re½�x1x2ð!Þ�g: (9)

Note that if the excitation field is spatially homogenous,
the relative spectral density depends only upon the differ-
ence x1 � x2 and �ð!; x1; x2Þ ¼ �ð!;LÞ.
Pioneering activities in the description of ground motion

have been reported in [7,8], and later in the accelerator
community [9–12]. In order to separate the contributions of
the different spatial wavelengths to the relative motion
between the two points, a two-dimensional power spec-
trum has been introduced in [5,13]. The motivation to
introduce such a quantity is the following one. On the
one hand, if the ground motion displaces the linear accel-
erator as a whole rigid body, it would not influence its
operation. This is, for example, the case for long wave-
lengths resulting from the ocean resonances. Even if they
have large amplitudes, these waves have a low influence
because of their long wavelength. On the other hand,
vibrations with a spatial wavelength of a few tens of meters
can have a great effect, even though their amplitudes are
much smaller.
If s is the longitudinal coordinate along the accelerator,

the two-dimensional power spectrum of xðt; sÞ is defined in
[13] as

Pð!; kÞ ¼ lim
T ! 1
L ! 1

1

TL

�
��������
Z T=2

�ðT=2Þ

Z L=2

�ðL=2Þ
xðt; sÞe�i!te�iksdtds

��������2

;

(10)

where k is the wave number, T the period, and L the
distance between two points. This quantity is particularly
useful to assess the performances of a linear accelerator, as
it contains all the information about the absolute and

TABLE I. Classification of the quadrupole relative motion.

� < d Corresponds to high frequencies.

Quadrupoles are not correlated.

d < � < L Quadrupoles are correlated

L < � Global displacement of the lattice,

does not affect its performance.
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relative motions. For example, the normalized mutual
spectrum (6) between two points separated by a distance
L can be expressed as [13]

�xyð!Þ ¼
R1
0 Pð!; kÞ cosðkLÞdkR1

0 Pð!; kÞdk : (11)

Using a corrected version of the well-known ATL law
[3], models of the ground motion have been developed in
[5] and validated on experimental measurements, assum-
ing that the ground motion is spatially homogenous. The
general expression is given by

Pð!; kÞ ¼ A

!2k2
½1� cosðL0kÞ� þDð!ÞUð!; kÞ; (12)

where

Uð!; kÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2max � k2

p if jkj � kmax

Uð!; kÞ ¼ 0 if jkj> kmax

Dð!Þ ¼ ai
1þ ½dið!�!iÞ=!i�4

and L0 ¼ B=ðA!2Þ. A, B, ai, di, and vi are the parameters
of the model; i ¼ 1; . . . ; n, where n is the number of waves
propagating in the ground. Several sets of these parameters
have been calibrated in [5] in order to develop a model of
the ground motion along a straight line in various locations.
One of them has been developed to represent the ground
motion in the LHC tunnel. It will be compared to the new
measurements in the next section.

III. GROUND VIBRATION MEASUREMENTS IN
THE LHC TUNNEL

A series of new measurements have been performed in
the LHC tunnel in 2008 just before the first beams [14].
The exact location is shown in Fig. 2. The campaign has

been conducted as follows. The motion of the ground has
been recorded by two geophones, placed at a variable
distance L from each other. One geophone remains always
at the same place; the other one is displaced at various
points in the tunnel. Some of these points are mentioned by
the vertical arrows in Fig. 2. All the data have been re-
corded during three consecutive nights, between 11:00 PM
and 4:00 AM.
Several studies of the ground motion in the LHC tunnel

are reported in the literature (see e.g. [15–19]). The differ-
ence between former measurements and those presented in
this paper is that they have a certain number of specific
features. First, for all the distances separating the geo-
phones, the signals have been recorded synchronously,
using optical fibers. Second, the signals have been recorded
in the three directions. Third, they have been recorded in
accelerator operating conditions. For all the measurements,
the coherence between the signals from the two geophones
can be computed using Eq. (6). The result is shown in
Fig. 3 for the three directions, for a few selected values of
L.
From this figure, one sees that the motion is coherent

over a long distance only in the narrow frequency range
around the frequency of the microseismic wave, at
0.17 (Hz). Above that frequency, the coherence is fading
out rapidly. Further evidence of the microseismic wave is
given in Fig. 4, showing the velocities of two points

FIG. 2. (Color) Location of the ground vibration measurements
in the LHC tunnel (average depth: 80 m). Vertical arrows show
some of the points where the signal has been recorded.

FIG. 3. (Color) Coherence measured in the three directions:
(a) vertical, (b) lateral, and (c) longitudinal (i.e. along the
main line of the tunnel).
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separated by a distance of 960 (m), filtered between 0.08
and 0.5 (Hz).

Figure 5(a) shows the power spectral density �xð!Þ of
the vertical displacement at various places in the LHC
tunnel. Below 1 Hz, all the curves are superimposed.
Above that, the power spectral density varies by a factor
up to 10 000, i.e., the level of the signal varies by a factor
100. These sources are responsible of what is known as the
technical noise. They can have two origins: either a varia-
tion of the level of vibration as a function of the abscissa of
the tunnel, due to local excitation sources (e.g. cooling
systems or ventilation), or a variation of the amplitude
corresponding to the different times of measurements. In
the latter case, the variations should also be visible on the
signals from the geophone which stays always at the same
location. Such variations have not been noticed. A detailed
analysis of these local sources would require a synchro-
nous monitoring of the ground vibrations at all these points
in the tunnel, during several nights. This is hardly realiz-
able, and anyway not currently feasible because the LHC
machine is running. However, our experience is that the
level of ground vibrations, measured at the same place and
roughly the same time shows, under the same environmen-
tal conditions, roughly the same signals. For this reason,
the most probable origin of these high variations of the
technical noise is a variation of the level as a function of the
abscissa of the tunnel.

Similarly, Fig. 6(a) shows the power spectral density
�ð!Þ of the lateral displacement at various places in the
LHC tunnel. The figure also shows significant variations of
the power spectral density above 1 (Hz). The procedure to
take these local variations into account is explained in the
next section.

IV. UPDATED MODEL OF THE GROUND MOTION
IN THE LHC TUNNEL

Consider the lattice of quadrupoles represented in Fig. 7,
fixed on independent girders. Let €uðtÞ ¼ f €u1ðtÞ; €u2ðtÞ; . . . ;
€unðtÞg be the vector of excitations at the supports of the
girders.
The locations of the supports are represented in Fig. 8(a)

as a function of the abscissa of the tunnel. We would like to
have a quantity that could be used to represent both the
absolute spectral density �uiuið!Þ at each of these sup-

ports, as well as the cross-spectral density �ð!; ui; ujÞ
between support i and support j for fi; jg ¼ f1; . . . ; ng.
This is represented by Fig. 8(c). In practice however,
only a few cross-spectral densities are measured (see
Sec. III). These are represented in Fig. 8(b).

FIG. 4. (Color) Velocities of two points located at a distance of
960 m, filtered between 0.08 and 0.5 Hz, in the three directions.

FIG. 5. (Color) (a) Power spectral densities of the measured
vertical displacement in the LHC tunnel; model extracted from
the measurements (solid circled line); lower and upper envelopes
of the measured PSDs. (b) Integrated RMS displacements of the
model (solid line) and the lower (dashed line) and upper (dash-
dotted line) envelopes shown in (a).
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First of all, let us assume that the ground excitation is
stationary and homogenous, i.e. �ð!; ui; ujÞ ¼ �ð!; ui �
ujÞ, and calculate the 2D spectral density (10). In this case,

the spatial variability of the ground motion is characterized
by �ð!;LiÞ, for i ¼ 1; . . . ; n. Let us denote the few relative
spectra available from the measurements by �ð!;L0

jÞ, with

j ¼ 1; . . . ; m � n. Then, the relative spectra are simply
related to the two-dimensional spectrum by the formula
[5,13]

Pð!; kÞ ¼
Z 1

0
cosðkLÞ½�ð!;L ! 1Þ � �ð!;LÞ�dL:

(13)

As the relative spectrum is available for only m values,
Eq. (13) becomes

Pð!; kÞ ¼ Xm
j¼1

cosðkL0
jÞ½�ð!;LmÞ � �ð!;L0

jÞ��L: (14)

Then, the relative spectrum for any other distance Li is
calculated from the dual equation

�ð!;LiÞ ¼
Z þ1

�1
Pð!; kÞ2½1� cosðkLiÞ� dk2� : (15)

However, this method cannot give any satisfactory result
because it averages all the local variations of the ground
motion in the calculation of the 2D spectral density. The
technical noise will then be overestimated when it is low,
and underestimated when it is high. For this reason another
method has been introduced in [20], based on asymptotic
behaviors. Following this method, the following parame-
ters have been found to model the vertical ground motion
in the LHC tunnel model with Eq. (12): A ¼
10�4 ð�m2 s�1 m�1Þ; B ¼ 10�4 ð�m2 s�3Þ; !1 ¼
2�� 0:14 ðrad=sÞ; d1 ¼ 5; a1 ¼ 0:1 ð�m2=HzÞ; v1 ¼
1000 ðm=sÞ. The coefficients are slightly different from
those presented in [5]. Integrating over the wave number
gives the power spectral density represented by the black
solid line in Fig. 5(a). One sees on this figure that the model
fits well the experimental data up to 0.8 (Hz), but does not
include the technical noise. Further evidence of this differ-
ence above 0.8 (Hz) is shown in Fig. 9. Figure 9(a) shows
the coherence calculated using Eq. (11) and the new nu-
merical values for the parameters of Pð!; kÞ. Figure 9(b)
shows the coherence directly calculated from the measure-
ments and Eq. (6).
In order to take the variations of the technical noise into

account, the spectral density can be corrected by an addi-
tional analytical function likeFIG. 7. General layout of the main line of a linear accelerator.

FIG. 8. (a) Locations of the supports on the longitudinal axis of
the tunnel. (b) Locations of synchronous measurements of the
ground motion. (c) Full characterization of the ground motion.

FIG. 6. (Color) (a) Power spectral densities of the measured
lateral displacement in the LHC tunnel; model extracted from
the measurements (solid line) and upper envelope of the PSDs
(dashed line). (b) Integrated RMS displacements for the model
(solid line) and the upper envelope (dashed line) shown in (a).
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Nð!Þ ¼ N0

1þ ð!!0
Þ6 ; (16)

where !0 ¼ 2�f0 and f0 ¼ 2� ðHzÞ. N0 ¼ 5�
10�3 ðnm2=HzÞ for low technical noise and N0 ¼
50 ðnm2=HzÞ for high technical noise. These functions
correspond to the upper and lower envelopes of the power
spectral densities [Fig. 5(a)]. Figure 5(b) shows the inte-
grated RMS displacements of the model without (solid
line) and with the low (dashed line) and high (dash-dotted
line) technical noise corrections. In the case of high tech-
nical noise, the correction leads to an integrated RMS at
1 (Hz) which is more than 40 times higher than the value
predicted by the model without technical noise. This means
that, in order to have a more realistic representation of the
seismic excitation of a linear accelerator, these corrections

should be included at several locations where the technical
noise is thought to be high (e.g. where there will be a pump
or a ventilation system).
Similarly, a model for the lateral direction has been

obtained with the following parameters: A ¼
10�3 ð�m2 s�1 m�1Þ; B ¼ 10�2 ð�m2 s�3Þ; !1 ¼ 2��
0:17 ðrad=sÞ; d1 ¼ 5; a1 ¼ 0:5 ð�m2=HzÞ; v1 ¼
1000 ðm=sÞ; !2 ¼ 2�� 1 ðrad=sÞ; d2 ¼ 8; a2 ¼
5� 10�4 ð�m2=HzÞ; v2 ¼ 400 ðm=sÞ. Again, the local
increase of the technical noise can be taken into account
using Eq. (16) with f0 ¼ 40 ðHzÞ andN0 ¼ 0:5 ðnm2=HzÞ.
The model without and with the correction for the techni-
cal noise are both shown in Fig. 6(a). Figure 6(b) shows the
RMS integrated of the updated model, with (dashed lined)
and without (solid line) the correction.
The next section presents a way to include the local

excitations and accelerator dynamics in the calculation of
the seismic response of a linear accelerator.

V. DYNAMIC RESPONSE OF A LINEAR
ACCELERATOR TO SPATIALLY VARYING

GROUND MOTION

An easy way to evaluate the mean square value of the
change of the beam position at the interaction point is to
use directly the two-dimensional power spectral density
[13]

�2
� ¼

Z 1

�1

Z 1

�1
Pð!; kÞ2½1� cosð!TrepÞ�GðkÞd!2�

dk

2�
;

(17)

where Trep is the repetition period of the collider, and GðkÞ
is a function of the collider parameters. Even if, due to its
compactness, this relationship is very convenient for a first
evaluation of the accelerator performance, it is not straight-
forward to include local support dynamics (e.g. the future
linear accelerator CLIC will contain four different types of
modules) and local variations of the ground motion (see
[21] and Sec. IV).
Another approach is to take the inverse Fourier trans-

form of the ground motion, and perform the simulation in
the time domain. In this case, the displacement of the
ground is given as a function of the abscissa s of the tunnel
by

xðt; sÞ ¼X
i

X
j

aijfsinð!itÞ sinðkjsþ	ijÞ

þ ½cosð!itÞ � 1� sinðkjsþ c ijÞg; (18)

where	ij and c ij are random phases. The main advantage

of this approach is that it can simulate transient dynamics,
and nonlinear effects. However, the dynamics of the sup-
ports are usually not taken into account, as integrating the
dynamic equations of a 48 (km) long machine in the time
domain is time consuming.

FIG. 9. (Color) Coherence between two points as a function of
the distance between these points (a) for the model extracted
from the measurements, and Eq. (11); (b) directly calculated
from the measurements in the LHC tunnel with Eq. (6).
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The approach developed in this section is to consider the
accelerator as a multisupported structure [4], and solve the
dynamic equations in the frequency domain. Consider a
lattice constituted by a set of girders on the top of which are
mounted quadrupoles (Fig. 8). The structure is excited by
the motion of its supports uðtÞ. Partitioning the restrained
and the unrestrained degrees of freedom (d.o.f.), the dy-
namics of the system reads

Mll Mlg

Mgl Mgg

 !
€x

€u

 !
þ Cll Clg

Cgl Cgg

 !
_x

_u

 !

þ Kll Klg

Kgl Kgg

 !
x

u

 !
¼ 0

fg

 !
; (19)

where subscript l refers to the lattice d.o.f. and subscript g
refers to those of the supports; fg represents the excitation

force at the supports, that is, the support reactions. The part
of Eq. (19) relative to the unrestrained d.o.f. can be rewrit-
ten

M ll €xþCll _xþKllx ¼ �Mlg €u�Clg _u�Klgu: (20)

The response of the structure can be split into its quasi-
static (qs) and dynamic components,

x ¼ xd þ xqs; (21)

where xqs stands for the quasistatic response of the struc-
ture resulting from the support displacements, and xd the
dynamic response. xqs can be found by canceling the time
derivatives in Eq. (20):

x qs ¼ �K�1
ll Klgu: (22)

Substituting Eq. (21) into Eq. (20) and using Eq. (22) gives

M ll €x
d þCll _x

d þKllx
d ¼ ðMllK

�1
ll Klg �MlgÞ €u

þ ðCllK
�1
ll Klg �ClgÞ _u:

(23)

Assuming that the damping matrix is proportional to the
stiffness matrix, the last term of (23) vanishes and one gets

M ll €x
d þCll _x

d þKllx
d ¼ ðMllK

�1
ll Klg �MlgÞ €u: (24)

In the frequency domain, the dynamic part of the re-
sponse is obtained by taking the Fourier transform of
Eq. (24),

X dð!Þ ¼ Gð!Þ½ðMllK
�1
ll Klg �MlgÞ� €Uð!Þ; (25)

where Gð!Þ ¼ ½�!2Mll þ j!Cll þKll��1. Similarly,
taking the Fourier transform of Eq. (22), one gets

X qsð!Þ ¼ �K�1
ll KlgUð!Þ ¼ �K�1

ll Klg

!2
€Uð!Þ: (26)

Combining Eqs. (19), (21), and (22), the total response
of the system is given by

X ð!Þ ¼
�
A

!2
þGð!Þ�

�
€Uð!Þ; (27)

where A ¼ �K�1
ll Klg and

� ¼ MllK
�1
ll Klg �Mlg (28)

is called the participation matrix.
As the response of the structure is dominated by a few

modes, it can be more convenient to decompose the dy-
namic displacements into their modal components z ac-
cording to

x d ¼ �z; (29)

where � ¼ f	1; 	2; . . . ; 	mg is a n�m matrix (n is the
number of d.o.f. and m is the number of modes considered
in the study) whose columns are the normal modes of the
fixed base structure, satisfying the orthogonality conditions

�TMll	 ¼ � ¼ diagð�iÞ
�TKll� ¼ ��2 ¼ diagð�i!

2
i Þ;

(30)

where �i and !i are, respectively, the mass and frequency
of mode i. Assuming that �TCll� ¼ 2�� ¼ 2
i!i,
Eq. (24) becomes

�€zþ 2�� _zþ��2 ¼ �m €u; (31)

where

� m ¼ �TðMllK
�1
ll Klg �MlgÞ (32)

is the m� ns modal participation matrix.
Upon Fourier transforming Eq. (31), the modal ampli-

tudes are given by

Z ð!Þ ¼ Hð!Þ�m €Uð!Þ; (33)

where

H ð!Þ ¼ 1

diag½�ið!2
i �!2 þ 2j
i!!iÞ�

: (34)

Combining Eqs. (29) and (33) into (27), one gets

X ð!Þ ¼
�
A

!2
þ�THð!Þ�

�
€Uð!Þ: (35)

The power spectral density of the response is found by
applying the definition (2) to the above equation [22–24]:
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S XXð!Þ ¼
��

A

!2
þ�THð!Þ�

��
S €u €uð!Þ

��
A

!2
þ�THð!Þ�

���

¼ 1

!4

XN
l¼1

XN
m¼1

AilAim�€ul €umð!Þ þXn
j¼1

Xn
k¼1

XN
l¼1

XN
m¼1

	ij	ik�lj�mkHjð!ÞH�
j ð!Þ�€ul €umð!Þ

� 1

!2

Xn
j¼1

XN
l¼1

XN
m¼1

	ijAil�mjHjð!Þ�€ul €umð!Þ

¼ SXqsXqsð!Þ þ SXdXdð!Þ þ SXdXqsð!Þ; (36)

where n is the number of unrestrained d.o.f. and N is the number of restrained d.o.f. The variance of Eq. (21) gives

�2
X ¼ �2

Xqs þ �2
Xd þ 2covðXd; XqsÞ

¼ XN
l¼1

XN
m¼1

AilAim

Z 1

�1
1

!4
�€ul €umð!Þd!þXn

j¼1

Xn
k¼1

XN
l¼1

XN
m¼1

	ij	ik�lj�mk

Z 1

�1
Hjð!ÞH�

j ð!Þ�€ul €umð!Þd!

�Xn
j¼1

XN
l¼1

XN
m¼1

	ijAil�mj

Z 1

�1
1

!2
Hjð!Þ�€ul €umð!Þd! (37)

which gives the mean square value of any d.o.f. of the
structure. The integrated RMS displacement �Xð!Þ is
readily found by replacing the lower integration bound
by ! in Eq. (37) and taking the square root of the whole
expression. The first term represents the contribution of the
quasistatic response of the lattice; the second term repre-
sents the dynamic contribution; the third term represents
the interaction between the quasistatic and dynamic
contribution.

The excitation matrix appearing in (36) can be expanded
as

S €u €uð!Þ ¼
�€u1 €u1ð!Þ �€u1 €u2ð!Þ � � � �€u1 €unð!Þ
�€u2 €u1ð!Þ �€u2 €u2ð!Þ � � � �€u2 €unð!Þ

� � � � � � � � � � � �
�€un €u1ð!Þ �€un €u1ð!Þ � � � �€un €unð!Þ

0
BBB@

1
CCCA;
(38)

where�€ui €uj is the cross power spectral density between the

acceleration at the support i and the support j.
In the particular case of a spatially homogenous excita-

tion,

�€ui €uj ¼ !4
Z 1

0
Pð!; kÞ cosðkLÞdk; (39)

where L is the distance between the support i and the
support j.

Then, in order to take local excitations into account, we
can simply add the contribution from the local technical
noise and the excitation matrix becomes

S €u €uð!Þ ¼ S €u €uð!Þ þ Slocalð!Þ; (40)

where

S localð!Þ ¼ !4diagfN1ð!Þ; . . . ; Nnð!Þg (41)

is a diagonal matrix because the technical noise is essen-
tially uncorrelated, and Ni is given by (16).
Finally, ifR is the transfer matrix of the line, linking the

quadrupole displacements and the change of the beam
position at the interaction point �, the power spectrum of
� is given by

��ð!Þ ¼ RSXXð!ÞR�: (42)

The main drawback of this formulation is that it is far
less compact than (17). The main advantage is that any
type of local characteristic can be fairly easily taken into
account, e.g., local excitation, local dynamics, or quadru-
pole flexibility.
In order to illustrate the model developed, let us consider

a FODO lattice, constituted ofN quadrupoles, alternatively
focusing and defocusing. In this case, the transfer matrix
from the quadrupoles to the beam offset at the end of the
lattice is a vector given by [16,25,26]

RðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
���j

q
F

sinð�jÞxj; (43)

where F is the focal length of the quadrupoles, xi is the
offset of quadrupole i, �� is the � function at end of the
lattice,
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�j ¼ 1þ sinð�=2Þð�1Þj
sinð�Þ 2sj; (44)

where sj ¼ jl is the coordinate of cell j along the lattice,

and � is the phase advance per cell. Even values of j
correspond to focusing quadrupoles, and odd values cor-
respond to defocusing quadrupoles. �j ¼ ð1=2Þðj� NÞ�
is the betatron phase advance.

In this example, it is assumed that all quadrupoles have
the same dynamic response. Each quadrupole is mounted
on a girder to perform the realignment of the elements, e.g.,
with a cam system. If we assume that each pair of quad-
rupole girder is a two d.o.f. system, the corresponding
lattice is represented in Fig. 7. For each system, the typical
transfer function TujxjðfÞ between the ground motion uj
and the quadrupole displacement xj is shown in Fig. 10

(dash-dotted line). Let us further assume that a mechanical
stabilization of the quadrupoles can decrease this trans-
missibility between 0.4 (Hz) and 20 (Hz), as shown in
Fig. 10 (solid line). Also, let us consider that the beam
based correction system corrects the position of each pulse
by subtracting the value measured at the previous pulse [6].
The ground motion model used in this example is the new
model presented in this paper, with an additional low
technical noise on each support. The following numerical
values have been used in the simulation: N ¼ 128, � ¼
�=2, l ¼ 6 ðmÞ, and a pulse repetition rate of frep ¼
30 ðHzÞ. The power spectral density of the ground motion
is shown in Fig. 11(a) (dashed line). Figure 11(a) also
shows ��ð!Þ at the end of the FODO lattice, when the
mechanical stabilization is OFF (dash-dotted line) and ON
(solid line). Figure 11(b) shows the integrated RMS of the
power spectral densities shown in Fig. 11(a). These results

are similar to the results presented in the literature (see e.g.
[6]).

VI. CONCLUSIONS

This paper contains mainly two contributions. First, new
measurements of the ground motion in the LHC tunnel
have been presented. Thanks to some of their key charac-
teristics (synchronous and multidirectional) it has been
possible to update the existing model of the ground motion
in the vertical direction, and propose a similar one in the
lateral direction. Also, it has been found from the mea-
surements that the integrated RMS of the ground motion
displacement can vary locally significantly. In order to
have a more realistic model of the excitation in the LHC
tunnel, a model of the local excitation has been presented.

FIG. 11. (Color) (a) Power spectral density of the ground motion
(dashed line), and of the beam at the end of the FODO lattice,
when the mechanical stabilization is OFF (dash-dotted line) and
ON (solid line). (b) Integrated RMS of the power spectral
densities shown in (a).

FIG. 10. (Color) Two d.o.f. model including an alignment stage
and a stabilization stage. Transmissibility Tujxj ðfÞ between the

ground and the quadrupole, when the mechanical stabilization is
OFF (dash-dotted line) and ON (solid line).
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Second, a dynamic model of linear accelerator has been
presented, which can include any type of local excitation
and local dynamics. Specifically, it has been shown how
local sources of excitations can be included in the model to
evaluate the seismic response of a linear accelerator. A
regular FODO lattice has been finally presented as a nu-
merical validation of the approach, including the dynamics
of the alignment stage, a mechanical stabilization of the
quadrupoles, and a simple beam based correction.
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