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This paper investigates the potential of using a nonlinear positive position feedback con-
troller for vibration mitigation of a Duffing oscillator. The proposed controller is designed
based on the principle of similarity which states that anti-vibration devices should be gov-
erned by the same equations as those of the host structure. Closed-form expressions for the
H1 optimal control parameters that minimise the maximal response of the structure are
firstly derived for the linear positive position feedback controller and then extended to
the nonlinear counterpart. The harmonic balance method is employed to approximate
the analytical solutions. Both numerical simulations and experimental validations are per-
formed to demonstrate the proposed control strategy.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Controlling nonlinear structural vibrations is becoming increasingly important in a number of engineering applications
such as aerospace, medicine and robotics, wherein lightweight materials are considered in the construction of systems in
order to meet the increasing demand for fuel efficiency or smaller actuators [1,2]. However, this will naturally lead to the
fact that the resonances are lightly damped and to the presence of geometrical nonlinearities resulting from large deforma-
tions. The resulting unwanted nonlinear vibrations thus become the main concern, limiting the success of these applications.
One key characteristic of nonlinear vibrations is their frequency-energy dependence which means that the frequency of the
nonlinear oscillations depends intrinsically on the motion amplitudes [3]. As a consequence, the mature linear damping-
enhanced approaches based on the superposition principle such as tuned mass dampers (TMD) and piezoelectric shunting
[4–6] (passive solutions) or direct velocity feedback, integral acceleration and force feedback controllers [7–10] (active solu-
tions) are no longer effective in the presence of strong nonlinearities. In order to recover their control effectiveness for a large
range of excitation levels, mechanisms that can deliver nonlinear reacting forces should be included in these linear
approaches. For example, Agnes [11] suggested to integrate a positive or negative cubic spring into a linear vibration absor-
ber for compensating the softening (hardening) nonlinear effect of the primary systems. Febbo and Machado [12] explored
the potential of using a nonlinear absorber with a saturation nonlinearity for vibration mitigation of a nonlinear primary
oscillator possessing a cubic stiffness. Habib et al. [13], Detroux et al. [14] and Habib and Kerschen [15] stated that nonlinear
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vibration absorbers can be designed as a mirror of the primary structures i.e. nonlinear vibration absorbers should possess
the same nonlinearities as those in the primary systems. This design principle is also referred to as the principle of similarity.
It was reported that nonlinear primary systems attached with nonlinear vibration absorbers designed based on the principle
of similarity behave in a similar fashion as their linear counterpart. Although this concept is promising, it may become cum-
bersome and expensive to realise them in practice using passive means for complex nonlinear primary systems.

On the other hand, in an active approach it is attempted to introduce the desired nonlinear control forces using sensors
and actuators. This may yield a nonlinear anti-vibration system that is less complex. Various types of active controllers have
been investigated for vibration attenuation of nonlinear systems [16–25]. Among them, linear positive position feedback
(LPPF) and nonlinear positive position feedback (NPPF) controllers are found to be particularly effective if they are aimed
to damp one particular structural vibration mode. This type of controller is implemented by feeding the structural position
directly to a linear or nonlinear compensator, whose output is then fed through a fixed gain positively back to drive the actu-
ator. In this context, they would be well suited for the applications where piezoelectric sensors and actuators are employed
for vibration damping. This is because the voltage from the sensor is proportional to the strain of the attached structure,
which can be directly measured to drive the strain-based piezoelectric actuators. Warminski et al. [21] compared the control
performance of a LPPF controller with three other controllers, namely proportional position feedback, cubic position feed-
back and nonlinear saturation feedback, for suppression of nonlinear composite beam vibrations. It was found that the LPPF
controller is only effective for weakly nonlinear systems and the nonlinear saturation controller was concluded to be supe-
rior for the nonlinear primary structure under consideration. The performance of the LPPF controller was also investigated in
[22], but on a four-degree-of-freedom system with cubic nonlinearities. El-Ganaini et al. [23] studied a nonlinear positive
position feedback controller for vibration suppression of a nonlinear system where both cubic and inertial nonlinearities
are present. This NPPF controller can be seen as an extension of a LPPF controller where a cubic nonlinear term is added
to the linear second order resonant compensator. Omidi and Mahmoodi [24,26] proposed to include an additional first-
order low pass filter in parallel to the NPPF controller aiming to enhance the control performance. Although the feasibility
of using active means for mitigation of nonlinear vibrations has been successfully demonstrated in the aforementioned stud-
ies, limited investigation on the optimisation of these controllers exists.

This study is focused on the optimisation of the described NPPF controller for vibration suppression of a Duffing oscillator
and on its experimental validation. The Duffing oscillator is defined as a forced and damped harmonic oscillator with a cubic
nonlinearity in the restoring force [27,28]. Although it exhibits a simple form, a variety of physical examples can be dynam-
ically characterised by the Duffing equation such as pendulum dynamics [29], beam buckling [30], cable dynamics [31] and
nonlinear isolators [32,33]. Using the NPPF controller for vibration mitigation of a Duffing oscillator can be considered as an
active anti-vibration approach developed based on the principle of similarity as proposed in [13–15], since the NPPF con-
troller possesses the same nonlinearity as the primary structure. Therefore, the optimisation process is sequentially per-
formed in two steps. For step one, the linear version of the NPPF controller i.e. the LPPF controller is optimally configured
for a linear single-degree-of-freedom (SDOF) system using the H1 criterion aiming to minimise the maximum steady state
response of the primary structure. The derived optimal setting for the LPPF controller serves as a basis for finalising the NPPF
controller for vibration mitigation of Duffing oscillators. In step two, the left un-optimised parameter i.e. the coefficient of
the cubic term in the NPPF controller is optimally tuned such that the resonance of the Duffing oscillator is damped by
the NPPF controller in a similar fashion as that of a linear SDOF system by a LPPF controller for an as large as possible range
of excitation levels. For primary systems with other classes of nonlinearities, the corresponding NPPF controller i.e. possess-
ing the same mathematical nonlinear form can be employed and optimised in a similar procedure.

The paper is organised as follows. In the next section, the mathematical model of the system under consideration is first
derived, based on which the optimal settings of the LPPF and NPPF controllers are derived using the H1 optimisation crite-
rion. In Section 3, experimental results are presented for the validation of the derived formulae. Conclusions are drawn in
Section 4.
2. Mathematical model and H‘ optimisation

2.1. Modelling

The system under investigation is shown in Fig. 1, which represents a Duffing oscillator. It is defined through a lumped
mass m1, a linear spring k1 and a cubic spring k3, and excited by a harmonic force F ¼ Fdcos xtð Þ. A force actuator with its
Fig. 1. The schematic of the system under consideration.
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stiffness k2 is placed in parallel to the passive mount. The control loop is implemented by feeding the displacement of the
lumped mass m1through a nonlinear controller h xð Þ to drive the actuator.

The governing equations of the system read:
m1€xþ k1xþ k3x3 ¼ Fdcos xtð Þ þ Fa � k2x ð1Þ

Fa ¼ g1h xð Þ ð2Þ

where Fa is the actuating force proportional to the driving signal, g1 represents the feedback gain and h xð Þ is the NPPF control
law.

The NPPF controller is designed based on the principle of similarity. A cubic term is thus included in the LPPF controller,
which yields:
€ua þ 2axf _ua þx2
f ua þ ju3

a ¼ x ð3Þ

where ua ¼ h xð Þ, a, xf and j are controller parameters.

In order to come to a more general formulation, the following parameters are introduced to normalise the system gov-
erning equations:
s ¼ x1t; l ¼ xf

x1
; kt ¼ k1 þ k2 y1 ¼ ktx

Fd
; y2 ¼ ktx2

1ua

Fd
; x1 ¼

ffiffiffiffiffi
kt
m

r
; d ¼ k3F

2
d

k3t
; g ¼ g1

ktx2
1

; b ¼ jkt
k3x6

1

ð4Þ
The equations of motion with normalised parameters can then be written as:
y001 þ y1 þ dy31 � gy2 ¼ cos Xsð Þ ð5Þ

y002 þ 2aly02 þ l2y2 þ dby32 � y1 ¼ 0 ð6Þ

where X is the normalised frequency defined as X ¼ x=x1.

It is shown that the forcing amplitude appears only in the expression of the nonlinear coefficients. The H1 optimisation
criterion is employed to optimise the controller h xð Þ aiming to minimise the maximummagnitude of the frequency response
of the system under consideration. In this context, the magnitude of the normalised driving point receptance y1j j is taken as
the performance index.

2.2. H1 optimisation of the LPPF controller

In this subsection, the optimisation of the LPPF controller is performed. This is done by setting the parameter d in Eq. (5)
equal to zero. The normalised driving point receptance of the primary structure is then given by:
y1 ¼ s2 þ 2alsþ l2

s4 þ 2als3 þ l2s2 þ s2 þ 2alsþ l2 � g
ð7Þ
where s ¼ jX is the Laplace variable and the modulus of y1 is calculated as:
y1j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X4 þ 4a2 � 2ð Þl2X2 þ l4

q

X2 � 1

� �2
l4 þ 2 2a2 � 1ð ÞX4 þ �2a2 þ 1ð ÞX2 þ g

� �
X2 � 1

� �
l2 þ �X4 þX2 þ g

� �2
r ð8Þ
From the mathematic point of view, the control effectiveness of the LPPF controller according to Eq. (7) would be similar
to that of a TMD, where an additional zero is introduced to interfere with the resonance of the primary system aiming to
reduce certain vibration metrics in the frequency band of interest. Following the H1 optimisation procedure proposed by
Den Hartog [4], the parameters of the LPPF controller are optimally tuned such that the response at the fixed points is min-
imised. Fixed point refers to the frequency location at which the magnitude of the driving point receptance of the primary
structure is invariant in terms of the damping coefficient of the TMD or the parameter a of the LPPF controller.

The frequencies at which the fixed points occur can be calculated by differentiating Eq. (8) with respect to the damping
coefficient, a, and equating the derivative to zero, which yields:
Xf1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2 þ 2� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4 � 2l2 þ 2g þ 1

pq
2

ð9Þ

Xf2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2 þ 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4 � 2l2 þ 2g þ 1

pq
2

ð10Þ
The optimal l is set to equalise the resulting performance index as defined in Eq. (8) at the two fixed points. This can be
achieved by substituting Eqs. (9) and (10) into Eq. (8) and equating the resulting expressions for a ¼ 0, which yields,
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lopt ¼ 1 ð11Þ

For the optimal a, it is sought to make the performance index pass horizontally through the fixed points. Thus, two opti-

mal damping coefficients associated with the two fixed points are obtained:
a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3g

4
ffiffiffi
2

p ffiffiffi
2

p
� ffiffiffi

g
p� �

vuut ð12Þ

a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3g

4
ffiffiffi
2

p ffiffiffi
2

p
þ ffiffiffi

g
p� �

vuut ð13Þ
The optimal a can be calculated in practice by calculating the quadratic average of Eqs. (12)and (13), which is given by:
aopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3g
4ð2� gÞ

s
ð14Þ
It should be noted that this approach is an empirical method as the resulting resonance points (the derivative of Eq. (8)
with respect to X is equal to zero) do not necessarily coincide simultaneously with the corresponding fixed points. An exact
solution for this problem was proposed in [34], with which the two resulting resonance points are equally mitigated. In this
study this exact approach is not considered because this would result in very long and therefore rather impractical polyno-
mial expressions.

Up to now, only the parameter g (normalised feedback gain) is left un-optimised for implementing the LPPF controller.
The function of the feedback gain g can be assessed by evaluating the magnitude of driving point receptance at the fixed
points. This is done by substituting Eqs. (9) and (11) into Eq. (8) for a ¼ 0, which yields the minimal maximum response
y1 mm ¼
ffiffiffi
2
g

s
ð15Þ
As shown in Eq. (15), the minimal maximum response is inversely proportional to the gain g, indicating that the value of
the feedback gain g should be as high as possible without compromising the stability of the active system.

The stability of an active linear system can be studied by applying the Routh-Hurwitz stability criterion to its closed loop
characteristic equation [35]. The characteristic equation of the system can be formed as:
A4s4 þ A3s3 þ A2s2 þ A1sþ A0 ¼ 0 ð16Þ

where A0, A1, A2, A3 and A4 are the corresponding coefficients of Laplace variable in the denominator of Eq. (7).

The Routh-Hurwitz stability criterion states that the roots of the characteristic equation have negative real parts if and
only if the following conditions are satisfied:
A0;A1;A2;A3;A4 > 0 ð17Þ

A2A3 � A1A4 > 0 ð18Þ

A1A2A3 � A2
1A4 � A0A

2
3 > 0 ð19Þ
It can be derived that the system is stable if and only if the gain g is defined such that:
g < l2 ð20Þ

In the following, numerical studies are performed to illustrate the control effectiveness of the LPPF controller for the sys-

tem under consideration. Fig. 2 shows the performance index y1j j plotted against frequency for five different damping ratios
defined as a=aopt: 0, 1/4, 1, 4 and 1, where the control parameters l is set to its optimal value as given in Eq. (11) and the
gain is set to 0.2. It can be seen that all the curves with different damping values intersect at two frequencies and only with
the optimal damping the response at the two fixed frequencies becomes maximum. One should also note that the system
becomes dynamically softer with the application of the LPPF controller as the control signal is positively proportional to
the displacement of the system in the low frequency range where the LPPF control effectiveness is similar to that of a neg-
ative spring. However, when the damping value approaches infinity, the softening effect disappears as the control action is
lost.

Fig. 3 depicts the performance index y1j j plotted against frequency for four different feedback gains, namely g: 0, 0.01,
0.05, and 0.5, where the control parameters l and a are both set to their optimal values. As can be seen, the performance
index indeed decreases with an increase in the gain as indicated by Eq. (15). In this respect, the feedback gain g of the
PPF controller can be understood to play the same role as the mass ratio between tuned mass dampers and host primary
structures, where better performance comes with greater values of this quantity. However, the approximation errors
induced by the estimation of the damping parameter a is more pronounced with an increase in the feedback gain. In the



Fig. 2. The driving point receptance for different active damping ratios.

Fig. 3. The driving point receptance for different feedback gains.
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same fashion, the response in the low frequency range will be more amplified because of the negative stiffness effect. There-
fore, the maximum feedback gain g is not only limited by the stability concern, but also by the amplification of the low fre-
quency response.

2.3. H1 optimisation of the NPPF controller

In this subsection,H1 optimisation of the NPPF controller is performed. Due to the cubic terms, it is difficult to derive the
explicit expression of the performance index from Eqs. (5) and (6). As reported in [36–38], harmonic solutions can be used to
approximate the exact solutions with a good agreement. In this study, the performance index is approximated using the
first-order harmonics. Thus, a one-term harmonic balance approximation is assumed as the solution:
y1 ¼ A1cos Xsð Þ þ B1sin Xsð Þ ð21Þ

y2 ¼ A2cos Xsð Þ þ B2sin Xsð Þ ð22Þ

Substituting Eqs. (21) and (22) into Eqs. (5) and (6), and applying the approximations cos3 Xsð Þ � 3=4cos Xsð Þ and

sin3 Xsð Þ � 3=4sin Xsð Þ, a set of polynomial equations is obtained by balancing cosine and sine terms:
�A1X
2 þ A1 � gA2 þ 3=4dA1ðA2

1 þ B2
1Þ ¼ 1 ð23Þ

�B1X
2 þ B1 � gB2 þ 3=4dB1ðA2

1 þ B2
1Þ ¼ 0 ð24Þ

�A2X
2 þ 2alXB2 � A1 þ l2A2 þ 3=4dbA2ðA2

1 þ B2
1Þ ¼ 0 ð25Þ

�B2X
2 � 2alXA2 � B1 þ l2B2 þ 3=4dbB2ðA2

1 þ B2
1Þ ¼ 0 ð26Þ
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Although the original nonlinear differential equations have been transformed to a set of nonlinear algebraic equations, it
is not yet possible to find explicit solutions of Eqs. (23)–(26). They are instead solved with approximate solutions. It is further
assumed that the nonlinear coefficient d is a small quantity and the harmonic coefficients Ai and Bi can be expanded into
series with respect to the primary nonlinear coefficient d, i.e. A1 ¼ A11 þ dA12, B1 ¼ B11 þ dB12, A2 ¼ A21 þ dA22 and
B2 ¼ B21 þ dB22.

Substituting the above ansatz into Eqs. (23)–(26), collecting the resulting expressions with respect to the order of the
parameter d, and omitting the expressions whose orders are higher than d1, one obtains:
�gA21 � A11X
2 þ A11 � 1 ¼ 0 ð27Þ

ð�4x2 þ 4ÞA12

4
þ 3A3

11

4
þ 3ðA11B

2
11Þ

4
� gA22 ¼ 0 ð28Þ

�gB21 � B11X
2 þ B11 ¼ 0 ð29Þ

ð�4x2 þ 4ÞB12

4
þ 3B3

11

4
þ 3ðB11A

2
11Þ

4
� gB22 ¼ 0 ð30Þ

ðl2 �X2ÞA21 þ 2alXB21 � A11 ¼ 0 ð31Þ

�A22x2 þ 2alB22xþ 3bðA3
21 þ 3A21B

2
21Þ

4
þ l2A22 � A12 ¼ 0 ð32Þ

ðl2 �X2ÞB21 � 2alXA21 � B11 ¼ 0 ð33Þ

�B22x2 þ 2alA22xþ 3bðB3
21 þ 3B21A

2
21Þ

4
þ l2B22 � B12 ¼ 0 ð34Þ
Solving for Aij and Bij (i ¼ 1;2, j ¼ 1;2) from Eqs. (27)–(34), the resulting solutions are found to be in terms of the control
gains a, l, g and the normalised frequency X. Due to the complexity, these expressions are not given here. Nevertheless, the
modulus of the normalised frequency response y1 Xð Þj j, namely the performance index, can be expressed as:
Q Xð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ B2

1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
11 þ B2

11 þ 2d A11A12 þ B11B12ð Þ þ d2 A2
12 þ B2

12

� �r
ð35Þ
An additional condition is imposed in order to derive the optimal coefficient of the nonlinear compensator b, which is
sought to maintain the equal peaks at the fixed points associated with the LPPF controller for the linear primary system i.e.:
Q Xf1
� ��� �� ¼ Q Xf2

� ��� �� ð36Þ

Substituting the optimal setting of l and a as given in Eqs. (11) and (14) as well as the solutions of Aij and Bij (i ¼ 1;2,

j ¼ 1;2) of Eqs. (27)–(34) into Eq. (36), one obtains
bopt ¼ 2g � 9=16g2 þ Oðg3Þ ð37Þ

In fact, Eq. (37) represents a simpler and more easily interpretable relation which is the Taylor series expansion of the

exact solution (it is not given here either because of the complexity) with respect to the feedback gain g given g � 1. The
relative error introduced by the approximation is fewer than 1.5% up to the dimensionless feedback gain g ¼ 1.

Up to now, the derivation of the explicit expressions for forming the NPPF controller h �ð Þ is complete wherein the optimal
control parameters l, a and b are given in Eqs. (11), (14) and (37), respectively. As for the maximum feedback gain g for the
NPPF controller, Eq. (20) which constrains the maximum g for the LPPF controller is still applicable according to the Lya-
punov’s linearisation theory [39]. This theorem states that if the linearised system is strictly stable, then the equilibrium
point for the actual nonlinear system is asymptotically stable. It can be proved that the nonlinear system coupled with
the NPPF controller as described by Eqs. (5) and (6) can be linearised to the same linear system as described in Section 2.2.
However, the Lyapunov’s linearisation theory is only valid for small range of motions around the equilibrium points (a local
stability theorem) and it is not yet clear what are the boundary conditions for the linearisation approximations to hold (glo-
bal stability theorem is needed). It is left for the subject of future work.

2.4. Performance of the NPPF controller

Numerical studies are performed to validate and examine the control effectiveness of the NPPF controller for the Duffing
oscillator. The performance index derived from the system governing equations given by Eqs. (5) and (6) is computed using a
path-following algorithm combining harmonic balance and pseudo-arclength continuation [37]. The first 5 harmonics are
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taken for a good approximation and the convergence requirement. The stability of the solutions is determined using Hill’s
method and the type of instabilities i.e. fold and Neimark-Sacker bifurcations is detected using a test function based on
the Floquet multipliers [37]. The ‘stability’ in the current context is referred to as the local stability of the solutions of the
nonlinear equations where the system motion is always bounded. This is different from the concept discussed in Sections
2.2 and 2.3, where the system motion exponentially increases until the system is destroyed if instability happens. In addi-
tion, a modal damping of 1% is added to the primary structure during the computation in order to avoid unnecessary numer-
ical errors i.e. infinite-amplitude responses. This particular value is chosen as it also represents the modal damping of the
experimental set-up that will be presented in Section 3.

The first study is focused on the validity of Eq. (37) which describes the optimal coefficient of the nonlinear compensator
i.e. the cubic term of the NPPF controller. Fig. 4 (a) plots the frequency response of the performance index y1j j of the Duffing
oscillator attached with a NPPF controller whose parameters are configured as follows: the normalised feedback gain g is set
to 0.05, the damping ratio and the resonance ratio a and l are calculated as in Eqs. (14) and (11), respectively, the nonlinear
coefficient d is set to 0.003 and the parameter b varies with respect to its optimal value as b=bopt: 1/4, 1/2, 1, 2 and 4. It is seen
that the response at the first resonance frequency increases with an increase of the parameter b and an opposite trend is
observed for the second resonance peak. The resonance peaks of equal amplitudes are obtained with the optimal setting
of the parameter b as given in Eq. (37). For the parameter setting b=bopt ¼ 4, a pair of fold bifurcations is observed which
modifies the stability of the solutions along the frequency response. Fig. 4 (b) compares the performance index of the Duffing
oscillator attached with an optimally tuned NPPF controller and its counterpart optimal LPPF controller for the same param-
eter configuration g ¼ 0:05 and d ¼ 0:003. As can be seen, the LPPF controller is detuned for the system under consideration
and a hardening behaviour characteristic of cubic springs with positive coefficients is present at the second resonance peak.
On the other hand, the two resonance peaks still remain approximately equal with the NPPF controller which reveals the
superior performance of the NPPF controller compared to the LPPF controller.

For the second study, the comparison between the LPPF and NPPF controllers is extended for some other values of the
nonlinear coefficient d which is chosen to vary between 0.0001 and 0.008. Fig. 5 (a) compares the frequency response of
the Duffing oscillator with the optimally tuned LPPF controller. As can be seen, when d is smaller than 0.0008, the LPPF con-
troller works properly, where the responses at the two resonances remain equal and the classical linear results are observed.
This is because the input excitation level is not high enough to trigger the nonlinearity of the primary system. However when
Fig. 4. The performance index |y1| with the NPPF controller for the feedback gain of 0.05, the primary nonlinear coefficient d of 0.003 and: (a) different
values of the nonlinear coefficient b (b) the optimal nonlinear coefficient b, and comparison with an optimal LPPF controller (—: stable solution, –: unstable
solution, d: fold bifurcation).



Fig. 5. The performance of the system under consideration where the feedback gain is set to 0.05 and the primary nonlinear coefficient d varies between
0.0001 and 0.008: (a) with LPPF controller, (b) with NPPF controller and (c) quasiperiodic motion at X ¼ 1:16 (—: stable solution, –: unstable solution, d:
fold bifurcation, .: Neimark-Sacker bifurcation).

464 G. Zhao et al. /Mechanical Systems and Signal Processing 132 (2019) 457–470
d is increased to 0.003, a visible difference between the two peak amplitudes is observed, which indicates that the optimal
LPPF controller starts to be detuned. Above 0.005, the controller is completely detuned as the response at the second reso-
nance is much greater than that at the first resonance. It is also noted that a sudden shift of the location of the second res-
onance occurs when d is increased from 0.003 to 0.005 which is not the case for example when d is increased from 0.005 to
0.008. This phenomenon is observed because there is an isolated resonance branch, also termed an isola, coexisting with the
main frequency response function curve due to the non-uniqueness solutions of nonlinear equations. For d ¼ 0:005, the isola
merges with the main curve at the second resonance leading to a sudden shift of the resonance. On the ground of the
observed results, it can be concluded that the LPPF is only effective for weakly nonlinear systems in terms of vibration
mitigation.

Fig. 5 (b) depicts the control effectiveness of the optimal NPPF controller for the same system parameter configuration as
that applied for the LPPF controller. It shows that the nonlinear controller can compensate LPPF detuning until d reaches
0.005. However, it is not able to fully eliminate the coalescence of the isola and the main frequency response curve by
the proposed NPPF controller as seen for the case when d ¼ 0:008. This means that the NPPF controller fails to maintain
the equal peak property in the presence of a very strong nonlinearity. In addition, another type of dynamical instability
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i.e. a pair of Neimark-Sacker bifurcations is observed which leads to a branch of quasiperiodic solutions. The quasiperiodic
solutions are computed using direct time integration techniques and the maximum peak amplitude is taken as the response
for the plot. It is noted that the quasiperiodic branch suddenly breaks around the first fold bifurcation point and the
quasiperiodic solutions after this point merge with the normal oscillation solutions. This indicates that the second half
branch of the quasiperiodic oscillations may not be stable i.e. it cannot be physically realised. A time series of the quasiperi-
odic motions at X ¼ 1:16 is plotted in Fig. 5 (c). It is shown that the control performance degrades in the presence of the
quasiperiodic motions as the resonance peak is amplified. Nevertheless, the proposed NPPF controller is shown to be able
to delay the occurrence of the coalescence of the isola and the main frequency response function curve for relatively large
forcing amplitudes compared to the LPPF controller, which also allows to extend the linearity bandwidth of the nonlinear
system under control to a relatively large extent. It is foreseen that this bandwidth can be further extended if b is assumed
to be also dependent on the nonlinear coefficient d instead of Eq. (35) which is solely determined by g. This is also left for the
subject of future work.
3. Experimental validation

In order to validate the analytical formulae derived for the LPPF and NPPF controllers in Section 2, a representative test
bed for a Duffing oscillator was constructed which is shown in Fig. 6. The set-up consists of a cantilever aluminium beam
with dimensions 45 cm*3cm*0.3 cm (length*width*thickness), which is clamped at one side and attached with a voice coil
actuator (AVM24-10) at the other side. Close to the voice coil actuator, an eddy-current sensor was installed to measure the
tip displacement of the beam. In this study, only the first bending mode of the beam is considered such that the single mode
beam dynamically represents a linear SDOF system. As for the nonlinear cubic spring of the Duffing oscillator, it was realised
in an artificial way by feeding back the tip displacement of the cantilever beam through a cubic function to drive the voice
coil actuator. With this configuration, it is also possible to simulate nonlinear forces for other applications by applying the
corresponding force profiles to the actuator. However, some additional damping is induced due to the installation of the
voice coil actuator (the eddy-current effect and air viscous damping effect), which violates the no damping assumption of
the primary structure. Thus, a negative damping control loop was implemented in addition in order to eliminate the total
inherent damping of the system. This is achieved by calculating the derivative of the tip displacement signal and positively
feeding it back to drive the voice coil actuator.

The configuration scheme for the experimental study is depicted in Fig. 7. As seen, the input signal applied to the voice
coil actuator comprises four contributions: (i) the disturbance force, (ii) the cubic spring force, (iii) the negative damping
force and (iv) the control force. It is noted that the control force delivered by the NPPF controller is calculated in a way similar
to that for implementing the ‘artificial’ Duffing oscillator, where the output of the LPPF compensator is fed through a cubic
function and then negatively superposed with the displacement signal (sensor output) in order to form the corresponding
nonlinear input signal for the LPPF compensator.
Fig. 6. The experimental test set-up: (1) voice coil actuator, (2) eddy current sensor, (3) DC power source to power the conditioner for the eddy current
sensor, (4) cantilever beam, (5) MicroLabBox, (6) laptop and (7) current amplifier.



Fig. 7. The configuration scheme for the experimental study.
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During the experimental study a dSpace MicroLabBox system was used both for data acquisition and for control purposes.
The whole control scheme was implemented in theMatlab Simulink environment and then downloaded to the processor unit
of the MicroLabBox system. The control scheme was updated at a sampling frequency of 10 kHz, and the measured data was
recorded at the same sampling frequency. A current amplifier (ADD-45N) was used to drive the voice coil actuator.

In order to derive the optimal control parameters for the test bed under consideration, system identification was per-
formed. With a curve fitting process, the modal mass, stiffness and the damping ratio (when negative velocity feedback loop
is activated) associated with the first bending mode of the cantilever beam were identified; they are given in Table 1. The
nonlinear cubic stiffness k3 was artificially set to 2� 108 N/m3.
3.1. Experimental results in a linear regime of motion

The first set of experiments was conducted to test the validity of the optimal control parameters for the LPPF controller.
The cubic branches in Fig. 7 for the primary Duffing oscillator and the NPPF controller were deactivated such that the system
dynamically behaves in a linear fashion. During the tests, a white noise signal was applied to excite the beam in the vicinity
of its first bending motion at 8.6 Hz. The duration of the measurement was set to 200 s. The optimal settings of the LPPF con-
troller are given in Table 1.

Fig. 8 plots the transfer function between the disturbance force and the measured tip displacement, where the parameter
a is varied from 1/100 to 100 times the theoretical optimum value. Fig. 9 investigates the effect of the feedback gain g1 on the
frequency response of the driving point receptance, where the parameters a and l were set to their optimal values as given
in Eq. (14) and Eq. (11), respectively. As seen, the obtained experimental results are in accordance with the theoretical anal-
ysis. The parameters of the LPPF controller can be tuned to minimise the maximum response of one structural mode in a
fashion analogous to that of TMDs. The effectiveness of the LPPF controller at the optimal tuning is also verified to be depen-
dent upon the feedback gain. However, as it was already emphasised in Section 2, the price to pay for this superior perfor-
mance is the amplification of the response at low frequency. This is because the LPPF controller turns to a proportional
controller at low frequency where its control effectiveness is to reduce the effective stiffness of the system thus leading
to the low frequency amplification side effect. Figs. 8 and 9 are to be compared with Figs. 2 and 3, respectively.
3.2. Experimental results in a nonlinear regime of motion

The potential of the LPPF and NPPF controllers for damping the Duffing oscillator is experimentally explored in this sec-
tion. A sine sweep signal is applied as the disturbance to excite the beam. The sine sweep is bounded between 4 and 15 Hz
with a sweeping rate of 0.02 Hz/s.
Table 1
Parameters of the Duffing oscillator, optimal LPPF and NPPF controllers, and the level of the excitation force.

Primary system LPPF NPPF Exc. Level

m1 ¼ 0:093 kg g1 ¼ 39;000
(g ¼ 0:05)

g1 ¼ 39;000
(g ¼ 0:05)

Fd ¼ 4 mN (d ¼ 0:00017)
Fd ¼ 8 mN (d ¼ 0:00067)

kt ¼ 270:27 (N/m) lopt ¼ 1 lopt ¼ 1 Fd ¼ 12 mN (d ¼ 0:0015)
gneg ¼ 0:6

(damping ratio of 1%)
aopt ¼ 0:1391 aopt ¼ 0:1391 Fd ¼ 16:5 mN (d ¼ 0:003)

Fd ¼ 20 mN (d ¼ 0:0042)

k3 ¼ 2� 108 (N/m3) jopt ¼ 1:8283� 1015

(bopt ¼ 0:099)

Fd ¼ 23 mN (d ¼ 0:0056)
Fd ¼ 27 mN (d ¼ 0:0077)



Fig. 8. The frequency response of driving point receptance for different values of the damping ratio a when the LPPF controller is applied.

Fig. 9. The frequency response of driving point receptance for different values of the feedback gain g when the LPPF controller is applied.

Fig. 10. Measurement of the tip displacement normalised to the excitation level when the LPPF controller is applied: (a) time history signals and (b) its
envelope.
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The control effectiveness of the LPPF controller for vibration mitigation of the Duffing oscillator is examined first. Fig. 10
(a) plots the time history of the tip displacement normalised to the level of the excitation force which is varied from 4 to
16.5 mN, while Fig. 10 (b) depicts the envelope of the normalised response which thus can be equivalently considered as
the driving point receptance, hereafter also referred to as the experimental performance index. The corresponding nor-
malised nonlinear coefficient d for different levels of the excitation force is calculated according to Eq. (4) and shown in
Table 1. As can be seen, the observed experimental results agree well with the theoretical analysis, that is, the LPPF controller
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is only effective for weakly nonlinear systems. In addition, a jump phenomenon associated with positive cubic springs is
experimentally observed which indicates the existence of the fold bifurcations of the system motion.

Next, the validity of Eq. (37) is experimentally examined by repeating the same tests as conducted for Fig. 4, where the
coefficient of the cubic term of the NPPF controller j is varied over a range from 1/4 to 4 times the theoretical optimum
value. The optimal value of j and its dimensionless counterpart b is given in Table 1. The corresponding experimental results
are shown in Fig. 11, which again agree well with the theoretical analysis i.e. the resonance peaks of equal amplitude are
obtained with the derived optimal setting of j.

The control performance of the LPPF and NPPF controllers is experimentally compared for the same feedback gain
g1 ¼ 39;000 (normalised gain g ¼ 0:05) and the excitation level Fd ¼ 16:5 mN (d ¼ 0:003), which is shown in Fig. 12. It
can be seen that the detuned control performance with the LPPF controller in terms of theH1 norm is retrieved by the NPPF
controller as predicted in Fig. 4 (b).

The investigation of the NPPF controller is continued with different levels of the excitation force ranging from 8 to 27 mN.
The corresponding dimensionless nonlinear coefficient is given in Table 1. The experimental results are presented in Fig. 13
(a) and (b). It can be seen that the control performance with the NPPF controller is maintained for a larger range of excitation
force amplitudes compared to the LPPF controller. However, when the disturbance was increased to 27 mN, the response of
the system is modulated around 10 Hz, which indicates that the system might fall into the regime of quasiperiodic motions.
In order to confirm this, a sinusoidal excitation was used instead, where the frequency varied from 9.7 Hz to 10.2 Hz and the
amplitude was set to 27 mN. The evolution of the time series of the normalised system response with respect to the exci-
tation frequency is shown in Fig. 13 (c). It can be seen that the system response below 10.1 Hz exhibits more than one fre-
quency component under a sinusoidal excitation, which is a clear sign of the quasiperiodic oscillations. At 10.2 Hz, the
maximum amplitude of the system response suddenly decreases and the quasiperiodic motion disappears. Back to the
experimental performance index curve associated with this excitation amplitude as shown in Fig. 13 (b), the results observed
can be understood as follows: the system response follows the main frequency response curve until the first Neimark-Sacker
bifurcation point located at around 9.7 Hz, then it continues to undergo some quasiperiodic motions between 9.7 Hz and
10.1 Hz and finally the response jumps down to the main frequency response curve instead of continuing to approach the
Fig. 11. Measurement of the tip displacement normalised to the excitation level when the NPPF controller with different values of b is applied: (a) time
history signals and (b) its envelope.

Fig. 12. Experimental performance index obtained with the optimal LPPF and NPPF controllers for the same level of excitation Fd ¼ 16:5mN and feedback
gain g1 ¼ 39;000.



Fig. 13. Measurement of the tip displacement normalised to the excitation level when the optimal NPPF controller is applied: (a) time history signals, (b) its
envelope and (c) time series with sinusoidal excitations.
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second Neimark-Sacker bifurcation point along the same branch. This trend corresponds well with the numerical investiga-
tion as shown in Fig. 5 (b) for the case d ¼ 0:008.

4. Conclusion

This paper investigates the control effectiveness of a NPPF controller for vibration attenuation of a Duffing oscillator. The
proposed NPPF controller is built upon the classical LPPF controller but a cubic term is included according to the principle of
similarity. The optimal settings of the LPPF and NPPF controllers are derived using the H1 optimisation criterion. Simple
though accurate closed-form expressions are obtained. The harmonic balance method is employed to approximate the ana-
lytical solutions, and also to numerically evaluate the proposed tuning methodology. It is shown that the LPPF controller is
only effective for weakly nonlinear systems in terms of vibration mitigation, while the NPPF controller could hold the control
efficiency for a relatively large range of forcing amplitudes. However, the NPPF controller can be also detuned for very
strongly nonlinear regimes. This is because inherently nonlinear dynamical instabilities such as isolas cannot be eliminated
by the proposed controller. The analytical study was also validated on an experimental test bed which exhibits the same
dynamics as that of a Duffing oscillator. The obtained results correspond well with the theoretical predictions.
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