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Spoilers

 What are gravitational waves?
e How can we detect them?
e How a detector works

* How we make it work
* Sensors
* Actuators
* The humans
* The control room

* The E-TEST project at ULiege
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What are GWSs?

1. Die Grundlage
der allgemeinen Relativitdtstheorie;
von 4, Einstein,

Gravitational waves are deformations

. . : Die im nachiolgenden dargelegte Theone bildet die denk-
Of the Spa Cetlme due to blg, traumatlc bar weitgehendste Verallgemeinerung der heute allgemsin als

Belativititstheorie™ bezeichneten Theorie; die letztere nemme
ich im folgenden zur Unterscheidung von der ersterem ,,spezislle

even tS I n th € Un i verse. Relativititstheorie” und setze sie als bekannt voraus. Die

Verallgemeinerang der 'Relativitatstbeorie wurde sehr eor-
leichtart dureh die Gestalt. walehe der soeziellen Relativitits.

Einstein theorized them in 1916, after proving that we live in a 4D
universe (x,y,z,t) and that the geometrical system in which we live (the
spacetime) can bend and deform.
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Gravity is *not™ a force but a property of the spacetime, thanks to the
possibility of deformation.

Ok, but what does that imply?

That the more massive the object, the bigger the deformation.
And what if the objects move?

And how massive is massive?  pul)  What causes a GW generation?
And how big is big?



What Powered the Big Bang?

Gravitational Waves can Escape from
Earliest Moments of the Big Bang

Inflation
(Big Bang plus

10-3% seconds?)

Big Bang plus
300,000 Years

Big Bang plus
15 Billion Years




How can we detect them?

))

The effect of a GW is a deformation of lengths.

2. &
= This means that when a GW passes thru an object,
this deforms in lengths (stretches and squeezes).
) A SMELLOSGOF

So what, we place a ruler and we measure how much
the object changed? Nope, again.

JRUER 10 LOU 1 ‘

The deformation induced by the GW passage is around
10e-18 m.

For reference, the H atom is about 10e-12 m...

Einstein itself did not believe they could be ever
measured...

‘Listen! There they are again - echoes of the Big Bang. The beginning of creation!’



How a detector works

We cleverly opted for an indirect measurement:
What we need to measure is a length s (in m). And we know
thats=vxt.

If we manage to keep v = const. and find a way to measure
the time passing during a GW event, we could calculate s!

Amazing, let’s do it!

What can go at constant speed? Light in vacuum. Let’s use
that.

How can we measure that it took a different time to go from
here to there?

There is a nice instrument, known since end of 1800s, that
can do the trick: the Michelson Interferometer.
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Let’s complicate a bit

This is interference
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Let’s make it horror

Advanced LIGO
Optical Layout, L1 or H1
with Seismic Isolation and Suspensions

. . G1200071-v4
Each piece is a chamber. J. Kisssl Nov 8 2017

Inside each chamber there is instrumentation
dedicated to different features of the detector.

HAM1 HAM2 HAM3
Input -
. . . Mode e
Each line of chamber is enclosed in a L, Cleaner /7" Pl
tube for vacuum. ; '
Laser Hém A
. r = <. Power \o>s_ PR2 <)
Each tube is 3 or 4 km long. ; Ser” 7 Recyng ST
Common
{ DsscisiHep AmLendh {
4 BramIsI + FF LACs + HEPI
| ArhL o — o
Adgy = —— This is why... {__Pram st + wep _signal
] p—— i
A i _ _:l/Passive Stack + HEPI Cavty
Test Mass Quad Sus (QUAD)
Beam Splitter / Fold Mirror Triple Sus (BSFM) '\
Where h = 10e-21 is the amount that distances HAM Large Triple Sus (HLTS) <‘ )| Hams
HAM Small Triple Sus (HSTS) @"2 1
are stretched or Compressed by a passing GW, Transmission Monitor & Telescope Double Sus (TMTS) T
. L. Output Mode Cleaner Double Sus (OMCS) Output “OM2E
relative to the original length. Faraday Single Sus (OFIS) Qoce [ 4 Q-
Vacuum Optical Parametric Oscillator Single Sus (VOPQ) t: . :' Differential
HAM Auxiliary Single Sus (HAUX) Squeezed Light zm" T e
HAM Tip-Tilt Single Sus (HTTS) Injection System e Jvoro A



How it looks like in pics

Credits: LIGO and Virgo
collaboration




And inside...
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Credits: LIGO and Virgo collaboration
University of Western Australia




How we make it work

Interferometers are incredibly challenging instruments to drive and this
requires the contribution of people with the most variety of
competences.

This is because they need to drive sensors and actuators, possibly
without breaking anything and without getting in conflict with other
parts of the instrument working at the same time.

How many sensors/actuators are involved? Hard to guess, since every
sub-group is expert of their own section of the instrument...



Sensors

There are several conditions to monitor in an interferometer:

- seismic motion and vibrations

- temperature and thermal effects

- laser performance and stability (power, modes, temperature, pressure)
- guantum effects

- gravity effects

- optical deformations

| will focus here on the section about seismic sensors.
Happy to give contacts if interested in other sections

13



Stabilized Platform
(occelerometers/coils
magnetsactuators)
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Seismic isolation S—
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Seismic noise is one of the most important
affecting the detector.

This is because the smallest vibration can
provide fringe moving and spoil a measurement.

Suspended
Seismic Filters

This is done in passive and active ways.

Virgo detector opted for a fully passive way,
using a multi-level pendulum.

LIGO opted for active and passive ways, using a
small pendulum and an active platform.

Studies at ULiege for hybrid options ongoing...
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Credits: LIGO and Virgo collaboration
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Displacement sensors
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A lot of new science and engineering to improve the inertial sensors below 1 Hz!
The technology chosen is compact interferometry.

This idea is under development in many research labs and it provides sensitivity

down to 10mHz and 100 Hz.

We are interested in those frequencies because the detectors are blind there,
where instead they could detect several interesting objects
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Ding (2018)

Zeoli — Uliege 2023
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This is an example of better performance of interferometric sensing (HoQl) applied to displacement sensors,
compared to nominal sensors.
Study from University of Birmingham (UK).
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This is an example of better performance of interferometric sensing applied to inertial sensors, compared to
nominal sensors.
Study from University of Birmingham (UK).
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Actuators

The majority of the sensors is pared to a control loop for noise suppression.

Credit: Dr. Jenne Driggers, LIGO Hanford

Actuators receive info from the
sensors and apply corrections in
case it is needed.

Actuators are applied where active
isolation is used.
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The humans

A typical interferometer is normally driven by

- Physicists

i MeChamcaI engmeers Me when finished to build a suspension.
- Electronical engineers Waiting for the OK for installation...

- Technicians

- Server managers
- Safety managers (ah yeah, it can be dangerous)
- Researchers travelling to site from all over the world

- Fellowships students...
Yes, all together and in night and day shifts...
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Do we really make it work?

And also we need to consider the

Yes, we do. |ldea to shut everything down...

GW:s were discovered in 2017 thanks to
the interferometers. _

- large eq

. big red button

unk/isi/hl/scripts/earthquakeplot. Py

Nobel prize for Physics awarded!
Sometimes we fail...

¢ 3 The Nobel Prize in Physics 2017
¥
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Med ena halften till
With one half to: and with the other half jointly to:
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Kip S. Thorne

Rainer Weiss Barry C. Barish
LIGONIRGO Collaboration LIGO/NVIRGO Collaboration
"fér avg6rande bidrag till LIGO-detektorn och observationen av gravitationsvagor”

“for decisive contributions to the LIGO detector and the observation of gravitational waves”

LIGONVIRGO Collaboration

© Kungl. Vetenskapsakademien
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Shall we do better?

* 100 000 detections per year |
* Early detections

e Detection of super-massive
black holes

* Multi-messenger astronomy

Einstein Telescope

Credits: ET collaboration 24



Key points of ET

* 6 interferometers

* Longer arms (10 km)

* Bigger mirrors (100 Kg)

* Less thermal noise (cryo T)

e Higher pendulum (17 m)

 Reduced Newtonian noise (underground)

Credits: ET collaboration



The E-TEST project at ULlege

* Research at ULiege is ongoing to
improve inertial sensors and to
validate the advanced technology for
new GW detectors, as Einstein
Telescope (ET)

* At ULiege, the prototype E-TEST is
under construction to test the hybrid
technology mentioned before

* For more info about E-TEST in
general, please visit:

Work in progress.
https://www.etest-emr.eu/ Credit: Haidar Lakkis
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https://www.etest-emr.eu/

E-TEST objectives

= Large mirror (100 Kg)
= Cryogenic temperature (10-20 K)
= |solated at low frequency (0.1-10 Hz)

=N =  Compact suspension (4.5 meters)

—
==== — E-TEST feasibility strategy

E-TEST is a project funded by the Interreg
Euregio Meuse-Rhine and ET2SME
consortium, which allow us to capitalize on
existing infrastructure at Centre Spatial Liege
(CSL) for the construction of the facility.

LS. (GSL RWIH  kuLswven

Laboratory

\

Ni%ef ¥ UCLouvain @micas ~ Fraunhofer

ILT
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Room T inertial sensor for the E-TEST prOJect

\ Mechanics

* Longperiod: f, = 2 Hz

* Low loss fused-silica
flexures.

* Linear mechanical
guide for the optical
readout.

Feedback actuator:
* Moving magnet VCA.
* Self-shielded quadrupole magnet.
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— Ground Motion -Horizontal
{|——Ground Motion - Vertical
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Horizontal cryogenic inertial sensor for E-TEST
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Credit: Morgane Zeoli 30



Vertical Cryogenic inertial sensor for E-TEST

A test campaign was taken in
E-VINS design adapted for collaboration with RWTH Aachen
Sp ereealle el eelnle el | to select the optical elements th,
works the best in cryogenic
conditions (collimators,
photodiodes, polarization,
alignment, etc). The results are
used for both CSIS-V and H.

Ground Motion ——HINS/VINS
e Control on GS-13
===Resolution T-240
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-TEST

Current status of E




Visiting E-TEST

E-TEST facility is now located at the Centre Spatial de Liege and it is
possible to visit.

A visit is planned for today for whoever is interested.

For other chances, please feel free to contact prof. Christophe Collette
at:

Christophe.collette@uliege.be CSL
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Useful places:
Thanks for attending! TDR
https://arxiv.org/abs/2212.10083
E-TEST Project website
https://www.etest-emr.eu/
PML website
http://www.pmlab.be/

Useful people:

Dr. Chiara Di Fronzo Anthony Amorosi
cdifronzo@uliege.be Anthony.amorosi@uliege.be
Prof. Christophe Collette Haidar Lakkis
Christophe.collette@uliege.be  mhlakkis@uliege.be
Morgane Zeoli Mayana Teloi

Morgane.zeoli@uliege.be Mayana.teloi@uliege.be
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