

Towards a Soundcheck accelerometer. sensor testing at the E-TEST cold platform

Speaker: Morgane Zeoli (PhD) morgane.zeoli@uliege.be

Supervisors:

Christophe Collette Joris van Heijningen Giacomo Bruno

E-TEST and LGWA mutually beneficial arrangement

OI E-TEST

Monitor residual motion with fm/\sqrt{Hz} sensitivity down to 1 Hz

02 LGWA

- Parallel development of cryogenic inertial sensors for Soundcheck and LGWA
- Exploit E-TEST cold platform low-vibration cryogenic environment to perform a selfnoise measurement (huddle test)

LGWA Workshop – Payload session

Cryogenic inertial sensors E-TEST \rightarrow LGWA

Vertical cryogenic inertial sensor

Ding, 2021, PhDthesis AAmorosi, L. Amez-Droz, 2022, ISMA2022 MZeoli, 2022, Master thesis

10²

GS13

40

Adaptation of E-MNS to cryogenic conditions

Open-loop

Inertial mass

Homodyne quadrature IFO for parallel R&D and comparison with homodyne architecture

Test of 1550 nm optical elements in cryogenic conditions

RNTHAA

Test of 1550 nm optical elements in cryogenic conditions

Test of 1550 nm optical elements in cryogenic conditions

Expected sensitivity

- Horizontal cryogenic inertial sensor

J.V. van Heijningen +, 2018, IEE SAS proc., pp 76–80

Horizontal inertial sensor baseline

Cm-scale interferometric readout

All light end up to the PDs so 41% less shot noise at same input power and less heat load

All common mode noises are decreased to shot noise level

0.5

Low-loss actuation: shielded-magnets voice-coil actuator

Shielding-magnets VCA

Cancel far-field magnetic field from agents and decreases eddy-current damping

Expected sensitivity

Further development – Nobium proof-mass

Small test blocks with a compressed proof mass to test interfaces between milled holes and the spark-erosion cuts including the delicate flexures.

Machining by Mike de Jong, VU Amsterdam EDM specialist

Cutting machine alignment + annealing

Summary

Vertical sensor

Development of a first prototype operating in **openloop** with a leaf-spring suspension mechanism and an homodyne quadrature interferometer

- Horizontal sensor

Development of a first prototype operating in **closed-loop** with a Watt's linkage mechanism, an homodyne interferometer and a shielding magnets voice-coil actuator

- 1550 nmoptics

Validation campain of 1550nm optical elements at cryogenic temperature

Testing of the prototypes in E-TEST quiet and cold environnement to learn and further improve the designs

Adaptation of E-MNS to cryogenic conditions

Alignement is important!

- Fringe visibility
- Sensitivity to couplings

23

Interferometer architectures

