

Decoupling strategies for MIMO system

Done by:

Haidar Lakkis

Thomas Dehaeze

Most of the work presented in this seminar was done with the help of documentations and models done by Thomas Dehaeze.

Here is a link to this documentation:

- For Documentation: <u>https://research.tdehaeze.xyz/svd-control/</u>
- Matlab codes and simscape model: <u>https://git.tdehaeze.xyz/tdehaeze/svd-control</u>

Open Loop transfer matrix of a coupled system:

Considered Plant:

- 3 Actuators
- 4 sensors(accelerometers)

Transfer Function from Actuator F3 to sensor A2y

Considered Plant:

- 3 Actuators
- 4 sensors(accelerometers)

Model of Gravimeter

Treat the transfer function as a SISO TF and actively controlling it, good controller with good stability margins

Transfer Function from Actuator F2 to sensor A1x

Considered Plant:

- 3 Actuators
- 4 sensors(accelerometers)

Centralized Control:

Ts: sensor transformation matrix

Ta: actuator transformation matrix

Actuation Vector in decoupled frame

Output Vector in decoupled frame

- SISO control approaches could be applied.
- Easy to control independently the degrees of freedom.
- Certain knowledge of the plant is required (kind of knowledge depends on decoupling strategy).

F = H * x Where:

Control matrix

Table of contents

- Singular Value Decomposition
- Jacobian decoupling
- III. Modal decoupling

Ι.

11.

IV. Comparison and Conclusions

$$A = U\Sigma V^T$$

Where :

- A is an *mxn* rectangular matrix
- U is an mxm orthogonal matrix, $U^T U = I$.
- V is an nxn orthogonal matrix , $V^T V = I$
- Σ is an mxn pseudo-diagonal matrix where first r elements on the diagonal are the singular values of A, which we denote as $\Sigma_{ii} = \sigma_i$ of $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$, and all other elements of Σ equal to zero

$$\begin{pmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{pmatrix} = \begin{pmatrix} U_{11} & \cdots & U_{1m} \\ \vdots & \ddots & \vdots \\ U_{m1} & \cdots & U_{mm} \end{pmatrix} \begin{pmatrix} \sigma_1 & \cdots & 0 & 0 & \cdots & 0_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0_{m1} & \cdots & 0 & 0 & \cdots & 0_{mn} \end{pmatrix} \begin{pmatrix} V_{11} & \cdots & V_{1n} \\ \vdots & \ddots & \vdots \\ V_{n1} & \cdots & V_{nn} \end{pmatrix}^T$$

Coupled Plant Transform matrix Decoupled Plant Transform matrix

Interesting to check: https://www.youtube.com/watch?v=nbBvuuNVfco

Plant Modelling using Matlab and Simscape:

Parameter definition :

Parameter definition :			$\begin{bmatrix} a_2 & r \end{bmatrix}$
<pre>Matlab</pre>	-	_	$a_{2,x}$ $a_{2,y}$
<pre>la = 1/2; % Position of Act. [m] ha = h/2; % Position of Act. [m]</pre>			
<pre>m = 400; % Mass [kg] I = 115; % Inertia [kg m^2]</pre>			
<pre>k = 15e3; % Actuator Stiffness [N/m] c = 2e1; % Actuator Damping [N/(m/s)]</pre>			
<pre>deq = 0.2; % Length of the actuators [m]</pre>			$y $ $\{O\}$
g = 0; % Gravity [m/s2]			· · · · · · · · · · · · · · · · · · ·
<pre>System identification :</pre>			$\begin{bmatrix} a_1 \\ a_1 \end{bmatrix} \xrightarrow{F_1} \xrightarrow{I_a} \xrightarrow{I_a} \xrightarrow{I_a}$
<pre>io(io_i) = linio([md1, '/F2'], ', 'openinput'); io_i = io_i + 1; io(io_i) = linio([md1, '/F3'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([md1, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([md1, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;</pre>	y		$\left \begin{bmatrix} a_{1,x} \\ a_{1,y} \end{bmatrix} \right \mathbf{x} \stackrel{d}{=} \begin{array}{c} \mathbf{y} \\ \mathbf$
<pre>io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;</pre>	z x	Simscape model	Model of Gravimeter
G = linearize(mdl, io); G InputName = ('E1' 'E2' 'E3').			

G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};

 $||F_3|$

SVD decoupling using Matlab :

Evaluating transfer matrix values at frequency of 10Hz:

wc = 2*pi*10; % Decoupling frequency [rad/s]

H1 = evalfr(G, j*wc);

Real approximation of the computed transfer matrix at 10Hz:

D = pinv(real(H1'*H1));

H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));

SVD decomposition performed using the following matlab command:

Matlab

Matlab

Matlab

[U,S,V] = svd(H1);

	/-0,78	0,26	-0,53	0,2 \		/-0.79	0,11	-0.6 \
Π_	0,4	0,61	-0,04	-0,68	V =	0.51	0.67	-0.54
0 =	0,48	-0,14	-0,85	0,2	, ,	-0.35	073	0 59
	0,03	0,73	0,06	0,68 /		× 0,55	0,75	0,0 7 7

Model of Gravimeter

SVD centralized vs decentralized control schemes:

Jacobian decoupling

Analytical calculation of the Jacobians:

In cartesian coordinates:

 $M\ddot{x} + Kx = F$

Since at COM:

 $M = diag(m, m, I_{\theta})$

Consider J as Jacobian matrix from cartesian coordinates to the coordinates of the actuators/sensors:

$$F = Bf$$
 Where: $f = \begin{pmatrix} F_1 \\ F_2 \\ F_3 \end{pmatrix}$ and $F = \begin{pmatrix} F_x \\ F_y \\ M_{\theta} \end{pmatrix}$

According to principle of virtual work:

q = Jx

Analytical calculation of the Jacobians:

Actuator Jacobian:

From rigid body dynamics:

 $x_e = x_{CM} + R(\theta) x_{e0}$

Relative displacement:

$$q = x_e - x_{e0}$$

Where :

- x_e : position of an element in the Cartesian frame in the deformed configuration.
- x_{CM} : is the position of the center of mass in the Cartesian frame.
- x_{eo} : is the position of the considered element in the reference configuration.

Relative displacements at actuator locations can be calculated as follows:

$$R(\theta) = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

$$q_{F1} = (1 \ 0) \left[\begin{pmatrix} x \\ y \end{pmatrix} + R(\theta) \begin{pmatrix} -\frac{l}{2} \\ -h_a \end{pmatrix} - \begin{pmatrix} -\frac{l}{2} \\ -h_a \end{pmatrix} \right] = x + (1 - \cos(\theta)) \frac{l}{2} - \sin(\theta) h_a$$

$$q_{F2} = (0 \ 1) \left[\begin{pmatrix} x \\ y \end{pmatrix} + R(\theta) \begin{pmatrix} -l_a \\ -\frac{h}{2} \end{pmatrix} - \begin{pmatrix} -l_a \\ -\frac{h}{2} \end{pmatrix} \right] = y + l_a(\sin(\theta)) + \frac{h}{2}(1 - \cos(\theta))$$

Analytical calculation of the Jacobians:

Actuator Jacobian:

$$q_{F3} = (0 \ 1) \left[\begin{pmatrix} x \\ y \end{pmatrix} + R(\theta) \begin{pmatrix} l_a \\ -\frac{h}{2} \end{pmatrix} - \begin{pmatrix} l_a \\ -\frac{h}{2} \end{pmatrix} \right] = y - l_a(\sin(\theta)) + \frac{h}{2}(1 - \cos(\theta))$$

$$H_{act} = \begin{bmatrix} \frac{\partial q_{F1}}{\partial x} & \frac{\partial q_{F1}}{\partial y} & \frac{\partial q_{F1}}{\partial \theta} \\ \frac{\partial q_{F2}}{\partial x} & \frac{\partial q_{F2}}{\partial y} & \frac{\partial q_{F2}}{\partial \theta} \\ \frac{\partial q_{F3}}{\partial x} & \frac{\partial q_{F3}}{\partial y} & \frac{\partial q_{F3}}{\partial \theta} \end{bmatrix}_{(x,y,\theta)=(0,0,0)} = \begin{bmatrix} 1 & 0 & -h_a \\ 0 & 1 & l_a \\ 0 & 1 & -l_a \end{bmatrix}$$

Equation used to move from actuation in coupled frame to actuation in the cartesian frame centered at COM:

$$F = J_{act}^{T} * f \qquad \qquad f = (J_{act})^{-T} * F$$

Where :

Forces in actuators coordinates

Model of Gravimeter

Analytical calculation of the Jacobians:

Sensor Jacobian:

Relative displacements at sensor locations can be calculated as follows:

$$\begin{split} R(\theta) &= \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \\ q_{a1x} &= (1\ 0) \begin{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + R(\theta) \begin{pmatrix} -\frac{l}{2} \\ -\frac{h}{2} \end{pmatrix} - \begin{pmatrix} -\frac{l}{2} \\ -\frac{h}{2} \end{pmatrix} \end{bmatrix} = x - \frac{h}{2}(\sin(\theta)) + \frac{l}{2}(1 - \cos(\theta)) \\ q_{a1y} &= (0\ 1) \begin{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + R(\theta) \begin{pmatrix} -\frac{l}{2} \\ -\frac{h}{2} \end{pmatrix} - \begin{pmatrix} -\frac{l}{2} \\ -\frac{h}{2} \end{pmatrix} \end{bmatrix} = y + \frac{l}{2}(\sin(\theta)) + \frac{h}{2}(1 - \cos(\theta)) \\ q_{a2x} &= (1\ 0) \begin{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + R(\theta) \begin{pmatrix} 0 \\ \frac{h}{2} \end{pmatrix} - \begin{pmatrix} 0 \\ \frac{h}{2} \end{pmatrix} \end{bmatrix} = x + \frac{h}{2}\sin(\theta) \\ q_{a2y} &= (0\ 1) \begin{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + R(\theta) \begin{pmatrix} 0 \\ \frac{h}{2} \end{pmatrix} - \begin{pmatrix} 0 \\ \frac{h}{2} \end{pmatrix} \end{bmatrix} = y + \frac{h}{2}(-1 + \cos(\theta)) \end{split}$$

Analytical calculation of the Jacobians:

Sensor Jacobian:

$$J_{sens} = \begin{bmatrix} \frac{\partial q_{a1x}}{\partial x} & \frac{\partial q_{a1x}}{\partial y} & \frac{\partial q_{a1x}}{\partial \theta} \\ \frac{\partial q_{a1y}}{\partial x} & \frac{\partial q_{a1y}}{\partial y} & \frac{\partial q_{a1y}}{\partial \theta} \\ \frac{\partial q_{a2x}}{\partial x} & \frac{\partial q_{a2x}}{\partial y} & \frac{\partial q_{a2x}}{\partial \theta} \\ \frac{\partial q_{a2y}}{\partial \theta} & \frac{\partial q_{a2y}}{\partial \theta} & \frac{\partial q_{a2y}}{\partial \theta} \end{bmatrix}_{(x,y,\theta)=(0,0,0)} = \begin{bmatrix} 1 & 0 & -\frac{h}{2} \\ 1 & 0 & -\frac{h}{2} \\ 0 & 1 & \frac{l}{2} \\ 1 & 0 & \frac{h}{2} \\ 0 & 1 & 0 \end{bmatrix}$$

Equations used to move from sensing accelerations in decoupled frame to sensing accelerations in cartesian frame.

 $\begin{pmatrix} a_x \\ a_y \\ a_{\theta} \end{pmatrix}$ Accelerations measured accelerations in cartesian coordinates

Jacobian centralized vs decentralized Control schemes:

 $a_{2,x}$

Question: Why decoupling the Jacobian at the COM lead to better decoupling at high frequency?

Roughly speaking :

Jacobian decoupling at center of stiffness (COK):

COK is the geometrical point corresponding to obtaining diagonal stiffness matrix ${\cal K}$:

 $\mathcal{K} = \begin{bmatrix} k_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & k_n \end{bmatrix} \qquad \qquad K_{\{K\}} = J_{\{K\}}^T \mathcal{K} J_{\{K\}}$

Conditions for the existence of COK for a planar system:

 $k_i \hat{s}_i \hat{s}_i^T = diag \ matrix$ $k_i \hat{s}_i (b_{i,x} \hat{s}_{i,y} - b_{i,y} \hat{s}_{i,x}) = 0$

With :

- \hat{s}_i :unit vector corresponding to the struts
- k_i : stiffness of the struts
- b_i :location of joints on the platform

At the end the distance between the COM an COK could be calculated :

$${}^{M}O_{K} = \begin{bmatrix} k_{i}\hat{s}_{i,y}\hat{s}_{i} & -k_{i}\hat{s}_{i,x}\hat{s}_{i} \end{bmatrix}^{-1} k_{i}({}^{M}b_{i,x}\hat{s}_{i,y} - {}^{M}b_{i,y}\hat{s}_{i,x})\hat{s}_{i} \quad \Box >$$

Calculate the Jacobians considering COK as new reference

Jacobian decoupling at COK and COM:

Question: What could be done to obtain full decoupling over all bandwidth using one Jacobian ?

Jacobian decoupling at collocated COM and COK:

Plant with collocated COM and COK

Modal decoupling

Simplified Simscape model :

New parameter definition :

Matlab
<pre>%% System parameters 1 = 1.0; % Length of the mass [m] h = 2*1.7; % Height of the mass [m]</pre>
<pre>la = 1/2; % Position of Act. [m] ha = h/2; % Position of Act. [m]</pre>
<pre>m = 400; % Mass [kg] I = 115; % Inertia [kg m^2]</pre>
<pre>%% Actuator Damping [N/(m/s)] c1 = 2e1; c2 = 2e1; c3 = 2e1;</pre>
<pre>%% Actuator Stiffness [N/m] k1 = 15e3; k2 = 15e3; k3 = 15e3;</pre>
<pre>%% Unit vectors of the actuators s1 = [1;0]; s2 = [0;1]; s3 = [0;1];</pre>
<pre>%% Location of the joints Mb1 = [-1/2;-ha]; Mb2 = [-1a; -h/2]; Mb3 = [la; -h/2];</pre>
<pre>%% Jacobian matrix J = [s1', Mb1(1)*s1(2)-Mb1(2)*s1(1); s2', Mb2(1)*s2(2)-Mb2(2)*s2(1); s3', Mb3(1)*s3(2)-Mb3(2)*s3(1)];</pre>
%% Stiffnesss and Damping matrices of the struts

New simplified plant: 3 actuators with 3 collocated displacement sensors

Collocated Model

Kr = diag([k1,k2,k3]); Cr = diag([c1,c2,c3]);

Analytical development of modal decomposition:

Modal decoupling depends on the equations of motion: $M\ddot{x} + C\dot{x} + Kx = F$

Measurement output combination of the motion variable x:

 $y = C_{ov} x + C_{ov} \dot{x}$

Then apply change of variables :

$$x = \Phi x_m$$

With :

- *x_m* modal amplitudes
- Φ a matrix whose columns are the mode shapes of the system

Collocated Model

Map actuator forces as follows using COM jacobian:

$$F = J^T \tau$$

New equation of motion become: $M \Phi \ddot{x}_m + C \Phi \dot{x}_m + K \Phi x_m = J^T \tau$

And new form of measured output becomes: $y = C_{ox} \Phi x_m + C_{ov} \Phi \dot{x}_m$

After multiplying both sides with Φ^T : $\Phi^T M \Phi \ddot{x}_m + \Phi^T C \Phi \dot{x}_m + \Phi^T K \Phi x_m = \Phi^T J^T \tau$

We denote :

- $M_{modal} = \Phi^T M \Phi = diag(\mu_i)$ as modal mass matrix
- $C_{modal} = \Phi^T C \Phi = diag(2\xi_i \mu_i w_i)$ (classical damping)
- $K_{modal} = \Phi^T K \Phi = diag(\mu_i w_i^2)$ (modal stiffness matrix)

Collocated Model

Substituting again in EOM yields : $\ddot{x}_m + 2\Xi\Omega\dot{x}_m + \Omega^2 x_m = \mu^{-1}\Phi^T J^T\tau$

With :

- $\mu = diag(\mu_i)$
- $\Omega = diag(w_i)$
- $\Xi = diag(\xi_i)$

Modal input matrix:

Modal output matrices:

 $B_m = \mu^{-1} \Phi^T J^T$

$$C_m = C_{ox}\Phi + sC_{ov}\Phi$$

Collocated Model

Modal input :

 $\tau_m = B_m \tau$

Collocated Model

Centralized vs decentralized Control schemes:

To get C_m and B_m we need to compute C_{ox} , C_{ov} , Φ , μ and J: x = yget ${oldsymbol {\Phi}}$ from K and R_z M matrices $y = \mathcal{L} = Jx$ And $y = C_{ox}x + C_{ov}\dot{x}$ $C_{ox} = J$ $C_{ov} = 0$ Matlab %% Modal Decomposition $[V,D] = eig(M\setminus K);$ %% Modal Mass Matrix mu = V' * M * V;%% Modal output matrix Cm = J*V;%% Modal input matrix Bm = inv(mu)*V'*J';

J is Jacobian

Collocated Model

Modal decomposition using Matlab:

 $B_m = \begin{pmatrix} -0.0004 & -0.0007 & -0.0007 \\ -0.051 & 0.0041 & -0.0041 \\ 0 & 0.0025 & 0.0025 \end{pmatrix}$ $C_m = \begin{pmatrix} -0.1 & -1.8 & 0 \\ -0.2 & 0.5 & 1 \\ 0.2 & -0.5 & 1 \end{pmatrix}$

Modal decomposition performed using the following matlab command:

Matlab

Plant perfectly decoupled

over the whole bandwidth

Gm = inv(Cm)*G*inv(Bm);

 x_m τ_m τ y B_m^{-1} C_m^{-1} G Centralized Scheme Open Loop Transfer Functions of the decoupled plant using modal decomposition 10^{2} $G_m(i,j) \ i \neq j$ $G_m(1,1)$ 10^{0} $G_m(2,2)$ $G_m(3,3)$ Magnitude 10^{-2} 10^{-4} 10^{-6} 10^{-1} 10^0 10^{1} 10^{2} 37 Frequency [Hz]

 G_{Modal}

It is possible to use SISO control approaches to actively control all decoupled modes.

Compare all presented decoupling strategies:

- SVD decomposition
- Jacobian decoupling at COM
- Jacobian decoupling at COK
- Modal decomposition

Apply SVD and Jacobian decoupling at COM for this model and compare them with results obtained by model decomposition and Jacobian decoupling at COM New simplified plant: 3 actuators with 3 collocated displacement sensors

Collocated Model

Jacobian decoupling of the collocated system:

Same compromise as shown before:

- Decouple at COK for good decoupling at low frequencies
- Decouple at COM for good decoupling at high frequencies

SVD decoupling of the collocated system:

Decoupling frequency = 10Hz

decoupling for this system

Modal decoupling of the collocated system:

New simplified plant: 3 actuators with 3 collocated displacement sensors

Collocated Model

	Jacobians	Modal Decomposition	SVD
Philosophy	Topology Driven	Physics Driven	Data Driven
Requirements	Known geometry	Known equations of motion	Identified FRF
Decoupling Matrices	Decoupling using J obtained from geometry	Decoupling using ${oldsymbol \Phi}$ obtained from modal decomposition	Decoupling using U and V obtained from SVD

	Jacobians	Modal Decomposition	SVD
Decoupled Plant	$G_{\{0\}} = J_{\{0\}}^{-1} G J_{\{0\}}^{-T}$	$G_m = C_m^{-1} G B_m^{-1}$	$G_{SVD} = U^{-1}G(s)V^{-T}$
Physical Interpretation	Forces/Torques to Displacement/Rotation in chosen frame	Inputs to excite individual modes	Directions of max to min controllability/observability
Decoupling Properties	Decoupling at low or high frequency depending on the chosen frame	Good decoupling at all frequencies	Good decoupling near the chosen frequency

	Jacobians	Modal Decomposition	SVD
Pros	 Physical inputs / outputs Good decoupling at High frequency (diagonal mass matrix if Jacobian taken at the COM) Good decoupling at Low frequency (if Jacobian taken at specific point) 	 Target specific modes 2nd order diagonal plant 	 Good Decoupling near the crossover Very General

	Jacobians	Modal Decomposition	SVD
	 Coupling between force/rotation may be high at low frequency (non diagonal terms in K) 	 Need analytical equations 	 Loose the physical meaning of inputs/outputs
Cons	 If good decoupling at all frequencies => requires specific mechanical architecture 		 Decoupling depends on the real approximation validity

Thank you