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Abstract

In a context of ever growing demand and environmental requirements, aircrafts are subject
to innovation. In order to improve their efficiency, the mass of their components, such
as bladed disks, is reduced at the cost of high vibration stresses. This work studied the
implementation of active and passive piezoelectric damping devices on a simplified version
of the bladed disk: the bladed rail. To avoid interfering with the aerodynamic area around
the blades, piezoelectric patches were placed on the bottom surface of the rail. The bladed
rail, as any periodic structure, possesses groups of closely located natural frequencies,
corresponding to families of modes. The objective of this project was to damp the first
family. To that end, State Space models were generated using a 3D finite element model
and the Structural Dynamics Toolbox in Matlab. Passive damping techniques - resistive
and inductive piezoelectric shunts - as well as active techniques -integral and resonant
collocated controllers - were then applied to the models. As a result, the vibrations of the
blades were diminished. The resonant controller showed the best damping performance
but poor stability robustness. Inductive shunting and integral control, exhibiting similar
performance, presented advantages and disadvantages depending on the user’s limiting
factors. Finally, preliminary experiments on a 3D-printed prototype of the bladed rail
were conducted, in order to corroborate the simulation model.

Keywords: blisk, bladed rail, active damping, piezoelectric shunt, MIMO control, collo-
cated sensor and actuator
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Chapter 1
Introduction

Chapter summary Acrospace structures are expected to become efficient in terms of
energy consumption. Designing lighter structures is a way to achieve this, but it comes at
the cost of a low internal damping which leads to increased vibrations. It is the case of
the blisk, an integrated bladed disk, an essential component of turbomachines. Since the
intrinsic damping of this structure is very low, traditional damping devices are not appli-
cable anymore. Piezoelectric materials, able to transduce energy between the mechanical
and electrical domain, are advantageous candidates as they can easily be placed on existing
structures to implement passive damping (with shunt circuits) or active damping (using
the piezoelectrics as sensors and actuators). This study intends to employ piezoelectric
technology in order to conceive vibration absorbers for a simplified version of the blisk:
the bladed rail.

1.1 Damping of aerospace structures

Air transportation is facing a crucial dilemma: while the demand is endlessly growing, so
are the environmental standards. The functional efficiency (i.e. ratio between aircraft per-
formance and fuel consumption) of aerospace structures is being improved by introducing
new techniques to decrease drag, complexity, number of parts, and weight. This result is
achieved in various ways, such as the use of new materials, of lightweight structural design
and of smart structures [9].

The weight improvements have come at the cost of a reduction of structural damping
(around 0.01%), inducing large vibratory stresses. These unwanted vibrations have a nega-
tive impact on the aerodynamic efficiency of the structure and cause high-cycle fatigue that
can reduce the structure lifetime to half [10]. Therefore, vibration reduction technologies
are required for high performance and long lifespan in today’s acroengines.

Turbomachines are notably concerned by this issue. The device exchanges energy with
a fluid using continuous flow and rotating blades. Aside from aircraft engines, they can be
found in wind turbines.

In the case of aircrafts, the turbomachine works by letting air enter through the front
inlet leading it to a compressor, which consists of several blades attached to a disk mounted
on a shaft. These rotating blades compress the air, and subsequently increase the pressure.
The air is then mixed with sprayed fuel in the combustion chambers where a spark starts
a combustion reaction. As a result, the expanding hot gases produced by the combustion
go through a turbine to create shaft power, and through a nozzle to generate thrust. This
shaft power drives the compressor, drawing new air into the machine, thus closing the cycle
[11], see Figure 1.1.

Bladed disks are essential components of compressors in turbomachines. Their vibra-
tion modes are mainly excited by aerodynamic loading acting on the blades. The flow field
inside the engine is inherently unsteady, producing pressure variations, which are perceived
by the spinning blades as time-varying forces [1|. It can provoke a resonant response, re-
sulting in high vibrations. Other types of excitation can also engender forced vibration in
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Compressor (made
of bladed disks) Shaft Nozzle

_:_I_IHJI.|-I ==

Air inlet Combustion Turbines
chamber

Figure 1.1 — Turbomachine representation - Image from wikimedia Commons File:Jet en-
gine.svg at https://commons.wikimedia.org/wiki/File:Jet_engine.svg

a system mode: foreign object damage (for example a bird entering in contact with the
turbomachine), nonlinearities caused by contact interfaces [12] or bladed disk mistuning
[13].

In order to diminish vibrations in bladed disks, several techniques have been developed.
The most classical one is the incorporation of friction devices. In conventional bladed disks,
the disk and the blades are manufactured separately and then assembled, allowing to casily
place those dampers at the root of the blade or between the blades themselves [1], see Figure
1.2. This method dissipates the energy by creating a contact surface between the vibrating
parts.

Attachment
mechanism

Contact interface

Figure 1.2 — Interface contact between the blade and the disk. Damping devices are placed
in between [1].

Another approach consists in using viscoelastic materials associated to the structure
[14]. Some materials can also be used as surface coating, improving the vibration reduction
of the blades [15].

Contactless damping mechanism based on eddy current damping applied in bladed disk
has been investigated, using permanent magnets and copper plates fixed on the blades [16].
This kind of solution is efficient, but difficult to implement.
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As mentioned before, one of the priorities of the aerospace industry is to reduce the
weight of aircraft parts, while improving their efficiency. This led to the creation of one
part bladed disks, called blisks, see Figure 1.3 (a). Those new designs do not only make the
structure lighter or reduce the number of parts; the elimination of the attachment mech-
anism between the blades and the disk induces the increase of the aerodynamic efficiency
and the diminution of the blade drag. Besides, the interface of the blades and the disk is
usually a point of crack initiation. By merging those parts, we get rid of that issue [17].

Figure 1.3 — (a) Blisk; (b) Turbine made of three bladed disks - the BluM |[2]

However, this new design generates a new structural problem. Separated disk and
blades possess frictional interface. But as a single part, the blisk exhibits little intrinsic
damping. Moreover the classic damping devices that use friction or viscoelasticity are no
more applicable considering there is no interface where to place them. This is precisely
why other methods are needed.

In that context, the use of piezoelectric materials is more and more perceived as a
serious easy-to-implement alternative application for blisk vibration damping.

1.2 Piezoelectic damping

1.2.1 Piezoelectric materials

The so-called piezoelectric effect was first discovered in 1880 by the brothers Pierre and
Jacques Curie. They demonstrated that some materials are able to transform mechanical
energy into electrical energy (direct piezoelectric effect). The converse piezoelectric effect,
the creation of mechanical energy from electrical energy, was predicted one year later by
Gabriel Lippmann |[3].

Piezoelectricity, literally “electricity generated from pressure” in Greek, is found natu-
rally in many monocrystalline materials, such as quartz, tourmaline, topaz and Rochelle
salt. However those materials are usually not adapted for vibration reduction applications.
Consequently artificial piezoelectric materials were developed out of polycrystalline ceramic
materials, such as lead zirconate titanate (PZT), processed in order to exhibit piezoelectric
properties. Easy to produce, they possess a strong electromechanical coupling [3].

Those ceramics are constituted of crystals, each of them composed of a small metal
ion placed inside a lattice of larger metal ions and Os, see Figure 1.4. Those elements are
treated in order to be granted a remnant electrical polarisation. Mechanical compression or
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tension on the element affects its dipole and creates a voltage: this is the direct piezoelectric
effect. If a voltage is applied to the ceramic, the elements lengthens, known as the converse
piezoelectric effect.

O Qo0 oxqgen o Ti,Z

Figure 1.4 — Piezoelectric ceramic element before and after polarisation [3]. The "poling"
process, applying a very high a strong, DC electric field, creates a permanent dipole.

At low drive, the piezoelectric ceramics can be considered as linear devices that trans-
duce energy between the mechanical and electrical domains. They are called piezoelectric
transducers. For higher drives, these materials exhibit non-linear effects, like hysteresis.
Those effects can have an adverse influence on control stability and performance, and thus
must sometimes be taken into account [3|. For what concerns us, we will assume that the
piezoelectric transducers used in this project behave in a linear manner.

Piezoelectric constitutive equations That behaviour is modelled by a linear system
of coupled equations [3]:

€1 S11 S12 S13 S S5 S| (o1 dip do1 ds;
€2 So1 Sog Saz Soa Sos Sas| | o2 di2 dao dso B
€3 [ |S31 S32 Sz S Sz Ss| | o3 N di3 dp3 ds3 £, (1.1)
V23 Sy1 Si2 Saz Saa Sz S| | 23 dig day dsg £
V31 S51 Ss2 S5z Ssa Sss S| | di5 dgs dss
72 [ S61 Se2 S63 Sea Ses  See) \T12 Ld1g  das  d36]
o1
02
D, dyy diz diz din dis dis o3 ey eg e | (B
D2 — dQl d22 d23 d24 d25 d26 - + 6’(172 8%2 6%2 EQ (1 .2)
Ds d31 d32 d3z d3s d3s dsg . efs €93 eS| \ I3
T12

where:
0, Tg; correspond to the stress vector (N/ m2) - Ty being the shear stress;
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€i, vk correspond the strain vector (m/m) - v being the shear strain;

E; is the electric field vector (V/m);

D; is the electric displacement vector (C'/m?);

S;; is the matrix of compliance coefficients (m?/N);

ef; is the matrix of permitivity coefficients (£'/m) - o signifies that the permitivity is mea-
sured when the material is not restrained;

d;ij is the matrix of piezoelectric strain constants (m/V') - expression of the electrome-
chanical coupling, it is defined as the ratio of developed free strain to the applied electric

field.

Piezoelectric patch A huge advantage of piezoelectrics is that they are available in
many shapes. A very common one - and the one we are interested in in this study - is
the rectangular patch, see Figure 1.5. For this kind of device, the constitutive equations
can be simplified as many terms of the constant matrices are brought to zero and some
are equal. Assuming the patch is poled along the z axis (direction 3) and knowing that
piezoelectric ceramics are transversely isotropic materials, we find that the terms that are
equal are [3]:

S11 = S22
S13 = S31 = Sa3 = S32
S12 = 521
Saq = Ss5
Se6 = 2(S11 — S12)
d31 = d32
dy5 = day
ey = €3y

The constitutive equations can be rewritten:

€1 _511 S12 513 0 O 0 g1 0 0 d31
€2 512 SH 513 0 0 0 g9 0 0 d31 E
es | _ |Sis Sis Sz 00 0 o5 |, |0 0 ds E;
723 0 0 0 Saa 0 0 T23 0 dis 0 5
31 0 0 0 0 Su 0 31 dis 0 0 ’
Y12 L 0 0 0 0 0 2(S11 — 512)_ T12 L 0 0 0 |
(1.3)
o1
Dy 0 0 0 0 ds o] e, 0 0] (B
Dal=]0 0 0 ds 0 of|Z|+|0 e o] |E (1.4)
D3 ds ds dss 0 0 of | 0 0 ef3] \&3
731
T12

The piezoelectric strain constants are related to different deformations of the patch:
dss is linked to a compression/extension along the thickness of the patch, ds; corresponds
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to the bending of the patch and di5 to the patch in shear.

Thin patches are bonded to structure surfaces and used in bending (working with
ds1 coefficient). For compression/extension (dss) other configurations of piezoelectrics are
adopted: stacks.

We see that modelling the behaviour of a ceramic piezoelectric patch only requires to
know a total of nine values, depending on the kind of piezoelectric used.

i / Piezoelectric material

\Surface electrodes

Dipole alignment

Figure 1.5 — Piezoelectric patch with polarisation in direction 3 [3]

1.2.2 Application to vibration reduction

Piezoelectrics are widely used in vibration damping applications due to their high elec-
tromechanical coupling coefficient that allows excellent actuation and sensing abilities.
Their non-intrusive nature is a huge advantage as they can be embedded on structures
without having to modify them and without adding much mass. They also function in a
large frequency bandwidth and their cost is relatively low [18] [3].

Damping strategies based on piezoelectric materials can as well be active or passive,
whether they require external energy or not. Passive techniques are always stable and are
simple to design, while active ones give better results but are more difficult to implement
because of the complex electronics they require.

Passive techniques associate piezoelectrics with a shunt circuit (i.e. circuit composed
of a resistance with sometimes an inductance and a capacitance). The mechanical energy
from the vibrations is transduced to electrical energy that is eventually dissipated in the
resistance in the form of heat. Piezoelectric shunts are used in many areas, such as:
noise control, vibration control of hard drives, sound transmission suppression, machining,
railway vehicles and of course turbomachinery components [19][20].

In active damping methods, piezoelectrics act as actuators and sensors in order to
establish a feedback loop, requiring an external power source. The actuator can be used
as sensor at the time, which is called self-sensing. There are many applications for those
methods, for example: in large space structures, space-trusses vibration reduction; in
civil structures, applied to building frames; helicopter’s rotor blade vibration control; in
aircrafts, control of the flutter of the wings of the planes, and the buffeting of the tail [18].



CHAPTER 1. INTRODUCTION 7 ‘

Hybrid approaches that combine passive and active damping also exist and allow better
performance than passive damping while using less energy than purely active damping [21].

A growing attention is given to piezoelectric energy harvesting [22]. The technique
intends to benefit from the electrical energy generated by the piezoelectric material. For
vibration control, that energy can be used as a supply for active control, and therefore
make it more energy efficient [23]. Energy harvesting is promising also outside of the
vibration control field, used as wearable objects that could power both portable electronics
and biomedical devices. It also allows the creation of new self-powered wireless sensors
and systems [24].

In this study, we only focus on the implementation of passive and active damping,
leaving to future works the use of hybrid techniques and energy harvesting.

1.3 MAVERIC project

This work takes part in a bigger project: the MAVERIC project. Its main objective is to
design a new vibration absorber that is efficient, combining hybrid control and nonlinear
vibration reduction; smart, in terms of electrical components; and applicable to industrial
products, with a special focus on the aerospace sector. The laboratory investigates the
use of piezoelectric patches to damp blisk structures. At the final step of the project, the
absorber designs will be tested on a blisk provided by an industrial partner: Safran Aero
Boosters.

To reduce the weight of their compressor, Safran Aero Boosters developed their own
model of blisk: the BluM (Bladed Drum - See Figure 1.3 (b)). As mentioned before, blisks
have little inherent damping and need the implementation of vibration reduction strategies.
The damping method Safran is working on is based on the use of friction devices: friction
rings embedded in the structure (system studied in [25]). The dimensioning of this solution
is complicated and it exhibits a poor performance. In that context, MAVERIC researchers
intend to apply their piezoelectric absorber to the BluM and demonstrate it shows better
results than the friction devices.

The technology has much wider applications than aerospace, as it could be applied to
almost any industrial sector where vibration and weight are an issue.

1.4 Bladed rail

The use of piezoelectric technology in turbines has been studied during the last decade.
Many of those studies propose to place the piezoelectric patches directly on the blades
of the turbomachinery components (as in [17]), as it is where the structure deforms the
most. However, even if the results are positive in laboratory conditions, this configuration
is difficult to apply to real systems. The patches on the blades can interfere with the
flow and thus affect the aerodynamics efficiency of the structure. Besides piezoelectric
components subject to such a flow could suffer from erosion.

This rescarch focuses on a Bladed Rail, a simplified version of the blisk (see Figure
1.6). While the BluM is made of seventy-six blades, this structure is only composed of five
blades on a straight support, reducing the complexity of the problem. It also considerably
decreases the cost of the prototype, as it requires less material and a lower number of
damping devices (piezoelectric patches).
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Similar study has been done by B. Mokrani (2015), in his PhD thesis, where he sug-
gested to place shunted patches on the bottom surface of the rail [2] and presented con-
vincing results. His bladed rail is different from this one as it possesses other dimensions
and support shape.

16.5 mm

3mm

o o Clamped holes

Figure 1.6 — Bladed Rail 3D model with some quotations - the support is clamped at the
four extremity holes.

Real bladed disks are not only submitted to vibrations but also to high pressure and
temperature constraints. This explains why titanium is widely used in the aerospace
industry for its very good mechanical properties and its light weight. The present project
however only focuses on the vibration response, which remains mostly unchanged when
the structure is made of another metal (details in Appendix A). This is why we choose a
cheaper and easier to manufacture material for the bladed rail: Steel.

The objective of the project is to damp the modes of the Bladed Rail related to the
motion of the blades by placing the patches on the bottom surface, so that the aerodynam-
ically active zone of the structure, which is located around the blades, is not disturbed.
The patches placement problem is addressed in the next chapters.

Mokrani (2015) used shunted piezoelectric patches on the Bladed Rail. This current
study aims to make a step further, improving the performances adopting active damp-
ing strategies. To do so, the results of active damping strategies will be developed and
compared with the piezoelectric shunt.

Most of this work is numerical. The bladed rail is modelled with 3D finite elements
and considered clamped at the two extremities of the support, see Figure 1.6. The first
step of the project is to simulate the dynamics of the structure to understand where to
place the piezoelectric patches. Then a reduced state-space model is extracted using the
Structural Dynamics Toolbox on Matlab. The piezoelectric shunt employing five patches
on the bottom surface is implemented and the results are evaluated. At that point, there
is a passive damping reference and active methods, with five pairs of actuator-sensor piezo-
electric patches, are developed. Those strategies are finally compared, evaluating damping
performance and stability robustness.

An experimental prototype was 3D-printed so that the model is adapted to reality,
and the control strategies reshaped in consequence. First results are presented but new
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experiments should be carried out in future works to complete them.



Chapter 2
Bladed rail dynamics

Chapter summary The dynamics of the system is investigated in order to extract the
resonance frequencies and the corresponding mode shapes. As the bladed rail is a periodic
structure, the blade motion modes are organised in families in which the modes possess
very close natural frequencies. This study will focus on damping the first family. The
mode shapes are plotted, highlighting the coupling between the support bottom surface
and the blades. Finally we see that the strain energy density map on the bottom surface
of the bladed rail exhibits maximums in the areas under each blade. Those maximums are
optimal locations for piezoelectric patches applied to vibration reduction.

2.1 Introduction

Although the bladed rail is a monolithic structure, it can be considered as a combination
of two substructures: the support (or the rail) and the blades. The blades dynamics
are linked to the rigidity of the support. If it was fully rigid, every blade would be a
completely independent system with all the same resonance frequencies. However, as the
rail is flexible, everything is connected and the dynamics of the structure is more complex,
leading to several natural frequencies and modes.

The main objective of damping is to decrease the effect of resonances to avoid high
vibration amplitudes. As it will be explained in following chapters (Chapters 3 and 4), the
damping methods can be designed to act whether broadband or on targeted frequencies
(said resonant). For the implementation of those resonant techniques, it is essential to
previously know the natural frequencies of the structure.

The shapes of the specific modes we seek to target is another valuable information. The
piezoelectric patches should be placed where they have more influence on the vibrations,
which corresponds to the location of high strain energy. The electromechanical coupling
factor of the piezoelectric measures its influence on each mode [26]. It is directly propor-
tional to the modal strain energy density (detailed in Chapter 3). This is why the patches
should be placed where the modal strain density is maximum.

As mentioned before, in this project, we aim to damp the blades by operating on the
support. In order to understand how to achieve this, it is necessary to characterise the
coupling between the support and the blades. To that end, the natural frequencies are first
computed from simulation. Then relevant mode shapes are analysed, with a focus on the
bottom surface of the support.

2.2 Method

Linear perturbation simulations with clamped boundary conditions are carried out on
Abaqus in order to compute the twenty first natural frequencies and mode shapes. The
model assumes that the rail is made out of an homogeneous and isotropic material with
the theoretical mechanical properties of Steel, see Table 2.1:

The finite element analysis uses quadratic tetrahedral elements of size 2 mm, leading to a

10
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Density (kg/m?) | Young Modulus (MPa) | Poisson Coefficient
7800 | 200000 | 0.30

Table 2.1 — Steel mechanical properties [4]

model with 36629 elements. The mesh is shown on Figure 2.1. To corroborate the validity
of that choice, a convergence study has been fulfilled and presented on Figure 2.2.

Figure 2.1 — Meshed blade rail with tetrahedral elements of size 2 mm
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Figure 2.2 — Convergence study based on the natural frequencies. To check the validity of
the mesh, the five first natural frequencies were computed for different sizes of elements
and then compared to the frequencies obtained with the smallest size. Are considered
acceptable mesh sizes the ones that have a deviation from the finest mesh of less than
1%: on the plot, the meshes with element size smaller than 3 mm. In an intent to lessen
computational time consumption, we choose the mesh requiring fewer elements within that
limit: the one with element size of 2 mm.
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2.3 Natural frequencies and mode shapes

2.3.1 Mode families

The natural frequencies obtained by the simulation are plotted in function of their mode
number on Figure 2.3. We can observe that some modes possess very close natural fre-
quencies - those modes belong to the same "family" - while others are located in the gap
between those families - they correspond to the support modes. This behaviour is typical
of periodic structures such as the bladed rail.

6000 T T
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4000 -

(&)
=}
(=]
(=]
T

Natural frequency (Hz)

Support modes

=]

[=]

=]

=
T

1000

1 I I I 1 L I 1 1
0 2 4 B 8 10 12 14 16 18 20
Mode number

Figure 2.3 — Bladed rail natural frequencies. The ovals point out the mode families corre-
sponding to the blade motions. The other modes are related to the support. The natural
frequencies of the first family are 1237.3Hz, 1251.0Hz, 1259.2Hz, 1262.9Hz and 1264.6Hz,
thus located in an range of 30 Hz.

The families correspond to bending or torsion modes of the blades. Modes of the first
family are combinations of blades in their first bending mode moving in phase or out of
phase. The next families are correlated to next blade modes of bending and torsion.

As mentioned before, if the support was completely rigid, each blade would be indepen-
dent from the other, and logically the modes of the structure, which, for the first family,
would still be a combination of bending blades in phase or out phase, would have the
same frequency. Generally stiffer is the support, closer are the resonance frequencies of
one family.

In order to reduce the complexity of the problem, our damping system design will only
focus on the first family of modes. Damping the lower frequencies consists in a first step -
and sometimes a sufficient one - in terms of improving vibration reduction.

2.3.2 Family 1 mode shapes

The mode shapes of the first family are shown in Figure 2.4. Those modes correspond
as expected to a combination of the blades first bending mode. Depending on the mode,
some blades have a strong displacement while others almost do not move.

To understand how to damp the blades motion from the bottom surface, the displace-
ment field on that surface is plotted on Figure 2.5. Only the z direction of the displacement
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Mode 1 Mode 2 Mode 3

Mode 4 Mode 5

b

Figure 2.4 — Mode shapes of the first family modes. Red coloured areas are areas with
maximum displacements - dark blue areas, minimum displacements.

is shown because it is what will mainly define the response of a piezoelectric patch in bend-
ing attached to the surface.

Comparing both Figures 2.4 and 2.5 one can clearly see the coupling between the
support and blades motion: a high displacement of a blade causes higher displacement of
the bottom surface under the blade while a still blade implies no displacement under it on
the bottom surface. These observations highlight the fact that there is a possibility to act
on the blades operating on the bottom surface, as those subsystems are directly connected.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Figure 2.5 — Displacement field on the bottom surface for each mode in z direction (per-
pendicular to the surface). Red coloured areas are areas with maximum displacements -
dark blue areas, maximum displacements of opposite phase. Green areas correspond to
minimum amplitude displacement.
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The more adequate location for piezoelectric patches on a structure is where their
electromechanical coupling is maximised - in this case where the strain energy density is
maximised on the bottom surface. The map of the strain energy density is displayed on
Figure 2.6. It appears that for the five modes, the maximums are situated in the areas
under the blades.

- ——

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Figure 2.6 — Strain energy density field on the bottom surface for each mode. Red coloured
areas are areas with maximum density - dark blue areas, minimum density.

2.4 Conclusion

The modes of the bladed rail can be classified in families of modes, related to the blades
displacements and support modes. This study focuses on damping the modes of the first
family.

The coupling between the bottom surface and the blades displacement is clearly visible,
which confirms the possibility to act on the blades operating from the bottom surface.

The strain energy density map on the bottom surface shows maximums under the
blades. This indicates that those areas are the best locations to install piezoelectric patches.
This information allows to start designing the piezoelectric damping strategies.



Chapter 3

Passive damping

Chapter summary Passive damping with piezoelectric shunt consists in dissipating the
vibration energy, transduced to electrical power, through a resistance in the form of heat.
Three types of shunts are developed and applied to the bladed rail model, on which five
patches have been added on the bottom surface under each blade. The purely resistive
shunt allows a broadband vibration reduction, but is less effective than resonant inductive
shunts to specifically damp the first family of modes. Two methods to tune the inductive
shunts are proposed: the mean shunt approach, already studied in Mokrani’s thesis (2015,
[2]), and an Hy (supremum norm) optimisation approach.

3.1 Introduction

Passive damping techniques do not require external power to reduce vibrations in a struc-
ture. Hence their stability is guaranteed. They are based on dissipative phenomena that
occur in friction, in viscoelesticity or also in hydrodynamics [27].

Piezoelectric passive absorbers, for their part, exploit electrical energy dissipation, con-
necting the vibrating piezoelectric device to a resistive shunt. The mechanical energy of
the structure, transduced into electrical power, is liberated outside of the system in the
form of heat.

In order to damp particular modes, the shunt circuit can be made resonant by including
an inductance. As a piezoelectric is electrically a capacitance - linear relation between
voltage and charge - the shunt becomes an oscillating RLC circuit. The electrical frequency
of the circuit can then be tuned on the natural frequency of the structure in order to
efficiently damp it.

The implementation of such devices on the BluM and the bladed rail have been studied
by Mokrani (2015) in his PhD Thesis [2]. He proposes to place piezoelectric patches
under the blades and develops a method to easily tune the shunt circuit for close natural
frequencies: the mean shunt approach.

In this study, the damping effects of purely-resistive and resonant shunts on the bladed
rail model are evaluated. The H., optimisation which consists in minimising the maximum
of a performance index is used to tune the parameters of shunt circuits. To assess the
performance of the designed control system, obtained results are compared to that of the
mean shunt [2].

Throughout this chapter, the concept of piezoelectric shunt are explained, describing
the basic physics and modelling formulations. The three shunt circuit tunings used in
this work are then presented. Subsequently, the simulations procedure and results are
discussed.

15
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3.2 Piezoelectric shunt

3.2.1 Piezoelectric transducer capacitance and coupling factor

A piezoelectric transducer, in the point of view of electrical components, is a capacitor, as
it stores electrical energy in an electric field. In Eq. 1.2, one can see the linear relation
between the electric displacement field D and the electric field E. According to electrody-
namics laws, the voltage applied on the transducer V and the free charge accumulated
can be calculated by integrating those fields:

Q:ﬁﬁw (3.1)

v:/EJ (3.2)
r

where A is the closed surface of a small rectangular box mounted on one plate of the
capacitor (electrode of the piezoelectric transducer);

dd is the infinitesimal surface;

I is a path starting on one plate of the capacitor and ending on the other;

dl'is the infinitesimal length.

From those relations, the capacitance @/V can be deduced. In [26], its formula has
been derived in the frequency domain for a piezoelectric transducer attached to a vibrating
structure. For an undamped structure, we get (see expression amplitude plotted in Fig.
3.1):

Q L1+
v (3.3)

stat 2
H S

where Cygyqq is the capacitance when the structure does not vibrate (i.e. static capacitance);
Q; is the " natural frequency of the set structure and piezoelectric transducer when the
transducer is open-circuited (when Q = 0);
wj is the 4% natural frequency of the set structure and piezoelectric transducer when the
transducer is short-circuited (when V' = 0).

The natural frequencies of the global structure (primary structure and piezoelectric
transducer) exhibit slight variations depending on the voltage applied on the transducer
because it changes the stiffness of the overall structure. When the piezoelectric is open-
circuited, the force needed to produce a strain is bigger than when it is short-circuited
because part of the input energy is used to establish an electric field. In the short-circuited
case, all the input energy goes to the deformation. If the force needed to deform a structure
is increased, it means the stiffness augmented and that the natural frequencies are higher.
It explains why Qi > wy, (k is the mode number), even if they are still very close.

Equation 3.3 indicates that a piezoelectric transducer behaves like a capacitor with
varying capacitance, changing with the frequency of the structure it is attached to. Its
amplitude changes a lot when the frequency is close to a structure resonance. In that case,
the capacitance transfer function shows strong amplitude variations - a pole and a zero.

Piezoelectric transducers are characterised by an electromechanical coupling coefficient
kmn expressed as a ratio between the constants of Eq. 1.1 and 1.2 [3]:

d%l’l/'”, (3.4)

K =
mn
Smn€fn
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Figure 3.1 — Q/V transfer function for a piezoelectric transducer. The poles correspond to
the natural frequency of the structure when the transducer is short-circuited and the zeros
correspond to the natural frequency of the structure when open-circuited. At frequency
zero, Q/V = Cgqt, the static capacitance.

The higher the value of the coefficient is, the stronger is the influence of the piezoelectric
device on the structure. For piezoelectric patches used in bending, as it is the case in this
study, the coupling is mainly defined by k13 = k. k15 and k33 correspond respectively to
piezoelectric patches employed in shear and in compression /extension.

To measure the influence of a patch over a specific mode, we employ the effective
electromechanical coupling factor for mode i, Kj;, calculated as a fraction involving the
electromechanical coupling coefficient k£ and the strain energy density covered by the patch
for mode 7, v;:

kv,
2 ]
K=1"%

This relation was mentioned in the previous chapter to justify why the optimal place-

(3.5)

ment of the piezoelectric patches is in the area under the blades, as it is where the modal
strain energy density is maximum. Indeed, Eq. 3.5 suggests that maximising the strain
energy density covered by the patches for some particular modes maximises the influence
of the transducer on the structure for those modes.

Another way to evaluate the influence of a piezoelectric device on a structure is looking
at the difference between €2; and w;. If the natural frequencies of the overall structure varies
a lot with the electrical constraints on the attached piezoelectric transducer (open-circuited
or short-cicuited), it means that the electrical condition of the transducer considerably
affects the mechanics of the structure, and thus it shows a high authority on its dynamics.
In [26], an approximation of the effective electromechanical coupling factor is derived using
those frequencies:

i ; d (3.6)

This equation implies that increasing the authority of the patches on a mode comes with
enlarging the distance between the pole and the zero of the same mode in the capacitance
transfer function Q/V.
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3.2.2 Piezoelectric shunt circuits

Connecting a resistance path for electrical current on a piezoelectric transducer is known
as piezoelectric shunting. It allows to reduce the vibrations of the host structure by energy
dissipation through the shunt in the form of heat (Joule effect).

Resistive shunting The piezoelectric resistive shunt is schematised of Figure 3.2 (a).
According to Kirchhoff’s law, the voltage difference at the branches of the transducer is
equal to the voltage difference through the resistance Vi = RI:

Vyieso =V = —RI = —sQR (3.7)

Q 1
= (V>piezo a _E (3.8)

in which @/V is known or can be measured (see Figure 3.1).

Eq. 3.8 can be modelled closing a loop on the system between the output @ and
the input V (Figure 3.2 (¢)). The new system then represents the structure where a
piezoelectric shunt mounted on it.

The R-shunt possesses the ability to damp multi-mode resonances. This is interesting
for applications where all the modes are to be damped without distinction. When the
objective is to target a specific frequency, it is possible to improve performance by using
resonant shunts.

Inductive shunting Adding an inductance to the shunt results in an RLC circuit (see
Figure 3.2 (b)). Those kinds of circuit possess oscillating properties and exhibit resonances.
The circuit in Fig. 3.2 (b) is a one degree of freedom oscillating system, with one natural
frequency we: )

where C is the capacitance of the piezoelectric transducer.

If the electrical natural frequency of the shunt is set on the targeted vibration mode
frequency, the circuit will enter in resonance at the same time as the structure, and the
current will reach very high amplitudes, which will lead to extensive dissipation through
the resistance by Joule effect (dissipation power P = RI?).

The Kirchhoff’s law can again be applied. As the electric potential difference of an
inductance is equal to Vi, = LsI, we get:

Viiczo + Vi + Vi = Vpiczo + RI + LI = 0 (3.10)

)™ T = (V) e
= \v =- = |3 = - (3.11)
(V piezo R+ sL V piezo sR + 82L

In the same way as for the R-shunt, the inductive shunting of a structure can be

modelled with a closed loop (see Figure 3.2 (d)).

RL-shunts are efficient to damp specific single modes, as well as closely located multi-
modal resonances (such as resonances found in a family). However, it makes them sensitive
to circuit mistuning. If the electrical frequency is not accurately set, the damping perfor-
mance of such devices considerably decreases.

Many other categories of shunt circuits exist in the literature using passive but also
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Figure 3.2 — (a) Illustration of an R-shunt circuit connected to a piezoelectric transducer
(PZT); (b) illustration of an RL-shunt circuit connected to a PZT; (c) system transposition
of an R-shunted piezoelectric transducer, closing a loop between the charge output ¢ and
the voltage input V; (d) system transposition of an RL-shunted piezoelectric transducer.

active components. Some are based on nonlinear elements, switches, varying resistances;
others are adapted to multimodes, creating multibranch circuits; some shunting compo-
nents can be online tuned; etc. In his article [20], Marakakis (2019) proposes a review of
those different techniques. In this work however, we only study the damping performances
of passive linear shunts tuned on a single frequency.

3.2.3 Mean shunt approach

Although, in the case of the bladed rail, the objective is to damp five modes, their fre-
quencies are very close. Parallel inductive shunts tuned on the different modes could be
an option, but they are complicated to design because of the proximity of the resonances
that implies strong interactions between the multiple circuit branches.

In [2], it is suggested to use a one-branch inductive circuit for all five modes, tuned on
their average frequency @. The concept allows to still effectively damp the modes while
only needing a one loop shunt.

This proposition also consisted in placing identical piezoelectric patches under each
blade, justified by the strain energy density maximums. The idea was therefore to shunt
each one of those patches with identically tuned inductive circuits.

The values of the shunt components were chosen with the following equations:

1
L=—— 3.12
EQCstat ( )
2K
R = (3.13)

wCstat



20 3.3. METHOD

where K is defined as the overall effective electromechanical coupling factor:

p
k=YK, (3.14)
j=1
2 1 N
T4 2
K;=+ > Kj (3.15)
i=1

where N is the number of modes, p is the number of patches;

K;; is the effective electromechanical coupling factor for the patch j on the mode ¢ calcu-
lated using Eq. 3.6 with €;;, the natural frequency of mode ¢ of the structure detected by
patch j when open-ciruited, and w;, the short-circuited the natural frequency of mode ¢ of
the structure when the patches are short-circuited (it does not depend on the patch).

Kj;; essentially translates the influence of a patch to damp a mode. It is possible to
deduce from their values that three patches, located under blade 1, 3 and 5 (see Figure 1.6),
are sufficient to operate on the first family of modes because they have enough coupling
on all five modes. This observation is intuitive when we take a look at the strain energy
density map (Figure 2.6): together the three patches cover all the modes maximums, and
therefore they have a good damping authority on all of them.

This mean shunt solution with three patches is tested on our model of bladed rail, and
compared with an optimised RL shunt.

3.3 Method

The piezoelectric patch was modelled with 3D-elements in Abaqus, as a rectangular box
with a thickness of 0.2 mm. By defining different sections, the generated mesh possesses
groups of elements, one for the the bladed rail and the others for the patches.

The Abaqus model is imported in the Structural Dynamics Toolbox (SDTools) where
the material properties, which include the piezoelectric behaviour, are assigned. SDT is a
toolbox on Matlab that allows to run modal analysis on a reduced model and to extract a
MIMO (multi-input multi-outpet) State Space model from the finite element model. We
consider the primary damping to be low (¢ = 107%). The ceramic used for the piezoelectric
transducers is PIC255 (see Table 3.1).

Material property | Value Unit

ds1 -180 107 2m/V
ds3 400 107 2m/V
dis 550 10~ 2m/v
Si1 16.1 107 2m? /N
S33 20.7 1072m?2 /N
Sia -5.22 107 12m2/N
S13 6.27 10712m? /N
S 475 10712m?2 /N
€%y 14609.1 | 1072F/m
%5 15494.5 | 10712F/m
p (density) 7800 kg/m?

Table 3.1 — PIC255 material properties [5]. Physical meaning of the parameters explained
in Section 1.2.1.
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Five patches are positioned on the bottom surface of the bladed rail under each blade
(Figure 3.3 (b)). Each patch has two electrodes, one on the top face - at voltage V' - and
one on the bottom face - at voltage set to 0. In SDT, the patches are defined as both
voltage actuator and charge sensor, which allows us to compute Q/V and to model the
shunt as in Figure 3.2 (¢) and (d).

In order to assess the efficiency of the damping, the performance index is defined as
the displacement of the tips of the blades when forces are applied on those tips, X;/F;, i =
1,...,5. Therefore force actuators and displacement sensors measuring motion along the
y-axis (along the length of the rail) are placed on the tips of the blades (see Figure 3.3

().

a) b)

F2,x2 F3,x3 F4,x4 F5x5

Figure 3.3 — (a) Displacement sensors X; and force actuators Fj in y-direction are placed
on the tips of the blades. The transfer functions X;/F; are employed as performance
index to assess the efficiency of a damping technique. (b) Patch placement, five patches
configuration. The dimensions of each patch are 8.5x16x0.2. In the mean shunt approach,
only are shunted the patches under blades 1, 3 and 5. In the H., optimisation, all five
patches are shunted. (c) Patch placement, one patch configuration. The dimensions of the
patch are 30x17x0.2.

The system extracted from SDT has 10 inputs, 10 outputs. To model the shunts,
loops are closed between the voltage inputs - charge outputs, obtaining the overall system
illustrated in Figure 3.4. For simplicity purposes, all the loops are constituted of the
identical elements. Having to optimise all the components individually would require an
optimisation in a 10 dimensional space.

Three types of shunts are evaluated on this system: (1) Ho, optimal R-shunt, (2) mean
RL-shunt, (3) Hy, optimal RL-shunt. The parameters of the mean shunt are selected
adopting the same algorithm employed in [2], and only using three loops (three patches)
instead of five. The optimal values of the components for R-shunt and RIL-shunt are
computed with an H,, optimisation with five loops. Concretely, the values are selected in
order to minimise the maximum (Hy norm) of the transfer functions X;/F;,i = 1,...,5.
Other optimisations are sometimes employed: maximisation of damping, Hs optimisation.
In this case, the objective is to decrease the amplitude of the resonances of the structure,
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favouring the Ho, method. The other optimisation methods are thus not considered.

F, Xn
_ —_—

> : >
: >

it

Figure 3.4 — Connection of shunt circuits to the bladed rail MIMO system (10 inputs, 10
outputs). For the R-shunt, the inductance values are set to zero. For the mean shunt
approach, the loops between Qo - Vo and Qg4 - Vy are left open.

The sensibility to circuit mistuning of the mean RL-shunt is analysed calculating how
the peak reduction Ap of the transfer functions X;/F; diminish when the electrical natural
frequency recedes from the mechanical one. The peak reduction Ap is obtained with the
following algorithm (w is the frequency):

X.
y) = max | <J> lii=1,..,5 (3.16)
w E undamped
X‘
y4 = max | <—J> ij=1,...5 (3.17)
w FJ shunted
d
Y. .
Ap = 20log | =£ 3.18
p = s 2o (%) 19

Finally the patch placement effect is qualitatively investigated, by implementing the
mean shunt on a one-patch configuration system, in which the patch is larger and located
on only one side of the rail (see Figure 3.3 (c)).

3.4 Results and discussion

The transfer function Q/V (patch 1) is computed and shown on Figure 3.5. As expected,
we observe alternating poles and zeros at the five natural frequencies of the first family of
modes. From the Q;/V; transfer functions, we can deduce: Kjj, the effective electrome-
chanical coupling factors (for patch ¢ and mode j) using the equation 3.6, enabling the
evaluation of the mean shunt resistance value (Eq. 3.13); Cgt, the static capacitance,
obtained when the frequency is equal to zero; and the average frequency w from which the
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Figure 3.5 — Bode diagram of Q1/V; (patch 1) zoomed on the first family of modes. The
frequencies are normalised dividing them by the mean frequency of the first family of
modes. As expected, there are alternating poles and zeros at the natural frequencies.

inductance is calculated (Eq. 3.12). Those parameter values are displayed in Table 3.2,
compared with the H, optimal values.

Shunt type Cistat R L

R shunt 5.3785 nF | 244374 Q | 0 H
Mean shunt 5.3785 nF | 1193.0 Q 3.0466 H
H,, RL shunt | 5.3785 nF | 649.5 Q 3.0355 H

Table 3.2 — Electrical components values for each type of shunt

It can be noted that the value of the inductance is almost identical for the two RL
shunts, which is logical as the electrical natural frequency needs to equalise the mechanical
one to be optimal. The value of the resistance however changes. It is because the mean
shunt approach originated from the approximation of an optimisation. Therefore the value
of the resistance obtained differs. The effect of the shunt strategies can be seen on Figure
3.6.

Not surprisingly, the R-shunt is the least effective. However it is a broadband strategy
and thus it could be an interesting option to exploit if the other families of mode were to
be damped as well. As it is not tuned on a particular frequency, it is not affected by any
circuit mistuning or lack of knowledge on the structure natural frequencies.

The best RL-shunt is naturally the one obtained by H., optimisation, at least when
the performance is assessed by the amplitude of the transfer functions, as the optimisation
aims to minimise it.

Even so, the mean shunt approach exhibits many advantages: it only requires three
patches over the five, which also implies less electronic components, and it does not need
a complete simulation to select the parameters. When the optimisation demands a full
simulation model, the mean shunt components values can be deduced directly from exper-
imental data, as long as the transfer functions @;/V; are measured.

The resonant shunts sensibility to circuit mistuning is checked by calculating the peak
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Figure 3.6 — Effect of the damping techniques on the bode diagram of X /F;, zoomed on
the first family of modes. Panel left is a zoom on the peak of panel right. We clearly see
that RL shunts are more efficient than their purely R shunt counterpart.

attenuation with the algorithm described by Eq. 3.16, 3.17, 3.18. The result is plotted on
Figure 3.7.
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Figure 3.7 — Maximum peak attenuation when shunt circuit electrical frequency is mis-
tuned. An error of 10% can result in a loss of vibration reduction of more than 20 dB.

It is clear, from this graph, that mistuning is a real issue for RL shunts, as its efficiency
drastically decreases if the components in the electrical circuit are not determined accu-
rately. An deviation of 10% from the optimal electrical frequency can result in a loss of
resonance peak reduction of more than 20 dB.

The patch placement effect results are shown in Figure 3.8. In both configurations
illusatrated in Figures 3.3 (b) and (c), the RL shunts components are determined by the
mean shunt approach. From the results, it appears that the patch placement or size influ-
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ence is quite significant, as they are some noticeable consequences: the higher frequency
modes are less damped for the one-patch configuration because we see on Figure 2.5 that
it covers opposite sign displacements for modes 3 to 5. It means that for those modes,
the patch is bending in two opposite ways, which cancels the piezoelectric coupling as the
accumulated charges add up to zero. It explains why higher modes are less damped. The
best way to equally damp the five modes is to ensure no patch is located on two opposite
maximums, which is achieved by placing one patch under each one of them, that is under
cach blade.

T T T T T T T
—— Undamped structure
-20 = Mean Shunt One Patch m
Mean Shunt Three Patches
-40
1)
=
o -B60
=]
=z
z 80
% -
=
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Figure 3.8 — Effect of the patch placement on the bode diagram of X;/F;, zoomed on the
first family of modes, comparing the configuration with five patches with one with only
one bigger patch (Fig. 3.3 (c) and (d). The bigger patch damps effectively the first modes,
but loses performance on the higher frequency modes.

3.5 Conclusion

The broadband and the resonant piezoelectric shunts have been introduced and applied to
the bladed rail model. Five piezoelectric patches, in the form of a rectangular box, have
been added to the bottom surface of the bladed rail, under each blade. A State Space
model was then extracted from SDT (Structural Dynamics Toolbox).

Two kinds of shunt circuits have been exploited, connecting independent identical cir-
cuits to each patch. To optimally tune the parameters of the shunts, H, optimisation
has been proposed. Its efficiency has been compared to the shunted system when the
parameters are selected according to mean approach.

As expected, resonant shunts are more effective than purely R-shunts to damp closely
located modes. However, RL shunts exhibit a strong dependence on the electrical frequency
tuning, and therefore a special care should be given to accurately know the resonance
frequencies of the structure and the value of the electrical components employed.

Selecting the RL-shunt parameters by H,, optimisation exposes slightly better results
in terms of peak attenuation than the mean shunt approach. However the mean shunt
approach is very useful if no simulation model is available and that parameter selection
must be done with only experimental data.
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The passive damping techniques developed in this chapters show positive outcomes.
The next part of this study seeks to improve them by introducing active damping.



Chapter 4
Active damping

Chapter summary Piezoelectric active damping relies on the use of control sources
to inject a signal into the mechanical system through piezoelectric transducer actuators.
The signal is determined by a control law and piezoelectric sensor information in order
to damp the unwanted vibrations created by excitation sources. Collocated actuators
and sensors allow to apply some well-known stability guaranteed control strategies. Five
pairs of piezoelectric patches actuators and sensors are added to the bladed rail 3D-model.
The retained size of the patches depends on their collocated nature and their damping
potential. Integral control and Resonant control (Negative Position Feedback) are applied
to the system and compared in terms of performance and stability robustness. Finally,
recommendations based on the results of active and passive damping are made.

4.1 Introduction

The idea of employing active sound cancellation to replace passive control was first intro-
duced by Coanda in patents published in the early 1930s [28]. After that (1936 and 1937),
Paul Lueg published patents containing more accurate physical explanations, illustrating
the principles of the method on the case of acoustic waves cancellation propagating in a
duct. His work is from then often cited as the beginning of active noise and vibration
control.

Active vibration control systems use one or more control sources to inject a controlling
disturbance into the structural system, aiming to reduce the unwanted vibrations gener-
ated by excitation sources. The signals that drive the control actuators are produced by
an electronic controller, which takes as inputs, measurements of the state of the system
provided by sensors after the injection of the control signal.

Piezoelectric transducers exhibit excellent actuation and sensing abilities which origi-
nate from their good electro-mechanical coupling coefficient. Adding to that fact their non-
intrusive nature and their application flexibility, piezoelectric materials form very suitable
candidates for active vibration control, exploited as sensors, actuators or both. P. Shiv-
ashankar and S. Gopalakrishnan (2020) [18] propose a review of the technology, listing
many applications, control laws and optimisation algorithms from the literature .

The actuator and sensor placement is an essential step in active damping designs.
When they are attached to the same degree of freedom, they are said collocated and allow
to implement control techniques with robust stability [26].

Two active damping strategies are applied on the bladed rail, using numerical optimi-
sations to tune their parameters, in the same way it was achieved with the piezoelectric
shunts. The first one is a broadband controller, employing an integrator: the Integral Feed-
back. The second one is a resonant controller, the Negative Position Feedback, targeting
specifically the first family of modes. The choice of those dampers is justified in following
sections.

This chapter addresses the active damping design process. At first, some theory con-
cepts about collocated systems are established in order to decide the most adequate actu-

27
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ator and sensor placement on the bottom of the bladed rail. Subsequently the two control
strategies are explained. These are simulated and the results are presented in a last section,
compared with the passive damping techniques results.

4.2 Active damper design

Active damping is a class of active control that requires little control effort, called Low
Authority Control. Its objective is to increase the negative real part of the system poles,
which differs from other techniques that completely relocate the closed-loop poles (natural
frequency and damping).

Active damping is recommended if higher control authority is required on several modes,
or when it is easier to implement than passive techniques, for example when the structure
already includes actuators and sensors. Nevertheless the method demands an external
power source. This can be an issue for some applications in which the power consumption
is a key factor.

In this project, the conception of active damping systems is organised in three phases:
(1) actuator and sensor determination and placement, (2) closed-loop design, (3) stability
analysis. Naturally the three steps are very connected, and a choice made at one of them
impacts the rest.

4.2.1 Actuator and sensor pair

The positioning of the actuators and sensors is crucial to build high performance damping
systems. There are two main concerns about the issue that are associated to mode authority
and to control stability.

The controller authority on a mode strongly depends on independently the position
of the actuators and the sensors. If the actuator is placed on mode shape nodes, it will
never be able to excite that mode, and therefore there will be no possibility to damp it.
Similarly, if the sensor is on a node, it will not detect vibrations, which impedes a feedback
control. Hence the actuators and sensors should be placed on mode shapes maximums.

Actuator and sensor placement also needs to fulfil control stability requirements. If, for
example, they are attached on structure at two very different locations, what is measured
by the sensor is used by the actuator located where that information is possibly irrelevant.
Those configurations generate sensitivity loss and delays in the controller, and make the
design of stable damping systems more complicated.

The motion of a dynamical structure y(«,t) is described in the modal space as a linear
combination of generalised displacements (degrees of freedom) z;(t) and mode shape ¢;(z)
(N is the number of modes, x the position and ¢ the time):

N
3 dua)z(t) (4.1)
i=1

The transfer function between the actuator input u, placed in z,, and the sensor output
v, in g, for a lightly damped structure, is [29]:

iL‘S) ¢z Ts ¢z Zq /Nz
Z $% 4 26 w;s + w? (4.2)
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where wj; is the natural frequency of the structure for mode ¢, & the corresponding modal
damping, and p; the modal mass.
If the actuator and the sensor are located on the same degree of freedom (z, = ),
they are said collocated. The Equation 4.2 becomes:
v(xq) N &2 () / i
A S A Z i (4.3)

$2 4 26w;s + w?

i=1

where the numerator is consequently always positive. A typical characteristic of collocated
systems transfer functions is the presence of alternating poles and zeros, moved a little in
the left-half plane (see Figure 4.1). This property guarantees good stability properties for
a wide class of control systems.

a) b)
X Im
1L :
3 AR %‘
. X
0
Frequency X
0]
1807 |-
5 X
=
= (0}
(‘E, ]
o N B e
0
Frequency X

Figure 4.1 — (a) Bode diagram of a system with collocated actuator (input signal ) and
sensor (output signal v). The transfer function presents an alternating zero-pole pattern.
(b) Plot of the 7 transfer function poles (designated by X) and zeros (designated by O)
in the complex plane. As the system is lightly damped, the poles and zeros are all found
slightly to the left side of the plane.

When the transfer function has interlacing poles and zeros even when the actuator and
sensor are not on the same degree freedom, the actuator/sensor pair is nearly collocated.
It means that the numerator of Eq. 4.2 is positive for all modes ¢, which means:

sign(¢i(xs)) = sign(di(za)) (4.4)

In the case of the bladed rail, the actuators and sensors are piezoelectric transducers
(patches) bonded to the bottom surface. Their input and output signals are voltage related
to the strain in the patches by Eq. 1.1 and 1.2, electrically corresponding to the circuit in
Figure 4.2.

The patches are clearly not linked to the same degree freedom, as they are covering
different areas on the bladed rail. The objective is to find locations in which the pairs
of actuator and sensor patches are nearly collocated. This is achieved making sure the
sensor and actuator of a same pair are measuring the same sign of the mode shape, for
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Figure 4.2 — Electrical representation of piezoelectric patches mounted on a structure sur-
face. The left patch is used as an actuator where a voltage V, is injected. The right patch
plays as sensor where a voltage V; is measured at its electrodes.

all the modes. We will observe in the results of the simulations that it is possible to
reach such control systems, exhibiting an interlacing zero-pole pattern (with zero before
pole as is Figure 4.1). Once the right configuration of patches is found, a control can be
implemented.

4.2.2 Control strategies

Designing a control strategy relies in connecting a feedback loop from the sensor to the
actuator, defining the kind of controller H(s) and the related gain g used in the loop
(illustrated in Figure 4.3). Collocated actuator and sensor allow the implementation of
collocated control techniques that exhibit stability even at high amplitude of the gain.

A 4

System

C(s) = gH(s)

Figure 4.3 — Negative feedback loop with a controller C(s).

As for their passive counterparts, the active damping techniques are either broadband
(first order method), equally damping all the modes, or resonant (second order method),
targeting specific modes. In this case, an integral control and a second order negative
position feedback are designed and implemented.

Integral control The transfer function between the piezoelectric sensor and actuator
patches shows an alternating zero-pole pattern, with zero before pole. According to
Preumont (2011), an appropriate broadband damping technique to be used is an integral
control (Integral Force Feedback [26]):

c(s) =2 (4.5)

S

For a single-input single-output collocated system, the method is unconditionally robust,
as, for any gain, the poles of the closed loop are always located in the left side of the complex
plane (negative real part). Applied to the bladed rail, its robustness is not unconditional,
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but is still very good. Besides the controller is easy to optimise as it only depends on one
parameter.

Negative Position Feedback As for the resonant passive absorbers, resonant con-
trollers are excellent candidates to affect particular modes. The Positive Position Feed-
back is often proposed for that purpose when dealing with collocated systems [26][3]. The
method is considered robust, because it only becomes unstable for extensively high gains.
However the technique is only fitted for a pole before zero pattern in the sensor/actuator
transfer function. In order to adapt the method to this case (zero before pole pattern),
the sign of the loop can be changed, giving a Negative Position Feedback. The controller
becomes:

g }
CO(s) = 4.6
(5) $2 + 2€fw(f5 + w]% ( )

where g > 0, wy > 0, 0 < £y < 1 are parameters to tune depending on the targeted modes.

MIMO multi-mode adaptation In this project, five pairs of collocated actuator/sen-
sor patches are attached on the bottom surface of the bladed rail. The system therefore
becomes multi-input multi-output (MIMO). This allows to conceive one feedback loop for
each pair. However the implementation of a feedback loop on one pair affects the transfer
function of the other pairs. This interdependence has to be acknowledged and the optimum
design of the controllers has to be executed simultaneously, assessing the efficiency of the
five feedback loops combined.

The bladed rail is also a multi-mode structure. In this project, as mentioned before, the
objective is to damp the first family of modes. The controllers parameters will be selected
for specifically those targeted modes. In order to simplify the design, the five feedback
loops are chosen identical, dividing the number of parameters by five.

4.2.3 Stability and robustness

A control system is robust if its stability is not affected by controller parameters pertur-
bation. The robustness of an active control system must always be assessed. In general,
more robustness means less damping performance, and vice versa, which leads to a classical
design trade-off.

For single-input single-output (SISO) systems, the gain and phase margins (i.e. the gain
and phase allowed deviation of the controller before it becomes unstable) is directly deduced
from the Bode diagram of open-loop transfer function (see [30] for more information about
the procedure). In the case of MIMO systems, this method no longer applies.

This control design is constituted of five identical feedback loops, tuned with the same
parameters. Alternative gain and phase margin can be computed by plotting the poles
location on the complex plane when the gain or the phase of the controller is equally
modified in each loop, giving respectively a new gain margin or phase margin (see Figure
4.4).

Stability robustness can be affected by modes at much higher frequencies than the
ones we are interested in, as the collocated characteristic of the system can be lost. Yet
real continuous structures have infinite resonances, and of course, numerical models can
not include all of them, discarding then higher modes (truncated model). This lack of
information at higher frequency must be kept in mind, as those modes could invalidate a
stability deduced numerically from a truncated model.
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Figure 4.4 — MIMO control robustness evaluation. For a system where the feedback loops
are identical, the gain and the phase of the controller C'(s) can be changed simultancously
in all the loops (multiplying it by ge'®). The value of § (resp. ®) from which the closed
loop system becomes unstable is considered as the gain margin (resp. phase margin).

4.3 Method

This time, ten piezoelectric patches were modelled with 3D-elements in Abaqus on the
bottom surface of the bladed rail. Three configurations are treated involving different
patches sizes, see Fig. 4.5. By defining different sections, the generated mesh possesses
groups of elements, one for the the bladed rail and the others for the patches. With
SDTools, a MIMO State Space model extracted from the Abaqus model, reduced at the
twenty first modes. Again, we consider the primary damping to be low (¢ = 1079) and
that the piezoelectric transducers are formed of PIC255.

The piezoelectric patches are organised in pairs, each containing side by side an actuator
patch and a sensor patch. We write V,; the voltage input applied to the actuator patch
of pair number ¢ and V; the voltage output measured at sensor patch of pair number j.
Those pairs are shown on Figure 4.5. For each configuration, for each pair, the actuator
patch and sensor patch are placed close to each other with the intention to create (nearly)
collocated actuator and sensor pairs. Different configurations are tested in order to find
that ideal case. To that end, the transfer functions Vg;/Vy; (¢ = 1,...,5) are computed
and inspected for each configuration to determine if they present an alternating pole-zero
pattern, characteristic of collocated systems.

Once the collocated behaviour of a configuration is verified, a control feedback loop is
connected between the sensor and actuator of each pair, see Fig. 4.6. In the same way as
for the passive damping (see Chapter 3), the efficiency of the designed control technique
is assessed with the amplitude of the transfer functions between the forces applied on the
tips of the blades and their consecutive displacement X;/F; (for blade i), see Fig. 3.3.

The bladed rail MIMO system extracted from SDT has 10 inputs, 10 outputs, and five
feedback loops. For application simplicity purposes, all the loops are constituted of an
identical controller C/(s).

Three controllers are evaluated: one integral controller and two negative position feed-
back controllers containing distinct parameters (resonant controller I and II). To optimise
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Figure 4.5 — Active damping configurations with five pairs of piezoelectric actuator and
sensor patches located under the blades. (a) The actuator (on the top) and the sensor
(bottom) of a pair have the same dimension: 15x5x0.2. (b) The actuator (on the top)
and the sensor (bottom) of a pair have different dimensions: 16x7.5x0.5 (actuator) and
16x3x0.5 (sensor). (c) The actuator (on the right) and the sensor (on the left) of a pair
have the same dimension: 11x7.5x0.5.

Xn

. :; Bladed rail
system

Figure 4.6 — The bladed rail system is controlled by five identical feedback loops that
connect the sensor to the actuator of each pair of patches. The performance of the control
strategy is assessed by the transfer functions X,,/F,.

the parameters, two kinds of optimisation algorithms were used, and only the best result
was retained. The first one consists in the Ho, optimisation previously introduced (see
Chapter 3). The second one is based on maximising the minimum modal damping for the
first family of modes (damping maximisation).

The gain and phase margins are obtained according to the MIMO Robustness procedure
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described by Figure 4.4. The resonant control I parameters are computed by restraining the
space of the optimisation problem solutions to controllers with sufficient gain G,,, > 10dB
and phase margin P, > 15°.

Finally, the active damping methods are compared to the best result obtained with
passive damping: the optimal RL shunt.

4.4 Results and discussions

The transfer functions Vy; /Vy; (for each pair i) were computed and are presented in Figures
4.7, 4.8 and 4.9. On Figure 4.7 are displayed the transfer functions Vsa/V,2 of the configu-
rations (a) and (c) (see Fig. 4.5) zoomed on the first family of modes. Configurations (a)
and (b) (not displayed here) are exhibiting a collocated behaviour for all five pairs at low
frequency (first family of modes frequency range), with a zero-pole pattern. Configuration
(¢), however, does not have collocated sensor and actuator pairs, as observed in Figure 4.7.
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Figure 4.7 — Transfer functions Vsa/V,2 zoomed on the first family of modes for the con-
figurations (a) (on the right) and (c) (on the left) (see Fig. 4.5). While configuration (a)
has interlacing zeros and poles, configuration (c¢) shows a discontinuity of that pattern for
mode 3, where the pole comes before the zero (as highlighted by the change of phase in
the red ellipse). It is a non-collocated behaviour.

On Figure 4.8, the transfer function Vy5/Vgs of configuration (a) is plotted for a wider
range of frequency. We see that at approximately twice the first family of modes average
frequency the zero pole pattern is broken. It illustrates that a collocated system at low
frequency is probably loosing its collocated behaviour at higher frequency. And as the
models used are truncated (at the 20th mode), it is fair to assume that the pattern will
be lost at high frequency even if it is not visible in our models. For the purpose of this
project, the configurations are considered valid if the system is collocated at the first family
frequencies: configurations (a) and (b).

Difficulties were encountered during the simulation regarding the position of the first
zero appearing in the V;/V,; transfer functions. This positions varies strongly with the
number of finite elements that constitute the piezoelectric patches in the 3D-model. This
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Figure 4.8 — Transfer function Vi5/V,s5 of configuration (a). The sixth mode breaks to
zero-pole pattern by exhibiting a pole before zero. It shows that the system looses its
(nearly) collocated behaviour at high frequency.

phenomenon is exposed on Figure 4.9 for the transfer function Vi3/V,s of configuration
(b). When the mesh becomes finer on the patch, the zero shifts to lower frequencies. This
revealed that the model was not converged for the position of the first zero. We tried
to reach the convergence by reducing even more the size of the elements composing the
patches but the model became too heavy to process. This still unsolved issue highlighted
the need to obtain experimental curves for the transfer functions.

— Coarse mesh on the patch
—Fine mesh on the patch

Magnitude (dB)

-120 1 I I 1 1 1 I I 1
0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02
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Figure 4.9 — Transfer function Vs3/V,3 of configuration (b) zoomed on the first family of
modes. The blue curve corresponds to the simulation model with a coarse mesh on the
patches (element size 2 mm). The red curve corresponds to a fine mesh on the patches
(element size 0.5 mm). Adding elements makes the structure softer, which explains the
slight translation of the natural frequency peaks. The first zero position varies a lot with
the mesh on the patch.
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The model with a coarse mesh on the patch was preserved for the control design,
acknowledging that the first zero position is uncertain and that it could affect the design
validity.

Optimisations were run for configurations (a) and (b). The damping efficiency reached
in configuration (a) appeared to be better than the one reached by (b) (shown in Ap-
pendix B). Moreover, configuration (a) involves patches of the same size for the sensors
and actuators, which eases its practical implementation. Those facts lead us to focus on
configuration (a). The results are presented in the following paragraphs.

The three controllers parameters were selected by the maximum damping optimisation
(Hs did not provide as good optimums). Controllers robustness was assessed, computing
the MIMO gain and phase margins. This data is reported in Table 4.1.

Controller type g we 3 Gy (dB) | Py, (deg)
Integral control 2.5337 10° | - - 18 78.5
Resonant control I | 8.7580 107 | 7876.5 | 0.0163 [[ 33.9 15.9
Resonant control 1T | 1.0645 100 | 5868.4 | 0.1701 || 10.1 4.2

Table 4.1 — Parameter values for each type of controller and corresponding gain and phase
margins

The performance of the controllers is evaluated by the peak reduction observed in the
transfer functions X;/F; (for blade 7). On Figure 4.10, one can see the damping effect of
the controllers for blade 1.

= Undamped structure
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Figure 4.10 — Effect of the active damping techniques on the bode diagram of X;/Fi,
zoomed on the first family of modes. Resonant control II provides the strongest peak
reduction.

According to these results, the performance of the resonant control II is excellent,
allowing a peak reduction of 15 dB more than with integral control. This ideal controller
is however very complicated to implement in practice because of its lack of robustness.
Whereas its gain margin is acceptable, a phase margin of 4.2° is way too small.

Resonant control I was obtained by imposing minimal gain and phase margins. Aug-
menting the phase margin to 15.9° reduces significantly the damping performance of the
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controller (of more than 10 dB).

The integral control exhibits similar performance to the resonant control I. Nevertheless
it possesses a much higher phase margin (78.5°) and a good gain margin, which makes it
more interesting in terms of robustness. In addition, because it is broadband, the integral
control is able to damp all the modes, not only the ones of the first family.

From those results, we can say that, if a very low phase margin can be handled, the
resonant control 11 is the most suited to damp the first family of modes. But if this is
impossible in practice, the integral control offers the best compromise between performance
and robustness.

The active damping performance results are compared to the optimal RL shunt damp-
ing obtained in Chapter 3, see Fig. 4.11.
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Figure 4.11 — Effect of the active damping techniques on the bode diagram of X;/Fi,
zoomed on the first family of modes, in comparison with the optimal RL shunt technique.

Comparing the different techniques, it appears that the integral control exhibits slightly
better results than the RL shunt technique, reaching until 10 dB of improvement for the
fifth mode damping. Still the result of those two methods is quite similar for the first family
of modes. The choice between them depends on what advantage of each is most valuable:
on one hand, the R shunt does not require external power source but only affects the first
family of modes and is very sensitive to mistuning; on the other hand, the integral control
requires external power source but is broadband and thus not only damps the first family
of modes.

4.5 Conclusion

Three configurations with five pairs of actuator and sensor piezoelectric patches were mod-
elled through SDTools and investigated. One of them prevailed as it exhibits a (nearly)
collocated behaviour and a good performance. The transfer functions between the actuator
patches voltage inputs and the sensor patches voltage outputs seem not to have completely
converged, as the position of the first zero shifts when the mesh on the patches is refined.

Active damping techniques were designed and applied to the bladed rail. As a result,
we observed that the Negative Position Feedback control (resonant control IT) provides
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the best damping performance. However, its very low robustness complicates its practical
implementation.

The Negative Position Feedback control with improved robustness (resonant control I)
and the integral control exhibit inferior performance, but better stability robustness. They
both damp similarly the first family of modes. But the integral control proves itself to be
more propitious as its robustness is considerably better, and it is broadband, allowing to
also damps higher modes.

Finally the active and passive damping techniques were compared. As a result, if
performance is preferred at the cost of stability robustness, the Negative Position Feedback
control (resonant control IT) remains the best option. Otherwise, integral control or RL
optimised shunt should be favoured, choosing one of them depending on the most limiting
factor between requiring external power source (integral control), but with broadband
damping, and only being able to damp the first family of modes, being very sensitive to
mistuning, but without needing external power source (RL shunt).

In any case, the conclusions obtained so far are based on simulations. As confirmed by
the problem of zero shifting in the transfer functions depending on the mesh, an experi-
mental validation is required, destined to confront the simulation model and the related
damping performances.



Chapter 5

Experiments

Chapter summary In order to corroborate the simulation results, experiments are per-
formed on an aluminium 3D-printed bladed rail. Five pairs of piezoelectric actuator and
sensor patches are glued on the bottom surface of the support. Experimental issues are
treated, concerning the manufacturing limitations, piezoelectric plates constraints and ex-
ternal excitation compromise. The empirical transfer functions between the actuator and
sensor patches are obtained, allowing to create a model and to initiate the design of a
resonant controller for active damping.

5.1 Introduction

The simulation results are promising and provide a good indication of the kind of damping
that can be applied on the bladed rail. However the model needs to be confronted to
experimental validations to demonstrate the validity of the techniques we proposed.

To that end, an aluminium 3D-printed prototype was built, based on the 3D-model, see
Fig. 5.1. Ten piezoelectric plates were attached on the bottom surface, as it was realised
in the simulations.

The objectives of conducting experiments on the bladed rail are to corroborate the
model and to assess the damping strategies. For this project, only the first one is addressed,
the rest of the experimental labour being left to future studies.

Figure 5.1 — Picture of two 3D-printed bladed rail prototypes.

In this chapter, an analysis of the experimental issues and challenges is proposed.
The experimental setup is then explained and the results are presented. To conclude,
recommendations for further experiments are made.

39
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5.2 Experimental challenges

There are several differences between the real-life bladed rail and the simulation model,
which cause difficulties at the time to reproduce experimentally simulation setups. Those
issues involve prototype manufacturing characteristics, piezoelectric transducers applica-
tion and external excitation.

5.2.1 Manufacturing process

In the industrial sector, blisks are manufactured with very precise machining techniques,
such as milling with 5-axis machines [31]. Such method was impossible to implement on
the bladed rail at laboratory level for reasons of cost and lack of skilled providers, as the
complex shape of the blades hinders the use of conventional machining processes.

In that context, the adoption of additive manufacturing was the cheapest and more
reliable alternative. The method employed is called Selective Laser Melting (SLM). It
consists in a powder bed fusion process that relies on a high-power density laser as an
energy source to melt and merge specific regions of powder, layer by layer [32].

In this case, the prototype was fabricated with an aluminium alloy AISi1l0Mg. Accord-
ing to the literature, the relative density of SLM aluminium products can reach 99.50 %.
In terms of mechanical properties, the alloy is similar to the aluminium used in traditional
manufacturing, see Table 5.1. A strong limitation however relies in the surface quality. The
arithmetic average roughness of those products was reported to be approximately equal to
15 pwm. On Figure 5.2, one can observe the very rough surface of the bladed rail prototype
produced by SLM. This creates a disparity with the simulation model, but also with the
real bladed disks, for which the surfaces provided by machining are much smoother.

Figure 5.2 — Picture of the bottom surface of the bladed rail prototype. The high roughness
of the surface is visible at naked eye.

Surface roughness is not a problem for vibration analysis. However it possibly changes
the interaction between the structure and the mounted piezoelectric patches.

Type Density (kg/m?) | Young Modulus (MPa) | Poisson Coefficient
Aluminium || 2700 70000 0.30
AlSi10Mg 2650 68000 0.32

Table 5.1 — Aluminium mechanical properties comparison - Classical aluminium alloy [4]
and SLM AlSi10Mg [6][7]
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5.2.2 Piezoelectric patches

Ideally, the piezoelectric patches should be mounted on the bladed rail with direct bonding
between the transducer and the structure surface. This is the case in simulation, where
piezoelectric elements are directly linked to the primary structure elements. The mechan-
ical deformation of the structure is thereby transferred to the patches without interface.

In reality, the patches are glued to the host surface. It means there is an interface
between the transducer and the structure. This adhesive layer is less stiff, more viscous
and can generate some nonlinear effects that modify the interaction between the host
surface and the transducer. These effects have been studied and modelled, see [33], [34],
[35]. Tt is possible in practice to avoid the use of adhesive layer by merging the piezoelectric
with the host structure through heat-treatment [36]: it is called direct bonding.

For this project, direct bonding is not practicable. The piezoelectric plates are glued to
the surface using conductive epoxy. In order to prevent strong interface effects, the layer
of glue has to be as thin as possible. Yet surface roughness would increase the thickness
of the layer. As a consequence, the bottom surface of the bladed rail was smoothed
with sandpaper. The surface treatment was hand-made, which lead to an irregular result
(presence of very small hills).

The manual application of the glue is another issue: the layer should be thin and
uniformly spread under the patches, which is very complicated to reach in practice. There
is therefore an irregular bonding.

Finally, the shaping of the piezoelectric also presents some difficulties. The piczoelectric
patches are obtained from bigger patches cut by half. The cut is not perfectly straight,
which means the piezoelectric patch is not perfectly rectangular, possibly affecting the
transducer’s response.

5.2.3 External excitation

As mentioned in Chapter 1, the main external excitation on the blades of blisks are aerody-
namics forces. To verify the performance of a damping system experimentally, we should
prove it mitigates the effect of such excitation. This kind of excitation however is compli-
cated to create and to control in a laboratory.

The simulation modelled this excitation by applying an unidirectional force on a point
of the tip of each blade. The resulting displacement of the blade is then measured on the
same point. Experimentally, measuring the displacement on one point without interacting
with the system is easy to achieve using a laser vibrometer. Reproducing the exact same
excitation is much more complicated because it tends to modify the system.

There are several methods used to excite bladed disks modes, such as: mechanical exci-
tation by an electromagnetic shaker [37] or hammer impacts [13], electromagnetic excitation
using multiple electromagnets [2] [13]. All those techniques alter the initial structure in
some way: adding mass (attaching the magnets, the shaker), increasing structural damping
(voice coil), inserting nonlinearity (by contact), introducing new resonances.

The experimental setup proposed in [2] to excite a blisk is shown on Figure 5.3 (a). The
advantage of employing voice coils to excite punctually the blades is that it corresponds to
the simulation and it constitutes a contactless method (thus avoiding nonlinear excitation).
The frequency of the excitation can be controlled (contrasting with hammers). Having said
that, the electromagnet system adds inherent damping to the structure which could be a
problem to isolate the effect of the piezoelectric damping.
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On Figure 5.3 (b), we show the picture of an experimental setup intent on the bladed
rail using a piezoelectric stack as a shaker to excite the structure. This easy to implement
solution does not allow to drive directly blades, as it is attached to the support. In this
project, ideally, we would like to observe how well can piezoelectrics mounted on the
support damp the blades when these are excited. This setup excites the structure from
the support, which de facto is another situation. Besides, the clamped border conditions
in this setup are not respected, the support becoming less stiff and thus separating more
the modes of the first family (see Chapter 2).

Piezoelectric stack|

Figure 5.3 — (a) Experimental setup with voice coils [2]. The blades of the blisk of excited
punctually with electromagnets. (b) Experimental setup created with a piezoelectric stack
as electromechanical shaker. The bladed rail is attached to the shaker at its support.

The present work does not study experimentally the implementation of the piezoelec-
tric damping systems, but it will be the first step of future investigations. The question
of external excitation will then need to be answered acknowledging and evaluating the
alterations they provoke on the bladed rail dynamics.

5.3 Method

The first objective of the experiments is to corroborate the simulation model validity. To
that end, the configuration (a) of Figure 4.5 is replicated, with the difference that the
bladed rail used is made of aluminium (AlSil10Mg) instead of steel, and the piezoelectric
patches are composed of PIC151 (see Table 5.2 for material properties) instead of PIC255.
The aluminium is indeed cheaper and its surface is easier to smooth manually, see Section
5.2.2. Regarding the piezoelectric material, the decision only relies on product availability.
A comparison between the initial simulation setup and the experimental setup reproduced
in simulation is proposed in Appendix C).

Pictures of the experimental setup are presented on Figure 5.4. Ten PIC151 patches
are glued on the bottom surface of the support with epoxy conductive glue, acting as
sensors and actuators. Thereby the bottom electrodes of the patches are all electrically
connected to the bladed rail, itself connected to the ground. Cables are soldered on the top
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Material property | Value | Unit

d31 -180 | 107m/V
d33 400 | 1072m/v
dis 550 | 10712m/V
S 15.0 | 1072m?/N
Sa3 19.0 | 1072m?2/N
S12 -4.50 | 1072m?/N
S13 -5.70 | 1072m?/N
Sya 39.0 | 1072m?/N
g, 1.75 | 1073F/m
%5 212 | 1078F/m

p (density) 7800 | kg/m?

Table 5.2 — PIC151 material properties [8]. Physical meaning of the parameters explained
in Section 1.2.1.

electrodes. The glue is thick and tricky to apply. As the piezoelectric transducers are very
thin, the glue could touch both the bottom and the top electrodes of one patch, generating
a short-circuit. It is the case of the sensor patch of pair 2, that is therefore useless.

a)

Figure 5.4 — Picture of the experimental setup used to obtain the transfer functions of
Vsi/Vai. (a) The bladed rail is clamped by its feet to an optical table. A black cable (behind
blade 5) connects the bladed rail to the ground. (b) Five piezoelectric pairs are glued with
conductive epoxy of the bottom surface. For each patch, one electrode is connected to
the ground through the bladed rail, the other one is linked to the MicroLLabBox. Pair 2 is
short-circuited because of a misapplication of the conductive glue, and is thus unusable.

In order to obtain the empirical transfer functions of Vi;/Vy; (actuator patch voltage
to sensor patch voltage of a pair i), input sine signals are sent to the actuator patches and
output signals are collected at the sensor patches. A MicroLabBox allows to both generate
the harmonic signals and to manage the sensor outputs.

Sine sweeps are executed for a duration of about 10 mins between 1100 Hz and 1400 Hz.
The signals are measured with a sampling frequency of 10 kHz. From those experiments



44 5.4. RESULTS AND DISCUSSION

results, the transfers functions Vg;/Vy; are computed.

Equation 4.2, giving the expression of the transfer functions between actuator and
sensor for lightly damped structure, can be factorised. Applying it to Vi;/Vgi, we obtain
[26]:

Vsi

7 (s)

) s% + 26, Q; + Q2
Vai

0
Hf\ﬁ’l s2 + 24wy + w}

where NV, is the number of zeros, € are the frequencies of the zeros; N, is the number of

(5.1)

poles, w; are the frequencies of the poles; &; is the modal damping of mode j; Gy is the
static gain.

This equation is used to fit the experimental curves and achieve empirical models.
These models are then used to tune active damping technique parameters. As the effect
of the patches on the blades is unknown (more experiments are needed), a first attempt to
an active design vibration absorber is executed optimising its parameters by maximising
the modal damping.

5.4 Results and discussion

The results of the frequency sweeps are displayed in Figure 5.5. The empirical transfer
functions are exhibiting clear peaks at the natural frequencies, that can be extracted from
those curves, see Table 5.3. The frequencies for each mode vary by 5 to 10 Hz depending
on piezoelectric pair, impeding to define with clarity the correct natural frequencies.

Pair number || Frequency 1 | Frequency 2 | Frequency 3 | Frequency 4 | Frequency 5
1 1276.04 Hz | 1290.21 Hz | 1296.15 Hz | 1300.72 Hz | -

3 1279.40 Hz | 1294.07 Hz | 1300.04 Hz | 1304.16 Hz | 1309.05 Hz
4 1271.17 Hz | 1286.06 Hz | 1291.99 Hz | 1296.24 Hz | 1300.64 Hz
) 1279.25 Hz | 1294.07 Hz | 1299.88 Hz | 1304.32 Hz | 1308.90 Hz

Table 5.3 — Experimental natural frequencies

The empirical models parameters are found, providing the modal damping ratios, see in
Table 5.4. While in the simulations, the structural damping was assumed to be & = 1077,
the modal damping ratios obtained from the experiments are located between &, = 10~*
and &, = 1073 (for mode k), which is 10 to 100 times higher.

Pair number || & 3 & a &

1 7.96 10~* | 5.00 10~* | 3.4910~* | 1.17 1073 | -

3 9.10 10-% [ 5.00 10-* [ 3.49 10-* [ 3.50 10~* | 4.67 10*
4 1711073 [ 5.00 10~* | 3.4910~* | 5.26 10~* | 2.92 10~*
5 1.931073 | 5.00 10~* [ 3.4910~% | 2.34 10-* | 2.92 10~ ¢

Table 5.4 — Experimental modal damping ratios

In the simulations, one of the biggest issues we were confronted to was the uncertain
position of the first zero. Those result are showing more complex behaviour: depending of
the piezoelectric pair, the system exhibits (1) a zero before pole pattern (see Fig. 5.5(b))
as in the simulation, (2) a pole before zero pattern (see Fig. 5.5(c) and (d)), or (3) a
non-collocated system. Besides the zero before pole pattern behaviour is not completely
caught by Eq. 5.1 as the first zero seems to be a positive zero (see the phase variation).
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Figure 5.5 — Empirical transfer functions Vy;/Vg; (blue curve) and the fitted model (red
curve). (a) corresponds to pair 1; (b) pair 3; (¢) pair 4; (d) pair 5. In the case of (d), a zero
was added to the model in order to fit the experimental curve even if it was not confirmed
as it would located out of the experimental frequency range.

These variations between the transfer functions could be explained by the imperfections
of the setup (imperfect bonding or shape, etc., see Section 5.2.2) and seem to indicate that
the position of the first zero is very sensitive.

The transfer functions are located between —90° and +90° instead of between 0° and
180°. The models were adapted shifting their phase of 90°. This difference could be due
to the measuring electronics (some capacitance) or to a sampling effect.

The damping strategies developed so far are to be adapted to suit this new situation.
The resonant controller (Negative Position Feedback) studied in Chapter 4 is still valid for
the zero before pole transfer function. For the others, the Positive Position Feedback can
be adopted, simply changing the sign of the loop of the NPF controller. Acting likewise
feedback loops can be designed with identical parameters but different signs according to
the piezoelectric pair. This was performed, optimising the parameters to provide maximum
damping. The result is shown on Figure 5.6.

The result is promising: the modal damping ratios reach in average 3.2 1073, Never-
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Figure 5.6 — Effect of PPF control on pair 4 transfer function. The parameters were
chosen maximising modal damping of all four pairs transfer functions; the parameters are:
g = 3.5090 10°, wy = 8700.8, £ = 0.1486.

theless there are still many unknowns. Firstly, in this model, there is no coupling between
the piezoelectric pairs, which of course is inaccurate. The coupling needs to be acknowl-
edged for damper designs in terms of performance but also in terms of stability robustness.
Secondly, the damping performance can not really be predicted without determining the
influence of the patches on the blades and vice-versa, which requires further experiments.

5.5 Conclusion

An aluminium prototype of the bladed rail was 3D printed, on which piezoelectric plates
were mounted, reproducing the configuration proposed in Figure 4.5 (a). The main objec-
tive was to obtain the empirical transfer functions between the actuators and the sensors
voltages for each piezoelectric pairs (Vy;/Vy; for pair 7).

Those transfer functions were measured by frequency sweeps. They present several
natural frequency values for a same mode and exhibit different behaviours in terms of zero
pole interlacing patterns. Those variations could be due to many reasons, such as imperfect
piezoelectric placement, shaping or surface bonding. The quality of the bladed rail bottom
surface also could cause such deviations, as it was unevenly smoothed manually.

Despite this, the sharp peaks of the transfer functions, meaning the piezoelectric patches
actually interact with the structure, suggest that damping is possible. Empirical models
were created and a resonant controller was applied to them.

Even if the results are promising, further experiments are required to complete the
model in order to include coupling between the patches pairs and between the pairs and
the blades.

Finally, the vibration absorber will need to be applied to the prototype with an external
excitation in order to evaluate its real performance. The external excitation must be
carefully selected, taking into account the effect of its implementation on the primary
structure dynamics.
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Conclusion

The present thesis investigated the application of piezoelectric damping devices on a blisk-
like structure: the bladed rail. The main idea was to reduce blade vibrations by operating
on the support bottom surface, where modifications can be made without affecting the
rail upper part which possesses an aerodynamic function. While other damping techniques
exist, the ones proposed in this work are easy-to-implement and non-intrusive, as it con-
sists in simply attaching piezoelectric patches on a surface. Those transducers are then
connected to circuits, used as actuator/sensor in order to create effective dampers.

Operating from the bottom surface to damp the blades is possible, as there is an
interaction between those two sub-structures. The motion of the blades lead to strains
of the surface underneath that are in phase with that motion. We saw that the bladed
rail, as any periodic structure, exhibits a succession of closely located natural frequencies,
corresponding to family of modes. The first family, situated at around 1.2 kHz, is composed
of five modes in which the blades are found in their first bending mode. The objective set
for this study was to specifically reduce the vibration related to those modes.

The piezoelectric transducers were placed at the root of the blades, where they could
adequately control them. Mokrani (2015), in his PhD thesis [2], proposed to place five
patches under each blade and to shunt them with identical RL circuits, tuned on the mean
frequency of the first family of modes. His optimisation algorithm was confronted to an
H, approach that showed better performance in terms of vibration reduction. Electrical
component mistuning on this kind of resonant shunt creates high loses of performance and
is one of the limiting factors of the method.

Active damping techniques were then developed. Five pairs of sensor and actuator
patches were mounted on the bottom surface. The pairs were chosen to show a collo-
cated behaviour, which ensures the stability of well-known control methods. In this case,
an integral control and two negative position feedback controls (resonant controls) were
implemented. The resonant controller has the best performance but its low stability robust-
ness is a strong disadvantage. When its robustness is increased, its performances decreases.
Integral control, on the other hand, exhibits very convincing performance, keeping also a
good robustness. Moreover, the control is broadband and not only affects the first family
of modes.

The results of this work can be summarised by the performance graph on figure 6.1,
where the mean RL shunt, the optimal RL shunt, the integral control and the resonant
control are compared.

This study achieved the goal to propose strategies that show better performance than
the approach that Mokrani (2015) worked on (mean RL shunt). Based on our results,
the selection of the best damping strategy lies on several criteria. If high performance is
required, the resonant active damping is better suited. However, its lack of robustness
can be problematic for its practical implementation. With a similar performance, the RL
shunt and the integral control both have advantages and disadvantages. The RL shunt is
a passive technique that, by definition, does not need external power source. But it only
damps the first family of modes and is sensitive to mistuning. The integral control, on
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Figure 6.1 — Damping performance of the different approaches investigated. Transfer func-
tion Xy / Fy.

the other hand, requires external power source, but shows good stability robustness and
is efficient broadband. As a conclusion, the choice of a method over another derives from
those considerations according to one’s constraints.

On the simulation side, there is still a lot of space for improvement. Some phenom-
ena were not completely studied in this work and an some deepening would be extremely
interesting: the problem of the mesh depending zero position in the sensor/actuator trans-
fer function, the effect of the piezoelectric patches thickness of damping performance, the
modelling of indirect bonding. Besides, passive and active damping techniques are not the
only options available. The next steps of this investigation should address hybrid damping
and energy harvesting.

On the experimental side, a prototype of the bladed rail was 3D-printed in order to
test the active damping configuration. The transfer functions between the sensors and
actuators were obtained and a model was created. Resonant shunt was applied on this
model, showing the potential of the technique. The experiments exhibited many challenges,
such as surface roughness, piezoelectric imperfect bonding or excitation source. Many
more experiments are needed to better understand the system behaviour and to assess the
damping approaches developed in the simulations. This should constitute the very next
steps for the continuation of this project.
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Appendix A
Material effect on dynamics

Modifying the material properties of the 3D model result in different resonance frequencies.
However the mode shapes and the mode families structure stay valid. When the frequencies
are normalised, we can observe that the material does not matter anymore, as shown in
Table A.1. This is why, in this study, most of the graphs are presented with normalised
frequencies.

- Titanium | Steel Aluminium
Natural frequency 1 1193.7 Hz | 1237.3 Hz | 1216.5 Hz
Natural frequency 2 1206.9 Hz | 1251.0 Hz | 1230.0 Hz
Natural frequency 3 1215.0 Hz | 1259.2 Hz | 1238.2 Hz
Natural frequency 4 1218.3 Hz | 1262.9 Hz | 1241.7 Hz
Natural frequency 5 1219.9 Hz | 1264.6 Hz | 1243.3 Hz
Mean frequency 1210.8 Hz | 1255.0 Hz | 1233.9 Hz

Normalised frequency 1 || 0.9859 0.9859 0.9859
Normalised frequency 2 || 0.9968 0.9968 0.9968
Normalised frequency 3 || 1.0035 1.0033 1.0035
Normalised frequency 4 || 1.0062 1.0063 1.0063
Normalised frequency 5 || 1.0075 1.0076 1.0076
Standard deviation 0.0089 0.0089 0.0089

Table A.1 — Natural frequencies of the first family of modes for different materials (met-
als) from simulations. The normalised frequencies are computed by dividing the natural
frequencies by the mean frequency.
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Appendix B
Active configuration comparison

In chapter 4, the patch configurations are presented and the configuration (a) is selected
over configuation (b) (see Fig. 4.5). The figure B.1 justifies that choice. For the same
optimisation algorithm - damping maximisation - the configuration (a) exhibits far better
results than configuration (b) in terms of peak reduction.

T T T T T T T
= Undamped structure
-20 —— Integral control config. (a) |7
Integral control config. (b)
-40
)
2
o -60
T
2
o -80
g
=
-100
-120
1 ] 1 1 1 1 ]

0.97 0.98 0.99 1 1.01 1.02 1.03
Normalised frequency

Figure B.1 — Damping performance of optimised integral control for config. (a) and (b) of
Fig. 4.5. Transfer function X,/F}.
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Appendix C
Experimental setup in simulations

In the present work, the simulations were completed using the steel mechanical character-
istics and PIC255 piezoelectric patches. The experiments, on the other hand, consist in
employing an aluminium prototype on which are glued PIC151 piezoelectrics. Moreover,
the clamped boundary conditions are different in the two situations: in the simulation, the
rail is clamped at the holes, while in the experiment, the rail feet are blocked.

As explained in Appedix A, changing the material of the same model does not modify
the normalised frequencies. The natural frequencies stay in the same range of magnitude.
However, as shown in Figure C.1, we observe that the frequencies of the experimental setup
model are located closer to each other than the frequencies of the simulation setup model.
It is because clamping the feet make the bladed rail support even stiffer. Therefore the
natural frequencies are found in a more narrow band.

20 = T T T T T T T |
—— Experimental setup

—— Simulation setup

Magnitude (dB)

-100

-120

| | 1 | | | 1
0.97 0.98 0.99 1 1.01 1.02 1.03
Normalised frequency

Figure C.1 — Transfer function Vg1 /Vy; from SDT simulation. In blue, the model adapted
to the experimental setup (Aluminium, PIC151 patches and feet clamped), in red the
simulation configuration used in the chapter 4.

In Figure C.2, the experimental results and the simulation results of the experimental
setup model are compared. One can see three main differences: (1) there is no zero before
pole in the experimental results; (2) the frequencies are higher in the experiments; and (3)
the amplitude of the peaks is lower.

The point (1) is discussed in Chapter 5. In the case of point (2), the system is different:
the real boundary conditions, the 3D printed material, might make the support even stiffer.
(3) The difference of amplitude is probably mainly due to the inherent damping of the
simulation model that is largely underestimated. The imperfect bonding of the patches in
the real structure could also provoke such variation.
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Bode Diagram
Vs1/Val
20 T ¥ T ¥ T T T T T T T T
— SDT Model
—— Experiment Model &

-60

Magnitude (dB)

-80

-100

_120 1 L L L I L s L L 1 L L L 1
1.2 1.25 1.3 1.35
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Figure C.2 — Transfer function Vi1/V,1. In blue, the SDT model adapted to the experi-
mental setup. In red, the model fitted on the experimental results.



Appendix D

Matlab Codes

D.1 Five patches SDT model generation

The code is used to import abaqus files and generate a State Space model of the five
patches bladed rail model from Chapter 3.

1 clear all
2 clc
3
4 model = abaqus(’blaidedrail abaqus model.inp’);
5 model2 = model. Stack{2,3};
6 model2.Node (:,5:7) = model2.Node(:,5:7) /1000; model2.unit = ’SI7;
% changing units
7
8 model2.name = ’Bladed Rail — Passive shunt — Mokrani like model’;
10 % Defining a group corresponding to piezo patches
11 model2.Elt = feutil (| ’divide group 1 withnode{x<0.027 & x>0.011
& y<—0.0115 & y>—0.0225 & z>0.0145 & z<0.015} ’] ,model2) ;
12 model2. Elt = feutil ([ ’divide group 2 withnode{x<0.027 & x>0.011
& y=-0.028 & y>-0.039 & z>0.0145 & 2-<0.015} |, model2) ;
13 model2. Elt = feutil ([ ’divide group 3 withnode{x<0.027 & x>0.011
& y<—0.0445 & y>—0.0555 & z>0.0145 & z<0.015} ], model2);
14  model2.Elt = feutil ([ ’divide group 4 withnode{x<0.027 & x>0.011
& y<—0.061 & y>—0.072 & z>0.0145 & z<0.015} ], model2) ;
15 model2. Elt = feutil ([ ’divide group 5 withnode{x<0.027 & x>0.011
& y=—0.0775 & y>-0.0885 & 2>0.0145 & z<0.015} |, model2) ;
16
17 model2. Elt=feutil (’set group 1 matid 2’ ,model2);
18  model2. Elt=feutil (’set group 2 matid 2’ ,model2);
19  model2. Elt=feutil (’set group 3 matid 2’ ,model2);
20  model2. Elt=feutil (’set group 4 matid 2’ ,model2);
21 model2. Elt—feutil (’set group 5 matid 2’ ,model2);
22 model2. Elt—feutil (’set group 6 matid 1’ ,model2);
23
24 % Adding material properties
25 model2.pl = [1 fe mat(’m_elastic’,’SI’ 1) 205e9 0.3 7800 0 0 0
0];% <— steel
26 model2. pl = m_piezo(model2.pl, ’dbval 2 —eclas 20 PIC_2557); %
Selecting piezo material
27
28 % Adding element properties
29 model2 = p_ solid (’default’ ,model2);

o6
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30

31 %% ADD CASE

32 % RESET CASE 1

33 model2 = fe case(model2, 'reset’) ;

34

35 % SET THE

36 | Case ,CaseName|—fe case(model, ’GetCase )

37 model2 = fe case(model2,’SetCase’ Case) ;

38 model2 = stack set(model2,stack get(model, 'case’));

39

40 % Adding the boundary condition

41 % GET THE SET7 BY NODE ID  — Set 7 is defined in abaqus as
such

)

42 % avoid to have multiple succesive selection rules...

43 Set7 = stack get(model, 'set’ ’Set—7");

44 Set7{3}.data = feutil(’findnode setname Set—7’,model);

45 model2 = stack set(model2,Set7);

46

47

48

49 %% Considering wvoltage actuator and charge sensor

50 % Patchl

51 model2 = p piezo(’ ElectrodeMPC Topl Actuator —input "Va"’,
model2 , 'x<0.027 & x>0.011 & y<—0.0115 & y>—-0.0225 & z
—=0.0145") ;

52 model2 — p piezo(’ ElectrodeMPC Bottoml Actuator —ground’ ,model2
, 'x<0.027 & x>0.011 & y<—0.0115 & y>—-0.0225 & z==0.015");

53

54 N1 = feutil (’find node x<0.027 & x>0.011 & y<—0.0115 & y
>—-0.0225 & z==0.0145" ,model2) ;

55 N1 = NI1(1);

56 1l = struct(’cta’,1,’DOF’ N1+.21, name’, QS1’);

57 model2 = p_ piezo( ' ElectrodeSensQ’ ,model2,r1);

58

59 % Patch?2

60 model2 = p_piezo(’ ElectrodeMPC Top2 Actuator —input "Va"’
model2 | ’x<0.027 & x>0.011 & y<-0.028 & y>—-0.039 & z==0.0145
)5

61  model2 = p piezo(’ElectrodeMPC Bottom2 Actuator —ground’ ,model2
, ’x<0.027 & x>0.011 & y<—0.028 & y>—-0.039 & z==0.015");

62

63 N2 = feutil(’find node x<0.027 & x>0.011 & y<—0.028 & y>—-0.039
& z==0.0145" ,model2) ;

64 N2 = N2(1);

65 12 = struct(’cta’,1,’DOF’ N2+.21, name’, QS27);

66 model2 = p_ piezo( ElectrodeSensQ’ ,model2,r2);

67
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68 % Patch3

69

70

71
72

73
74
75
76
T
78

79

80
81

82
83
84
85
86
87

88

89
90

91
92
93
94
95
96

97
98
99
100
101

model2 = p_piezo (' ElectrodeMPC Top3 Actuator —input "Va"’
model2 , 'x<0.027 & x>0.011 & y<—0.0445 & y>—-0.0555 & z
==0.0145");

model2 = p_piezo(’ElectrodeMPC Bottom3 Actuator —ground’,model2
,’x<0.027 & x>0.011 & y<—0.0445 & y>—0.0555 & z==0.015");

N3 = feutil (’find node x<0.027 & x>0.011 & y<—0.0445 & y
>—0.0555 & z==0.0145" ,model2) ;

N3 = N3(1);

r3 = struct(’cta’,1,’DOF’ N3+.21, name’, ’QS37);

model2 = p_piezo(’ElectrodeSensQ’ ,model2,r3);

Patchy

model2 = p piezo(’ElectrodeMPC Top4 Actuator —input "Va"’,
model2 , 'x<0.027 & x>0.011 & y<—0.061 & y>—0.072 & z==0.0145"
)5

model2 = p piezo (' ElectrodeMPC Bottom4 Actuator —ground’,model2
,’x<0.027 & x>0.011 & y<—0.061 & y>—-0.072 & z==0.015");

N4 = feutil (’find node x<0.027 & x>0.011 & y<—0.061 & y>—0.072

& z==0.0145" ;model2) ;

N4 = N4(1);

r4d = struct(’cta’,1,’DOF’ ,N4+.21, name’, ’QS4’);

model2 = p_ piezo(’ElectrodeSensQ’ ,model2 r4);

Patchd

model2 = p piezo (' ElectrodeMPC Top5 Actuator —input "Va"’,
model2 , 'x<0.027 & x>0.011 & y<—0.0775 & y>—0.0885 & z
==0.0145") ;

model2 = p piezo(’ElectrodeMPC Bottom5 Actuator —ground’ ,model2
,'x<0.027 & x>0.011 & y<—0.0775 & y>—0.0885 & z—=0.015");

N5 = feutil (’find node x<0.027 & x>0.011 & y<—0.0775 & y
>—0.0885 & z==0.0145" ,model2) ;

N5 = N5(1);

r5 = struct(’cta’,1,’DOF’ N5+.21, name’,’QS57);

model2 — p_piezo(’ElectrodeSensQ’ ,model2,15);

Merging Dofsets

data.def = [1 0 0 0 0;0 100 0;0 010 0;00010;0000
1]7;

data .DOF = [N1+0.21 N2+0.21 N3+0.21 N4+0.21 N5+0.21]’;

model2 = fe case(model2,’DofSet’,’Va’ data);

% FExcitation
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5

102 % Blade 1

>

103 NF = 4861; % The node is chosen to be on the tip of the blade
104 LoadCase = struct ( 'DOF’ NF+40.02,’def’ ,1);
105 % Point Actuator

106 model2 = fe case(model2, ’DOFLoad’ , ’TipLoadl’, LoadCase) ;

107

108 % Point Sensor

109 model2 =
110

111 % Blade 2

fe case(model2, ’SensDof’ |’ TipDispl’,

112 NF = 5300;
113 LoadCase = struct (’'DOF’ NF+0.02, def’ ,1);

114 model2 =
115
116 model2 =
117

118 % Blade 3

fe case(model2, "DOFLoad’ , ’TipLoad2’,

fe case(model2, ’SensDof’ |’ TipDisp2’,

119 NF = 5739;
120 LoadCase = struct (’'DOF’ NF+0.02, def’ ,1);

121 model2 =
122
123 model2 =
124

125 % Blade /4

fe case(model2, ’DOFLoad’ ,’TipLoad3’,

fe case(model2, ’SensDof’ |’ TipDisp3’,

126 NF = 6171;
127 LoadCase = struct (’DOF’ NF+0.02, def’ ,1);

128 model2 =
129

130 model2 =
131

132 % Blade

fe case(model2, 'DOFLoad’ , ’TipLoad4

fe case(model2, ’SensDof’ |’ TipDisp4’,

133 NF = 6617;
134 LoadCase = struct ('DOF’ ,NF+0.02, def’ ,1);

135 model2 =
136
137 model2 =
138

fe case(model2, "DOFLoad’ , ’TipLoad5’,

fe case(model2,’SensDof’ ,’TipDisp5 7,

139 %% Calculating the resonance frequencies and

140 ofact (’mklserv utils —silent )

141 def = fe

142 def.data
143

eig (model2 ,[5 50 10]);

144 %% Creating state space model
145 model2 = stack set(model2,’info’,’ DefaultZeta’  ,le—5);

146 |sys ,TR|
147

— fe2ss(’free 5 20 0 —dterm’ ,model2)

148 %% Visualization

NF+0.02) ;

LoadCase) ;

NF+0.02) ;

LoadCase) ;

NF+0.02) ;

LoadCase) ;

NF+0.02) ;

LoadCase) ;
NF+0.02) ;

mode shapes

)
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149 feplot (model2) ;
150 fecom ( ’colordatapro’)

D.2 10 patches SDT model generation

The code is used to import abaqus files and generate a State Space model of the ten patches
bladed rail model from Chapter 4.

1 clear all

2 cle

3

4 model = abaqus(’blaidedrail abaqus model.inp’);

5

6 model2 = model.Stack{2,3};

7 model2.Node(:,5:7) = model2.Node(:,5:7) /1000; model2.unit = ’SI’;
% changing units

8

9 model2.name = ’Bladed Rail — Ten Patches — Configuration 197;

10

11 % Defining a group corresponding to piezo (actuators)

12 model2. Elt = feutil ([ ’divide group 1 withnode{x<0.0255 & x
>0.0105 & y<—0.01325 & y>—0.01825 & z>0.0148 & z<0.015} "],
model2 ) ;

13 model2. Elt = feutil ([ ’divide group 2 withnode{x<0.0255 & x
>0.0105 & y<—0.02975 & y>—0.03475 & z>0.0148 & z<0.015} ],
model2) ;

14  model2.Elt = feutil ([ ’divide group 3 withnode{x<0.0255 & x
~0.0105 & y<—0.04625 & y>—0.05125 & z>0.0148 & z-0.015} "],
model2) ;

15 model2. Elt = feutil ([ ’divide group 4 withnode{x<0.0255 & x
>0.0105 & y<—0.06275 & y>—0.06775 & z>0.0148 & z<0.015} ],
model2 ) ;

16  model2.Elt = feutil ([ ’divide group 5 withnode{x<0.0255 & x
>0.0105 & y<—0.07925 & y>—0.08425 & z>0.0148 & z<0.015} ],
model2) ;

17

18 % Defining a group corresponding to piezo (sensors)

19  model2. Elt — feutil ([’divide group 6 withnode{x<0.0255 & x
>0.0105 & y<—0.01875 & y>—0.02375 & z>0.0148 & z<0.015} 7],
model2) ;

20 model2. Elt = feutil ([’divide group 7 withnode{x<0.0255 & x
>0.0105 & y<—0.03525 & y>—0.04025 & z>0.0148 & z<0.015} ],
model2 ) ;

21 model2. Elt = feutil ([ ’divide group 8 withnode{x<0.0255 & x
~0.0105 & y<-0.05175 & y>—0.05675 & z>0.0148 & z-0.015} "],
model2) ;

22 model2. Elt = feutil ([’divide group 9 withnode{x<0.0255 & x
>0.0105 & y<—0.06825 & y>—0.07325 & z>0.0148 & z<0.015} ],
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model2) ;

23 model2. Elt = feutil ([’divide group 10 withnode{x<0.0255 & x
>0.0105 & y<—0.08475 & y>—0.08975 & z>0.0148 & z<0.015} "],
model2) ;

24

25

26

27

28 for i0=1:10

29

30 model2. Elt = feutil (sprintf(’set group %i matid 2’,i0) ,model2
)5

31

32 end

33

34  model2. Elt = feutil(’set group 11 matid 1’ ,model2);

35

36 % Adding material properties

37 model2.pl = [1 fe _mat(’m _elastic’,’SI’,1) 205¢9 0.3 7800 0 0 0
0]; % Steel

38 % Aluminium would be 70e9 0.530 2700

39

40 model2.pl = m_piezo(model2.pl, 'dbval 2 —elas 20 PIC 255"); %
Selecting piezo material

41

42 % Adding clement propertics

43 model2 = p_solid (’default’ ;model2);

4 % return

45 %% ADD CASE

46 % RESET CASE 1

47 model2 = fe case(model2, 'reset’) ;

48

49 % SET THFE

50 [Case ,CaseName|=fe case(model, GetCase’) ;

51 model2 = fe case(model2,’SetCase’ Case) ;

52 model2 = stack set(model2,stack get(model, case’));

53
54 % Adding the boundary condition
55 % GET THE SET7 BY NODE ID  — Set 7 is defined in abaqus as

such
56 % avoid to have multiple succesive selection rules...
57 Set7 = stack get(model, ’set’’Set—7");
58 Set7{3}.data = feutil(’findnode setname Set—7",model);
59 model2 = stack set(model2, Set7);
60
61 %% Considering voltage actuator and charge sensor
62
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63 InputDOF = || ;
64 GROUPa = [1 2 3 4 5];
65 GROUPs — [6 7 8 9 10];

66 zPOS = [0.0148 0.015 |;

67

68 for il=1:length (GROUPa)

69

70 [ model2 , InputDOF (end+1,1)] = p_piezo(sprintf(’ElectrodeMPC
Top%i Actuator —input "Va%i" ’ ,GROUPa(il) ,GROUPa(il)) |,
model2, sprintf(’z=%f & inelt{group %i} ’,zPOS(1),GROUPa
(i1))):

71 model2 = p_piezo(sprintf(’ElectrodeMPC Bottom%i Actuator —
ground’ ,GROUPa(i1) ,GROUPa(il)) , model2, sprintf(’z
—%f & inelt{group %i} ’,zPOS(2) ,GROUPa(il)));

72

73 model2 = p piezo(sprintf(’ElectrodeMPC Vs%i sensor —matid 2 —

vout’ ,GROUPa(il)) ,model2,sprintf(’'z=%f & inelt{group %i}
»,zPOS (1) ,GROUPs(il1)));

74 model2 = p_piezo(sprintf(’ElectrodeMPC Bottom%i sensor —
ground ’ \GROUPs(i1)) ,model2 ,sprintf(’z—%f & inelt{group %
i} 7,zPOS(2) ,GROUPs(il)));

75 model2 = fe case(model2, 'remove’ ,sprintf(’'Q-Vs%i sensor’,
GROUPa(il)));

76

7 NAME{il} = sprintf(’'Va%i’ ,GROUPa(il));

78

79 end

80

81 model2 =fe mpc(’DofSetMerge’ ,model2 NAME{:}) ; % DOFset are

groups under the name as NAME{1};

82 % return

83

84 % Excitation on the blades

85

86 % Blade 1

87 NF = 9881; % The node 1is chosen to be on the tip of the blade

88

89 % Point Actuator Blade 1

90 LoadCase = struct (’DOF’ NF+0.02, def’ ;1) ;

91 model2 = fe case(model2, 'DOFLoad’, ' TipLoadl’ LoadCase);

92

93 % Point Sensor Blade 1

94 model2 = fe case(model2, ’SensDof’, TipDispl’ ,NF+0.02);

95

9 % Blade 2

97 NF = 7953:

98 LoadCase = struct ('DOF’ NF+0.02, def’ 1) ;
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99 model2
100

101 model2 = fe case(model2,’SensDof’,’ TipDisp2’ ,NF+0.02);
102

103 % Blade 3

104 NF = 8169;

105 LoadCase = struct (’DOF’ NF+0.02, def’ ,1);

106 model2 = fe case(model2, ’DOFLoad’, ' TipLoad3’ 6 LoadCase);
107

108 model2 = fe case(model2,’SensDof’,’ TipDisp3’ ,NF+0.02);
109

110 % Blade 4

111 NF — 8385;

112 LoadCase = struct ('DOF’ ,NF+0.02, def’ ,1);

113 model2 = fe case(model2, ’DOFLoad’, ' TipLoad4’ 6 LoadCase) ;
114

115 model2 = fe case(model2,’SensDof’,’ TipDisp4’ ,NF+0.02);
116

117 % Blade 5

118 NF = 8601;

119 LoadCase = struct ('DOF’ ,NF+0.02, def’ ,1);

120 model2 = fe case(model2, ’DOFLoad’, ' TipLoad5’ , LoadCase) ;
121

122 model2 = fe case(model2, ’SensDof’, TipDisp5’ ,NF+0.02);
123

124 %% Calculating the resonance frequencies and mode shapes
125 ofact (’mklserv _utils —silent )

126 def = fe eig(model2,[5 50 10]);

127 def.data

fe case(model2, 'DOFLoad’ ,’TipLoad2’ , LoadCase) ;

128
120 %% Creating state space model
130

131 model2 = stack set(model2, ’info’,’ DefaultZeta’ 1e—5);
132 [sys ,TR] = fe2ss(’free 5 20 0 —dterm’,model2);

133

134 return

135 %% Visualization

136 feplot (model2);

137 fecom ( ’colordatapro )

D.3 Mean shunt appoach algorithm

The code generates the shunted state space model of the bladed rail from a five patches
model, choosing the parameters with the mean shunt approach.

1 load(’system with five patches.mat’) ; % loading state space
model with five patches
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3% Extracting poles and zeros

4 omega = zeros (5,5) ; % (patches, modes)

5

O w0 o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30

Omega = zeros (5,5)

for

end

p = 1:5
subsys = sys(p,p+3);
list poles — imag(pole(subsys));
om = sort(list poles(list poles>=0));
list zeros = imag(zero(subsys));
Om = sort(list _zeros(list _zeros >=0));
for m = 1:5
omega (p,m) = om(m) ;
Omega(p,m) — Om(m) ;
end

% Computing effective electromechanical coupling factor

Kji

= zeros(5,5);

K square j av = zeros(1,5);

for

end

j — 1:5 % patches
for i=1:5 % modes
Kji(j,i) = sqrt((Omega(j,1)"2 — omega(j,1)"2)/(Omega(j,1)
"2));
K square j av(j) = K_square j av(j) + Kji(j,i) 2 ;
end

%%% RL mean shunt

31 % Computing overall electromechanical coupling factor (only for 8

32

33
34
35
36

37
38
39
40

patches)

K overall = sqrt(K square j av(1) + K square j av(3) +

K square j av(5));

% C_static obtained at frequency 0
C _static = abs(evalfr(sys(1,6), 0)) ;
omega mean = (1/5)x(omega(1,1) + omega(2,2) + omega(3,3) + omega

(4,4) + omega(h,5)) ;

R = (2xK _ overall)/(omega meanxC static) ;

L = 1/(C_staticx(omega_mean~2)) ;

41 RL = tf(|[L R O],1); % Ls"2 + Rs

42

43 % Implementation of the feedback
44 sys _shunted = feedback(sys, RL, 6, 1, 1);
45 sys shunted = feedback(sys shunted, RL, 8, 3, 1);
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46 sys shunted — feedback(sys shunted, RL, 10, 5, 1);
47
48 % sys_shunted is the final system
D.4 Finding optimal RL shunt
The code generates the shunted state space model of the bladed rail from a five patches
model, choosing the parameters with the Ho, optimisation.
1 clec; clear all;
2
3 load (’system with five patches.mat’) ; % loading state space
model with five patches
4
5 = [1.1930e-+03, 3.047]; % Initial conditions Mokrani
6
7 x = fminsearch (@QHinfty oneRL _optimisation,x0) % minimisation of
Hinfty function
8
9s — tf(’s’7);
10Z =x(1)*s + x(2)*(s"2);
11
12 sys_Rshuntedl = feedback(sys, Z, 6, 1, 1);
13 sys_Rshunted2 = feedback (sys Rshuntedl, Z, 7, 2, 1);
14 sys _Rshunted3 = feedback (sys Rshunted2, Z, 8, 3, 1);
15 sys  Rshunted4 — feedback(sys Rshunted3, Z, 9, 4, 1);
16 sys Rshunted5 = feedback (sys Rshunted4, Z, 10, 5, 1);
17 % gives the shunted system
18
19
20 function y = Hinfty oneRL_optimisation(x)
21
22 load (’system with five patches.mat’) ; % loading state space
model with five patches
23
248 = tf(’s’);
25 vect = 6000:0.1:10300; % % range of frequency in which peaks are
computed
26 R — x(1);
21 L = x(2);
28 if x(1)>0 && x(2)>0 % Resistance must be positive
29 Z = Rxs + Lx(s°2);
30
31 % Implementing shunt
32 sys Rshuntedl = feedback(sys, Z, 6, 1, 1);
33 sys Rshunted2 = feedback (sys Rshuntedl, Z, 7, 2, 1);
34 sys Rshunted3 = feedback (sys Rshunted2, Z, 8, 3, 1);
35 sys Rshunted4 = feedback (sys Rshunted3, Z, 9, 4, 1);
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36 sys Rshunted5 = feedback(sys Rshunted4, Z, 10, 5, 1);
37
38 % Obtaining Frequency Response Magnitude
39 [Magl, Phasel ,Woutl] = bode(sys Rshunted5(6,1)  ,vect);
40 [Mag2, Phase2 ,Wout2|] = bode(sys Rshunted5(7,2) ,vect);
41 [Mag3, Phase3 ,Wout3] = bode(sys Rshunted5(8,3) ,vect);
42 [Mag4 , Phase4 ,Wout4| — bode(sys Rshunted5(9,4) ,vect);
43 [Mag5, Phase5 , Woutb| = bode(sys_Rshunted5(10,5) ,vect);
44
45 % Obtaining the mazimum of Freq. Resp. for each blade
46 vyl = max(abs(squeeze (Magl)));
47 y2 = max(abs(squeeze (Mag2))) ;
48 y3 — max(abs(squeeze (Mag3)));
49 v4 — max(abs(squeeze (Magd)));
50 v5 = max(abs(squeeze (Magh)));
51 y_list = [y1, y2, y3, y4, y5];
52 y = max(y list);
53 else
54 = Inf;
55 end
56 end
D.5 Shunt mistuning sensibility
The code allows to plot the peak reduction when the electrical frequency of the RL shunt
is changed.
1 clc; clear all;
2
3 load (’system with five patches.mat’) ; % loading state space
model with five patches
4
5 vect = 6000:0.1:10300; % range of frequency in which peak
reduction ts computed
7RO = 1193; % shunt resistance (obtained for mean shunt)
8 LO — 3.047; % initial shunt inductance (obtained for mean
shunt)
9 omega _av = 7.8120e+03; % mean frequency
10 C = 1/(LO>x<(omega_avA2)) :
11 s tf(’s’);
12 ratio = 0.9:0.001:1.1; % mistuning ratio
13 dB_dy list = zeros(sme(ratio));
14 it = 0 ;
15 for r = ratio
16 it = it + 1;
17 mistuned om = rxomega_av; % new electrical frequency
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end

L = 1/(Cx(mistuned om~2));

electrical frequency
Z = ROxs + Lx(s72);

% creating the corresponding shunted system with feedbacks

sys_Rshuntedl = feedback(sys, Z, 6, 1, 1);
0,
Z,
0,
Z,

sys_Rshunted2 = feedbac
sys Rshunted3 = feedbac
sys_Rshunted4 = feedbac
sys_Rshuntedb = feedbac

k
k
k
k

A~~~/

sys_Rshuntedl

sys Rshunted?2 ,
sys__Rshunted3
sys_Rshunted4

) )

) )

=W N
— e

) )

— O 0 I

) ;
) ;

)

)

’

0,5, 1);

- Y

% inductance obtained from new

% extracting the magnitude of the original system for blades

displacement
[ Mag01, Phase01 , Wout01 |
| Mag02 , Phase02 , Wout02 |
[ Mag03, Phase03 , Wout03]
[Mag04 , Phase04 , Wout04 |
[ Mag05 , Phase05 , Wout05 |
y0l =
y02 = max
y03 — max

(abs (
(abs (
v04 = max(abs(squeeze
(abs(

squecze

abs(squeeze

PRy

y05 = max(abs(squeeze

Mag02)
Mag03)
Mag04 )
Mag05)

bode (
bode (
bode (
bode (
bode (
)
)
)
)
)

max(abs (squeeze (Mag01))

)
)
)
)

Sys
Sys
Sys
Sys
Sys

)

(6
(7
(8
(9,
(10

)

)

)

1),
2),
3),
4),

5

) )

vect
vect

)

b

vect

) ;

) ;
vect ) ;

) ;

t

b
ect);

% extracting the magnitude of the shunted system for blades

displacement
| Magl, Phasel ,Woutl| —
[Mag2, Phase2 , Wout2| =
[Mag3, Phase3 , Wout3| =

bode (sys Rshuntedb
bode (sys_Rshuntedb

[Mag4 , Phase4 ,Wout4| = bode(sys Rshunted5

[Mag5, Phase5 , Woutb| =

v2 — max(abs(squeeze (Mag2
y3 =
v4 = max(abs(squeeze (Magd

( (

(abs( (
max(abs (squeeze (Mag3

(abs( (

(abs( (

max(abs (squeeze (Magh

% Computing the difference

dy list — [dB(y1)—-dB(y01), dB(y2)—dB(y02), dB(y3)—dB(y03),

(y4)—dB(y04), dB(y5)—dB(y05)|;

)))
)))
)) )5
)))

)
)
)

)

% Obtaining biggest peak reduction

dy = max(dy list);
%dB _dy = 20xlogl10(dy);

dB _dy list(it) = dy;

60 % plotting

(
(
bode (sys_Rshunted5 (
(
(10

(
(
(
(
bode (sys Rshunted5
yl = max(abs(squeeze (Magl)));
)
)
)
)

dB
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fig6 — figure (6);

plot(ratio, dB_ dy_list)

xlim ([ratio (1) ratio(end)]) ;

xlabel(’\omega ¢ /\omega s’,’fontweight’, 'bold’)

ylabel ( 'Maximum peak attenuation (dB)’, fontweight’,  bold’)
set (gca, 'FontSize’ ,15)

grid

set (fig6 , 'Position’, [100 100 800 400])

D.6 Optimal integral control

The code provides the best parameters for integral control with ten patches. The optimi-

sation criteria can be Hy, optimisation or damping maximisation.

clc; clear all;

x0 = 1.5527e+06;
= fminsearch (@Hinfty integrator ,x0) % Using H infinity
optimisation
% OR: z — fminsearch(@MaxDamping Integrator,z0)

s = tf(’s7);
I = x/s; % integrator

load ( ’system with 10 patches.mat’)
sys = sys_config2 Size2 Patch2 wTips ;

sys 11 = feedback(sys , 6, 1, —1);

sys 12 = feedback (sys I, 7, 2, —-1)
sys 13 = feedback(sys I, 8, 3, —1);
sys 14 = feedback(sys I, 9 )
sys 15 = feedback (sys I, 1 1

[ GainMargin, PhaseMargin| = MIMO_margins(1,0.1);
% Gives the optimal controlled system and the corresponding
margins

function y — Hinfty integrator(x)

load ( 'system with 10 patches.mat’)
sys = syslO0;

s = tf(’s’);

vect — 7000:0.1:9000; % range of frequency in which peaks are
computed

X

I = x/s;
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sys I1 = feedback(sys, 6, 1, —1);
sys 12 = feedback(sys 1T I, 7, 2, —-1);
sys 13 = feedback(sys I, 8, 3, —1);
sys 14 = feedback(sys 1 I, 9, 4, —-1);
sys 15 = feedback(byb_M, I, 10, 5, —1);
if isstable(sys I5)
[Magl, Phasel ,Woutl| — bode(sys 15(6,1) vect ) ;
[Mag2, Phase2 , Wout2| = bode(sys I5(7,2) ,vect);
[Mag3, Phase3 ,Wout3] = bode(sys_ 15(8,3) ,vect);
[Mag4 , Phase4 ,Wout4| = bode(sys_15(9,4) ,vect);
[Mag5, Phaseb , Wouth| = bode(sys I5(10,5) ,vect);
yl = max(abs(squeeze (Magl))) ;
yv2 — max(abs(squeeze (Mag2)));
y3 — max(abs(squeeze (Mag3))) ;
v4 = max(abs(squeeze (Magd)));
v5 = max(abs(squeeze (Magh)));
y_list = [yl, y2, y3, y4, y5];
y = max(y_list);
else
y = Inf;
end
function y = MaxDamping Integrator(x)
load ( 'system with 10 patches.mat’)
s = tf(’s7);
vect = 6000:0.1:10300;
X
Gm_limit = —Inf;
Pm_limit = —Inf;
y limit = —0.0015;
I = x/s;
sys 11 = feedback(sys , 6, 6, —1);
sys 12 = feedback (sys I, 7, 7, —-1);
sys 13 = feedback(sys I, 8, 8, —1);
sys 14 — feedback (sys I, 9, 9, —-1);
sys 15 = feedback(sys I, 10, 10, —1);
if isstable(sys I5)
if Gm limit<0 && Pm _limit <0
Gn =20 ; Pm= 0;
else
[Gm, Pm] = MIMO margins(I,1.5) ; % Checking

sufficient margins

for
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Gm
Pm
end
if GmeGm_limit
y = Inf;
elseif Pm<Pm limit
y = Inf;
else
[Freq,D, poles| = damp(sys 15);
F1 = Freq(Freq<10300);
index — max(size(F1));
D— D(1:index);
y = —min(D)
% if vy > y_ limit
% y = Inf;
% end
end
else
y = Inf;
end

D.7 Optimal NPF control

The code provides the best parameters for NPFE control with ten patches. The optimisation
criteria can be H, optimisation or damping maximisation.

clc; clear all;

x0 = [3e€9,7.900e3, 0.1];

x = fminsearch (@QHinfty NPF, x0)

% OR: x = fminsearch (@MaxDamping NPF, 20 )

s = tf(’s7);

NPF = x(1) /(872 + 2xx(3)*x(2)*s + x(2)"°2);

load ( "system with 10 patches.mat’)

sys_P1 = feedback(sys, NPF, 6, 6, —1); % Closing the loop
between Vsi and Vai

sys P2 = feedback(sys P1, NPF, 7, 7, —1);

sys_P3 = feedback(sys P2, NPF, 8, 8, —1);

sys P4 — feedback(sys P3, NPF, 9, 9, —1);

sys P5 = feedback(sys P4, NPF, 10, 10, —1);

[GainMargin, PhaseMargin] = MIMO margins(NPF,0.1) ;
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20

21 % Gives the optimal controlled system and the corresponding

margins

22
23
24

25 function y —

26

27 load (’system with 10 patches.mat’)

28
20 s =
30 vect

31 Gm
32 Pm

33

tf(7s7);

Hinfty NPF (x)

= 7000:0.1:10000;

limit — —
limit — —

Inf,
Inf,

34 NPF = x(1) /(872 + 2xx(3)*x(2)xs + x(2)"2);

35

36 if x(3) <1

37
38

39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

sys P1 = feedback(sys, NPF, 6,

% Must be smaller than 1

between Vsi and Vai

sys P2 =
sys P3 =
sys P4 =
sys P5 =

feedback (sys P1, NPF,
feedback (sys P2, NPF,
feedback (sys_P3, NPF,
feedback (sys P4, NPF,

if isstable (sys P5)
if Gm limit<0 && Pm _limit <0

Gn =0 ; Pm= 0;
else
[Gm, Pm]

end

67 _1)7

7, 6, —1);
8, 6, —1);
9 97 _1)7
10, 10, —

= MIMO _margins (NPF,1.5)

Y

% Closing the loop

stability margins are sufficient

if GmeGm_limit

= Inf;
elseif Pm<Pm _limit
= Inf;

else

[Magl,
[Mag2,
[Mag3,
[Mag4,
[Mag5 ,

Phasel ,Woutl] =
Phase2 ,Wout2| =
Phase3 ,Wout3| =
Phase4 ,Woutd| =
Phaseb , Wout5| =

yl — max(abs(squeeze

(M
y2 = max(abs(squeeze (Mag2)
yv3 = max(abs(squeeze (Mag3)

bode (sys P5
bode(sys P
bode (sys P5
bode (sys_ P
bode (sys P5
agl))

)

)

) ;
);
) ;

% Checking if
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64 y4 = max(abs(squeeze (Magd)));
65 y5 = max(abs(squeeze (Magh)));
66 y_list = [y1, y2, y3, y4, y5];
67 y = max(y list);

68 end

69 else

70 y — Inf;

71 end

72 else

73 y = Inf;

74 end

75

76 function y — MaxDamping NPF(x)

e

78 load ( ’system with 10 patches.mat’)

79

80 s = tf(’s’);

81 vect = 6000:0.1:10300;

82 X

83 Gm_limit = 10;

84 Pm limit = 15;

85 y_limit = —0.0015;

86 NPF = x (1) /(872 + 2xx(3)*x(2)*s + x(2)"2);
87 if x(3) <1

88

89 sys P1 — feedback(sys, NPF, 6, 6, —1); % Closing the loop
between Vsi and Vai

90 sys P2 = feedback(sys P1, NPF, 7, 7, —1);

91 sys_P3 = feedback(sys_ P2, NPF, 8, 8, —1);

92 sys P4 = feedback(sys P3, NPF, 9, 9, —1);

93 sys_P5 = feedback(sys_P4, NPF, 10, 10, —1);

91 if isstable (sys P5)

95

96 if Gm limit<0 && Pm _limit <0

97 Gn =20 ; Pm= 0;

98 else

99 [Gm, Pm] = MIMO_ margins(NPF,1.5) ;

100 Gm

101 Pm

102 end

103

104 if Gm<Gm limit

105 y = Inf;

106 elseif Pm<Pm limit

107 y — Inf;

108 else

109
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[ Freq,D, poles| = damp(sys P5);
F1 = Freq(Freq<10300);
index = max(size (F1));
D= D(1:index)
y = —min(D)
% if y > y_ limit
% y — Inf;
% end
end
else
y = Inf;
end
else
y — Inf;
end

D.8 MIMO Margins

73‘

% Computes damping

The code computes the stability margins of the controller for a MIMO system as explained

in Chapter 4.

1 function [gain m, phase m| = MIMO_margins(controller , d)

2

3 C=controller; % integrator or NPF

4

5 load ( 'system with 10 patches.mat’)

6

7 sys_C1 = feedback(sys, C, 6, 6, —1); % Closing the loop between
Vai and Vsi

8 sys_C2 = feedback(sys_C1, C, 7, 7, —1);

9 sys_C3 = feedback(sys C2, C, 8, 8, —1);

10 sys C4 — feedback(sys C3, C, 9, 9, —1);

11 sys_C5 = feedback(sys_C4, C, 10, 10, —1);

12

13 if not(isstable(sys C5))

14 gain m = 0; phase m = 0;

15 return

16 end

17

18 % Gain margin

19

20 gain_ m = —1;

21

22 for dB = 0:1%d:500 % Testing gain increment of between 0 and
500 dB

23 dB;

24 g = 10~ (dB/20);

25 Cg = gxC; % Changing controller ’s gain
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sys Cl1 = feedback(sys, Cg, 6, 6, —1);
sys_C2 = feedback(sys Cl1, Cg, 7, 7, —1);
sys C3 = feedback(sys _C2, Cg, 8, 8, —1);
sys C4 = feedback(sys C3, Cg, 9, 9, —1);
sys_C5 = feedback(sys _C4, Cg, 10, 10, —1);
stable — isstable (sys C5);
if not(stable)
gain m = dB;
break
end
end
if gain m — —1
gain m = Inf;
end
% Phase margin
phase ml = 0;
for phase = 0:0.5%xd:180 % Testing gain increment of
between 0 and 180 degrees
phase;
Cpl = exp(pix(phase/180)*11)x*C; % Changing controller ’s
phase
sys Cl1 — feedback(sys, Cpl, 6, 6, —1);
sys C2 = feedback(sys_C1, Cpl, 7, 7, —1);
sys C3 = feedback(sys C2, Cpl, 8, 8, —1);
sys_C4 = feedback(sys _C3, Cpl, 9, 9, —1);
sys_C5 = feedback(sys C4, Cpl, 10, 10, —1);
stable — isstable(sys CbH);
if not(stable)
phase _ml = phase;
break
end
end
phase m2 = 0;
for phase = 0:—0.5%xd:—180
phase;
Cp2 — exp(pix(phase/180)*11)x*C;
sys_Cl = feedback(sys, Cp2, 6, 6, —1);
sysC2 = feedback(sys Cl1, Cp2, 7, 7, —1);
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sys C3 = feedback(sys C2, Cp2, 8, 8, —1);
sys C4 = feedback(sys C3, Cp2, 9, 9, —1);
sys Ch feedback (sys C4, Cp2, 10, 10, —1);

stable = isstable (sys_C5);
if not(stable)
phase m2 = phase;
break
end
end
phase margins = [phase _ml abs(phase m2) |;
phase m = min(phase margins) ;

D.9 Fitting the experimental curve with a model

The code creates a model to fit experimental data.

% Defining fitting model parameters

a0= 1.5; al = 1.5; a2 = 0.4; a3—=0.3; a4—=0.45; ab—=0.25;

a6 = 1; a7 = 0.3; a8=0.4; a9=0.45; al0=5;

y = [al%0.001137515838961,a2x0.001249877212735,a3
%x0.001163909473054,a4%0.001167887670335,a5x0.001167887670335];

z = [a6%0.001137515838961,a7%0.001249877212735,a8
x0.001163909473054,29%0.001167887670335,a10
x0.001167887670335];

7 GO = a0xle—3;

9 %%%%% Data Teading

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

load exp2 047.mat
syst=exp2 047;

n — syst.Y(1).Data;
s = syst.Y(3).Data;
t=syst.X.Data;

dt=t (2)—t (1) ;
ff=1/d¢;

dd=2"16;
han—hanning (dd) ;

[Txf,Fr] = tfestimate(n,s,han,[],dd, ff);
aTxf = abs(Txf);
% plot(Fr, aTxf);
radFr = 2xpixFr;
s fr = size(radFr);
ind _in = 0 ; ind_ fin = 0;
for j=1:s fr(1)
if ind in = 0;



76 D.9. FITTING THE EXPERIMENTAL CURVE WITH A MODEL

29 if radFr(j)>— 7000
30 ind in = j;

31 end

32 end

33 if ind fin = 0;

34 if radFr(j)>= 8700;
35 ind fin = j;
36 end

37 end

38 end

39

40 radFr = radFr(ind _in:ind_fin);
41 aTxf — aTxf(ind in:ind fin);
42 shortTxf — Txf(ind in:ind _ fin);

43
a4 %% Model
45

46 % Poles pi and zeros zi for experimental data
47 pl = 2xpix1271.17770513;

48 p2 2%pi*x1286.06304568;

49 p3 = 2xpi*1291.98680366;

50 p4 = 2xpix1296.23975810;

51 pb = 2xpi*x1300.64460378;

52 z1 = 2xpix1273.60796481;

53 z2 = 2xpix 1290.16410890;

54 73 — 2xpix1293.50571596;

55 z4 = 2xpi*x1296.54354056;

56 zb = 2xpix1355.02166417;

57

58 % Computation of numerators and denominators for the transfer

function

59 D1 = tf ([1 (2xpl)xy (1) (p1°2)],1);
60 D2 = tf ([1 (2xp2)xy(2) (p2°2)],1);
61 D3 = tf([1 (2%p3)*y(3) (p3°2)],1);
62 D4 = tf ([1 (2xpd)*y(4) (pd~2)],1);
63 D5 = tf([1 (2%pb)*y(5) (p5b~2)],1);
64

65 NI — tf (|1 (2%z1)*z(1) (z1°2)],1);
66 N2 = tf ([1 (2%22)xz(2) (2z2°2)],1);
67 N3 = tf ([1 (2%z3)%z(3) (2z3°2)],1);
68 N4 = tf([1 (2%z4)*z(4) (z4°2)],1);
69 N5 = tf ([1 (2%z5)*z(b) (2z5°2)],1);
70

71 %Transfer function fitting the experimental curve
72 G — 11*G0x(N1xN2xN3xN4xN5) /(D1xD2xD3xD4xD5) ;

73

74
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%Plotting

a = bode(G, radFr);
= size(radFr);

o wm

= zeros(size(s));
for i = 1:s(1)
b(i) — a(1,1,1) ;
end
figure(2); loglog(radFr, aTxf, ’b’)
hold on;
loglog (radFr, b,’r’)

legend (’Experimental data’, ’Model’)

(

xlabel ( ’Frequency (rad/s)’)

ylabel (’Magnitude )

figure (3);

plot (radFr, angle(shortTxf)/pi*180, 'b’)
[Mag, Phase ,Wout] = bode(G,radFr);

hold on; plot(radFr,squeeze (Phase),’'r7);
legend ( ’Experimental data’, ’Model’)
xlabel (’Frequency (rad/s)’)

ylabel ( ’Phase (Degrees)’)



