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Abstract In this paper, an active nonlinear energy

sink (ANES) based on force feedback is investigated.

The proposed device is composed of a pair of

collocated actuator and force sensor. The control law

is implemented by feeding back the output of the force

sensor, through one single integrator and one double

integrator of its cube. Its working principle can be

understood by an equivalent mechanical network

which consists of a linear dashpot, linear spring and

a cube root inerter. Although the nonlinear assignment

between the spring and mass or inerter quantities is

different from that of traditional nonlinear energy

sinks (NESs), it is found that ANES and NES behave

similarly in terms of their slow-scale dynamics and the

vibration mitigation effectiveness. Closed-form

expressions for properly tuning the feedback gains

are derived. Numerical simulations are performed to

validate the analytical analysis. The damping

mechanism of ANES through targeted energy transfer

and resonance capture cascade is demonstrated.

Keywords Inerter � Force feedback � Nonlinear
energy sink � Targeted energy transfer � Resonance
capture cascade

1 Introduction

Lightweight materials have been more and more used

for system constructions in many engineering appli-

cations for the sake of fuel efficiency and reduction of

environmental pollution [1, 2]. However, this will

often make these structures lightly damped and

responses could be unacceptably amplified around

the resonance, causing many problems such as reduc-

tion in structural integrity, compromise of instrument

functionality and even threat to human lives. In this

sense, proper damping techniques need to be consid-

ered in parallel with the future design of lightweight

structures. A tuned mass damper (TMD) [3] which

typically consists of a proof mass and a spring-dashpot

pair is often employed for such purpose. It acts as an

auxiliary system to the host structures where addi-

tional damping is needed. The natural frequency of the

added TMD is often suggested to be roughly equal to

one of the resonance frequencies of the host structure

[4]. In this way, the vibration energy associated with

the considered mode can be quickly transferred and
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localised in the TMDwhere it is eventually dissipated.

Due to this nature, TMDs are only effective around

one particular vibration mode. Deviation from the

desired settings can also degrade their performance

[5]. In addition, one single TMD is only capable of

dealing with one specified vibration mode to which it

is tuned.

An interesting nonlinear damping alternative, i.e., a

nonlinear energy sink (NES) was proposed aiming to

overcome these limitations [6, 7]. A NES is often

realised by a proof mass, a dashpot and a cubic

nonlinear spring. The working principle of NESs is a

bit different from that of TMDs, the host structure

energy is in fact irreversibly transferred to NESs and

dissipated therein. As there are only nonlinear resilient

elements within NESs, the natural frequency is not

essentially fixed but is rather dependent on the

vibration amplitude. This allows NESs to interact

basically with every mode of the host structure and

also makes them insensitive to parameter variations of

the host structure. Substantial work has been done to

better understand the underlying dynamics of NESs,

see for example [8–13]. In the transient regime, it has

been illustrated that there exists a threshold in terms of

the vibration energy level of the host structure above

which NESs start to work efficiently, i.e. where

targeted energy transfer (TET) occurs. TET is defined

as a one-way irreversible transfer of energy from the

host structure to the NES. Some design guidelines for

properly choosing the parameters, namely the nonlin-

ear stiffness and the damping coefficient to initiate

TET, have been established [12, 14]. Other possibil-

ities for implementing NESs than using a cubic

nonlinear spring have been also explored [15, 16].

As for the last parameter of NESs, a heavier proof

mass is preferable, similarly to that for TMDs.

However, the added mass may be penalising in light

weight applications, e.g. automotive and aerospace

structures. Zhang et al. [17] and Javidialesaadi and

Wierschem [18] proposed to integrate inerters into

NESs aiming to boost the performance as the inertance

of inerters can be significantly greater than their actual

mass [19, 20]. Although the potential of NESs is

promising, it is quite challenging to realise them in

practice because attaching them to the host structure

with a pure cubic spring without any linear resilient

parts remains a challenge.

In order to bypass the aforementioned practical

issues, an active nonlinear sink using a novel force

feedback controller is proposed in this work. A force

sensor is chosen since the control plant for the

corresponding underlying linear active system always

possesses alternating poles and zeros, which would

ease the design concern on the stability of the closed

loop [21]. The control law is formed by feeding back

the output of the force sensor through one single

integrator and one double integrator of its cube. The

control concept is actually built upon the previous

developments [22] where the linear double integrator

is removed from the chain. In this way, the proposed

ANES can be understood to play the same role as a

pure mechanical system which consists of a cube root

inerter, a linear dashpot and a linear spring according

to previous derivations in [22–24]. Although the

nonlinear assignment of the proposed ANES is

different from that of traditional NESs, it is found

that ANES and NES behave similarly in terms of

vibration mitigation effectiveness. Some other inter-

esting work dealing with control of nonlinear systems

can be found in [25–27]. The principal contributions of

the work presented are: (a) the development of the

equivalent mechanical model which enables a

straightforward interpretation of the physics behind

the active control law, (b) the derivation of the ANES

tuning law in closed-form, and (c) the equivalence

examination between an ANES and a mechanical NES

which opens the door for the real-time tuning of

control parameters of an active nonlinear energy sink.

The rest of paper is organised as follows. In the next

section, the mathematical model of the system under

consideration is developed. In Sect. 3, the tuning law

of ANES for a single-degree-of-freedom (SDOF)

system is derived and numerically verified. This

tuning law is extended to a multi-degree-of-freedom

system (MDOF) in Sect. 4. Conclusions are drawn in

Sect. 5.

2 Mechanical representation of an ANES

The system under investigation is shown in Fig. 1a. It

represents a linear MDOF system which is equipped

with a massless actuator whose stiffness is denoted by

ka. A collocated force sensor which measures the

transmission force denoted by Fs is installed between

the actuator and the primary structure. The control

loop is implemented by feeding the output of the force

sensor Fs through a nonlinear controller u Fsð Þ to drive
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the actuator. In this work, the transient behaviour of

the system is of interest and no external disturbance

force is applied.

The governing equations of the coupled system can

be written as:

M €X tð Þ þ C _X tð Þ þKX tð Þ ¼ bFs tð Þ ð1Þ

Fs tð Þ ¼ u Fs tð Þð Þ � kab
TX tð Þ ð2Þ

where M 2 <n�n, C 2 <n�n and K 2 <n�n represent

the mass, damping and stiffness matrix, respectively,

X 2 <n�1 the displacement vector, b ¼
0 � � � �1l 0 � � � 1k � � � 0½ � 2 <n�1 the

actuator connection vector and Fs a scalar representing

the force that acts on the structure (measured by the

force sensor). Note that in the considered sketch the

actuator is mounted to the primary structure through

two attachment points where a pair of control forces

are injected into the primary structure. Alternatively,

the actuator can be also placed between the ground and

the primary structure such that there is only one

attachment point. In this case, a point control force is

applied by the actuator. The two configurations make

no difference in terms of the working principle of the

ANES, but the connection vector b has to be adapted

accordingly such that the ANES parameters can be

correctly configured.

Note that the mass of the transducer is tacitly

neglected in the paper. As a result, the validity of

Eq. (1) should be restricted to frequencies well below

the resonance frequencies of the transducer. In addi-

tion, lumped masses of the transducer can be included

at the associated DOFs to compensate statically the

shift of the resonance frequencies when themass of the

transducer is relatively large.

The nonlinear controller u Fsð Þ is built upon the

controllers proposed in [22, 23], but modified to have a

dynamic behaviour similar to that of NESs. The

controller u Fsð Þ reads:

u Fsð Þ ¼ �gs

Z t

0

Fsdt � gd3

Z t

0

Z t

0

F3
s dtdt ð3Þ

The working principle of the proposed controller

can be better understood from a pure mechanical point

of view. As illustrated in Appendix A, the function of

the component with the single integrator in Eq. (3)

behaves as a mechanical dashpot, and that with the

double integrator resembles a cube root inerter.

Together with the inherent spring of the actuator, the

active system can be represented by a pure mechanical

network composed by a linear spring, a linear dashpot

and a cube root inerter connected in series. As such,

the equivalent mechanical representation of the con-

sidered system is shown in Fig. 1b. The equivalent

damping coefficient and the inertance are linked with

the feedback gains according to:

da ¼ ka=gs; ma3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ka=gd3

3
p

ð4Þ

Δx Fa

Fs

Structure

ka

(a)

Δx

Structure

(b)

da

ma

ka

Fig. 1 a The sketch of the coupled system and b its equivalent mechanical representation
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Because of the full analogy with a mechanical

network, the stability of the active system is guaran-

teed given idealised force sensors and actuators are

employed. According to the Lyapunov’s linearisation

theory [28], the actual nonlinear system is asymptot-

ically stable at the equilibrium point if the corre-

sponding linearised system is strictly stable. For the

proposed ANES, the linearised system around the

trivial state corresponds to the primary structure

coupled with a classical integral force feedback

controller. As demonstrated in [24, 29], the theoretical

gain margin is infinity and the phase margin is p=2 for
the linearised system. However, the Lyapunov’s

linearisation theory is only valid for small range of

motions around the equilibrium points (a local stabil-

ity theorem) and it is not yet clear what are the

boundary conditions for the linearisation approxima-

tions to hold (global stability theorem is needed). It is

left for the subject of future work.

Although it is referred to as ‘active nonlinear

energy sink’, it is actually implemented in a way

different than that for NES. Within ANES, the mass-

like quantity, i.e. the cube root inerter, is nonlinear and

coupled with a linear spring and a dashpot in series,

while a classical NES features a linear mass supported

by a nonlinear spring and a linear dashpot. Despite this

difference, it is found later in the paper that the

working principle and the corresponding control

effectiveness of the two devices are similar.

Substituting Eq. (3) into Eq. (2), and transforming

the resulting governing equations into modal coordi-

nates according to X tð Þ ¼ EQ tð Þ where E ¼
e1 e2 � � � en½ � 2 <n�n is the matrix of mode

shapes and Q 2 <n�1 the associated modal coordi-

nates yields:

Mq
€Q tð Þ þ Cq

_Q tð Þ þKqQ tð Þ ¼ ETbFs tð Þ ð5Þ

Fs tð Þ ¼ �gs

Z t

0

Fsdt � gd3

Z t

0

Z t

0

F3
s dtdt � kab

TEQ tð Þ

ð6Þ

where Mq ¼ ETME is the diagonal modal mass

matrix, Kq ¼ ETKE the diagonal modal stiffness

matrix and Cq ¼ ETCE the diagonal modal damping

matrix assuming that the primary structure is lightly

damped and C is considered to be proportional to M

and K (C ¼ aMþ bK; a; b 2 <þ).

Consider now that the system only vibrates at the

resonance frequency associated with mode i such that

XðtÞ ¼ EQðtÞ ¼
Pn
m¼1

emqmðtÞ � eiqiðtÞ is valid. Equa-

tions (5) and (6) can be thus rewritten as:

mq;i €qi tð Þ þ cq;i _qi tð Þ þ kq;iqi tð Þ ¼ fs;i tð Þ ð7Þ

fs;i tð Þ ¼ �gs

Z t

0

fs;idt � gd3;i

Z t

0

Z t

0

fs;i
� �3

dtdt

� ka;iqi tð Þ ð8Þ

where Dei ¼ ei lð Þ � ei kð Þ, fs;i ¼ DeiFs tð Þ, gd3;i ¼
gd3
�
De2i and ka;i ¼ kaDe2i .

The characteristic equations defined by Eqs. (7)

and (8) actually correspond to a system as depicted in

Fig. 2a. This system is defined through a lumped mass

mq;i suspended from the ground by a linear spring kq;i,

a dashpot cq;i and the actuator whose stiffness is

denoted by ka;i. The variables mq;i, kq;i and cq;i
represent the modal mass, stiffness and damping

coefficient of the primary structure for mode i, while

fs;i, gd3;i, gd3;i and ka;i are the corresponding equivalent

transmission force, the nonlinear feedback gain, the

linear feedback gain and the actuator stiffness of the

ANES for mode i. The corresponding equivalent

mechanical model is given in Fig. 2b. In the forth-

coming section, the simplified system in Fig. 2a will

be used to study the ANES characteristics with the aim

to derive practical guidelines for the design of an

effective ANES.

3 ANES tuning for SDOF systems

3.1 Semi-analytic reduction

The parameters:

x1 ¼ qi; x2 ¼ fs;i
�
ka;i; xi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kq;i
�
mq;i

q
; s ¼ xit;

e ¼ ka;i
�
kq;i; n1 ¼ cq;ix1

�
ka;i; gsn ¼ gs=xi; g3n ¼ gd3;i ka;i

� �2.
x2

i

ð9Þ

are introduced to normalise the governing equations

Eqs. (7) and (8):

x001 þ en1x
0
1 þ x1 � ex2 ¼ 0 ð10Þ

x002 þ gsnx02 þ g3nx32 þ x001 ¼ 0 ð11Þ
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where 0 denotes derivation with respect to (w.r.t.) the

time scale s.
Under the assumption of 1:1 resonance and the

system vibrates along mode i, complex variables are

introduced to reduce the order of the differential

equations [30]:

/1 sð Þejs ¼ x01 þ jx1; /2 sð Þejs ¼ x02 þ jx2 ð12Þ

where j ¼
ffiffiffiffiffiffiffi
�1

p
.

Substituting Eq. (12) into Eqs. (10) and (11) yields:

/0
1e

js � e
/2e

js � /�
2e

�js

2j
þ en1

/1e
js þ /�

1e
�js

2
¼ 0

ð13Þ

/0
1e

js þ /0
2e

js � /1e
js � /�

1e
�js þ /2e

js � /�
2e

�js

2j

þ gsn
/2e

js þ /�
2e

�js

2
þ g3nj

/2e
js � /�

2e
�js

� �3
8

¼ 0

ð14Þ

where � denotes complex conjugate.

Each complex variable is decomposed into power

series of the stiffness ratio e (e � 1) as follows:

/i ¼ /i0 þ e/i1 þ O e2
� �

; 8i ¼ 1; 2 ð15Þ

where /i0 is the dominant term and /i1 the small

perturbation term. Here, the expansions are truncated

for O e2ð Þ.
The multiple scales method [31] is applied to

Eq. (15) to better approximate the system dynamics.

This method assumes that the dynamics behave

according to several discrete time scales. In this paper,

s0 ¼ s and s1 ¼ es representing the fast and the slow

time scales are considered; they are related to the

original time scale as:

d

ds
¼ o

os0
þ e

o

os1
ð16Þ

Substituting Eqs. (15) and (16) into Eqs. (13) and

(14), one obtains:

o/10

os0
þ e

o/10

os1
þ e

o/11

os0
þ e2

o/11

os1
þ je /20 þ e/21ð Þ

2

þ en1 /10 þ e/11ð Þ
2

¼ 0

ð17Þ

where the secular terms w.r.t. the time scale s0 are

eliminated.

Collecting the terms according to the different

orders of the stiffness ratio e in Eqs. (17) and (18), one
obtains:

kq,i

mq,i qi

fa,i

 fs,i

da,i

(a)

ka,i

ka,i

(b)

cq,i

ma3,i

cq,i kq,i

qi
mq,i

gs gd3,i∫ • + ∫∫•

Fig. 2 a The representative model of the whole system for one vibration mode and b its equivalent mechanical model
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o/10

os0
¼ 0 ) O e0

� �
ð19Þ

o/10

os0
þ o/20

os0
þ j /10 þ /20ð Þ

2
þ gsn/20

2
� 3g3n/20 /20j j2j

8
¼ 0 ) O e0ð Þ

ð20Þ

o/10

os1
þ o/11

os0
þ j/20

2
þ n1/10

2
¼ 0 ) O e1ð Þ ð21Þ

Equation (19) means that the leading variable /10

does not depend on s0. This indicates that /10 s0; s1ð Þ
can be approximated using only its slowly-varying

component /10 s1ð Þ. Substituting Eq. (19) into

Eq. (20), the resulting expression describes how /20

evolves w.r.t. the time scale s0. For this one-dimen-

sional system, it was shown in [32] that /20 ultimately

converge to the steady-state solutions of Eq. (20) as:

j /10 þ /20ð Þ
2

þ gsn/20

2
� 3g3n/20 /20j j2j

8
¼ 0 ð22Þ

Note that the solutions of Eq. (22) neglect the

transient dynamics of /20 s0; s1ð Þ at the fast time scale,

which also means that they are sought by taking the

limit s0 ! 1.

Proceeding now to Eq. (21) and taking the above

ansatz s0 ! 1, the secular term w.r.t. the time scale

s0, i.e.
o/11

os0
, is omitted and one obtains:

o/10

os1
þ j/20

2
þ n1/10

2
¼ 0 ð23Þ

Up to now, it is possible to solve the slowly-varying

components /10 s1ð Þ and /20 s1ð Þ ¼ lim
s0!1

/20 s0; s1ð Þ

from Eqs. (22) and (23). Specifically, /20 s1ð Þ repre-
sents the trend of /20 after eliminating the fast

oscillations.

In order to further simplify the analysis, a polar

decomposition of the complex variables is introduced:

/10 ¼ R1 s1ð Þejd1 s1ð Þ; /20 ¼ R2 s1ð Þejd2 s1ð Þ ð24Þ

where Ri 2 <þ is the amplitude of /i, and di the

corresponding phase.

Substituting Eq. (24) into Eqs. (22) and (23) yields:

oR1

os1
� R2 sin d2 � d1ð Þ

2
þ n1R1

2
¼ 0 ð25Þ

od1
os1

R1 þ
R2 cos d2 � d1ð Þ

2
¼ 0 ð26Þ

R1 cos d1 � d2ð Þ þ R2

2
þ 3R3

2g
3n

8
¼ 0 ð27Þ

�R1 sin d1 � d2ð Þ
2

þ R2g
sn

2
¼ 0 ð28Þ

Eliminating the phase difference d1 � d2 from

Eqs. (27) and (28) gives:

R2
1 ¼ R2

2 gsnð Þ2þ 1� 3

4
g3nR2

2

� �2
 !

ð29Þ

Taking the expression for sin d1 � d2ð Þ in Eq. (28)

and substituting it into Eq. (25), one obtains:

oR1

os1
R1 ¼ � gsnR2

2

2
� n1R2

1

2
ð30Þ

Further simplifications can be made by taking

Ek ¼ R2
k , 8k ¼ 1; 2 which gives:

E1 ¼ /10j j2¼ x01
� �2þx21 þ O e1

� �
ð31Þ

E2 ¼ /20j j2¼ lim
s0!1

x02
� �2þx22 þ O e1

� �� 	
ð32Þ

o/10

os0
þ e

o/10

os1
þ e

o/11

os0
þ e2

o/11

os1
þ o/20

os0
þ e

o/20

os1
þ e

o/21

os0
þ e2

o/21

os1

þ j /10 þ e/11 þ /20 þ e/21ð Þ
2

þ gsn /20 þ e/21ð Þ
2

�
3g3nj /20j j2/20 þ e 2/21 /20j j2þ/2

20/
�
21

� 	
þ e2 2/20 /21j j2þ/�

20/
2
21

� 	
þ e3 /21j j2/21

� 	

8
¼ 0

ð18Þ
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Variables E1 and E2 play a similar role similar to

the normalised energy of the primary structure and the

attached active system, respectively.

Substituting Eqs. (31) and (32) into Eqs. (30) and

(29), the system dynamics are governed by:

oE1

os1
¼ �n1E1 � gsnE2 ð33Þ

E1 ¼ E2 gsnð Þ2þ 1� 3

4
g3nE2

� �2
 !

ð34Þ

Equation (33) describes how the energy-like quan-

tities E1 and E2 dynamically evolve w.r.t. the slow

time scale s1, while Eq. (34) regulates them statically.

Because the normalised damping factors n1 and gsn as
well as E1 and E2 are positive variables, the gradient of

the primary structure energy E1 w.r.t. the slow time

scale is always negative, as seen from Eq. (33). This

means that the primary structure’s energy will always

be dissipated over the slow flow time. On the other

hand, the evolution of E2 is governed by E1 following

a nonlinear algebraic expression Eq. (34) where only

the control parameters gsn and g3n are present. Thanks

to this nonlinear relation, TET from the primary

structure to the ANES can occur. The semi-analytic

governing Eqs. (33) and (34) are identical to those

obtained in [14] for a mechanical NES provided the

time scale in [14] is changed to a dimensionless

quantity w.r.t. the resonance frequency of the primary

structure. From this perspective, the normalised feed-

back gains gsn and g3n play the same role as the

damping ratio and the nonlinear frequency ratio

associated with a mechanical NES. This is logical as

they correspond to a normalised dashpot and cube root

inerter, respectively. We also note that switching

nonlinear assignments between the spring and mass or

inerter quantities does not significantly change the

control effectiveness of the resulting device if one

compares the active nonlinear inerter damper in [22]

with the nonlinear tuned mass damper in [33].

However, it should be noticed that E1 and E2 in this

paper correspond to the absolute motion of the primary

mass and the transmission force induced by an ANES,

while for the mechanical NES they are related to the

motion of the centre of mass and the relative motion

between the primary and NES masses. Despite this

difference, the tuning law of an ANES that triggers

TET based on Eqs. (33) and (34) is foreseen to be the

similar to that obtained as in [14].

Two new variables Z1 ¼ g3nE1 and Z2 ¼ g3nE2 are

now introduced. In addition, the damping factor of the

primary structure is omitted. Equations (33) and (34)

are thus rewritten as:

oZ1
os1

¼ �gsnZ2 ð35Þ

Z1 ¼ Z2 gsnð Þ2þ 1� 3

4
Z2

� �2
 !

ð36Þ

In order to better study the underlying dynamics,

Eq. (36) is differentiated w.r.t. Z2, which gives:

oZ1
oZ2

¼ 27

16
Z2
2 � 3Z2 þ 1þ gsnð Þ2

¼ 3
3

4
Z2 �

2

3

� �2

� 1

3
þ gsnð Þ2

ð37Þ

Equation (37) is a quadratic equation which is

always positive if gsn [
ffiffiffiffiffiffiffiffi
1=3

p
. If this is the case, Z1

will monotonically increase/decrease with an

increase/decrease of Z2. Because Eq. (35) indicates

that Z1 is always reduced w.r.t. the slow time scale, Z2
will follow the same trend whereby no energy is fed

into the ANES and thus no TET occurs. If gsn\
ffiffiffiffiffiffiffiffi
1=3

p
,

Eq. (37) has two roots Z1�
2 and Z2�

2

(Z1�
2 \Z2�

2 ; 8Zi�
2 2 <þ; i ¼ 1; 2). It remains positive

when Z2 is either smaller than Z1�
2 or greater than Z2�

2 .

Otherwise, Eq. (37) becomes negative meaning that

the energy in the primary structure and in the ANES

can flow in opposite ways. In this case, when plotted

against Z2 : 0 ! 1, Z1 exhibits a maximum followed

by a minimum due to the changing sign of its

derivative w.r.t. Z2; it is initially positive, then

negative and finally positive again. In addition, three

solutions of Z2 can be found for Z1 bounded between

the two extrema. In summary, TET can occur as

discussed in [14, 15] provided that:

gsn\

ffiffiffi
1

3

r
ð38Þ

The solutions to Eq. (37), i.e. Z1�
2 and Z2�

2 , and the

corresponding extreme values can be derived:
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Zmax
1 ¼ 8

81
4� 1� 3 gsnð Þ2

� 	
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3 gsnð Þ2

q� �
 �
;

Z1�
2 ¼ 8

9
�
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3 gsnð Þ2

q

9

ð39Þ

Zmin
1 ¼ 8

81
4� 1� 3 gsnð Þ2

� 	
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3 gsnð Þ2

q� �
 �
;

Z2�
2 ¼ 8

9
þ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3 gsnð Þ2

q

9

ð40Þ

Besides the condition imposed on gsn, it was shown

that the initial conditions of the system also play an

important role in the TET mechanism [10, 14, 15].

Specifically, the initial energy of the primary structure

Z init
1 has to be greater than Zmax

1 given in Eq. (39).

Figure 3a depicts the slow invariant manifold between

Z1 and Z2 when the condition Z init
1 [ Zmax

1 is satisfied.

As can be seen, Z1 and Z2 smoothly decrease from

their initial conditions until Z1 reaches its local

minimum Zmin
1 . At that moment, Z2 undergoes a jump,

and is suddenly reduced from Z2�
2 to the smallest

solution of Z2 corresponding to Zmin
1 . This jump

phenomenon, however, is not observed for Z1 which

continues to decrease after Zmin
1 but following a

different branch, i.e. the leftmost branch of the

invariant manifold. The evolution of Z1 and Z2 against

the slow time scale s1 is shown in Fig. 3b. It is noted

that Z1 decays with a quasi-linear slope before the

critical point Zmin
1 instead of an exponential rate

typically associated with linear systems. This clearly

indicates the occurrence of TET. After the critical

point Zmin
1 ; Z2�

2

� �
, TET vanishes and Z1 decreases

much slower compared to the case when TET is active.

This drastically decreased rate is understood to be due

to the low post-jump value of Z2, which by virtue of

Eq. (35) entails a low dissipation rate for Z1. When the

condition Z init
1 [ Zmax

1 is not valid, TET is not be

robustly triggered or not triggered at all, as demon-

strated in [14, 15].

In order to meet this condition, the minimal

normalised control gain g3n, i.e. the normalised cube

root inertance can be derived as:

g3nEinit
1 ¼Z init

1 	Zmax
1

#
g3n	 8

81Einit
1

4� 1�3 gsnð Þ2
� 	

3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�3 gsnð Þ2

q� �
 �

ð41Þ

3.2 Influence of control parameters

Up to now, the tuning laws (38) and (41) for the two

control parameters gsn and g3n that initiate TET have

been derived. However, it is not yet clear what is their

impact on the vibration mitigation performance. In

this section, two metrics introduced in [14], namely

the energy dissipation ratio and the pumping time, are

discussed in order to investigate the influence of the

control parameters. The energy dissipation ratio is

referred to as the ratio between the energy dissipated

during TET and the initial energy, whereas the

pumping time is defined as the time span of TET. As

discussed previously, the point Zmin
1 ; Z2�

2

� �
plays an

important role, below which the beneficial effect

induced by TET disappears. In this context, the energy

dissipation ratio can be calculated as:

(a)

(b)

Fig. 3 a Slow invariant manifold of Z1 and Z2 when g
sn is set to

0.2 and Z init
1 is set to 0.3, b the corresponding time history of Z1

and Z2 at slow time scale
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ETET ¼ Z init
1 � Zmin

1

Z init
1

¼ 1

� 8

81

4� 1� 3 gsnð Þ2
� 	

3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3 gsnð Þ2

q� �
 �

g3nEinit
1

ð42Þ

When the two control parameters gsn and g3n are

chosen according to Eqs. (38) and (41), i.e. TET can

be initiated, ETET is bounded between 0; 1½ �. The closer
ETET is to unity, the more the energy is dissipated

during TET.

The corresponding time duration of TET can be

derived by rewriting Eq. (35) as:

oZ1
os1

¼ �gsnZ2 )
oZ1
oZ2

oZ2
os1

¼ �gsnZ2 ð43Þ

assuming that Z1 is still greater than Z
min
1 such that the

derivative of Z1 against Z2 is continuous.

Substituting Eq. (37) into Eq. (43), one obtains:

27
16
Z2
2 � 3Z2 þ 1þ gsnð Þ2

Z2
dZ2 ¼ �gsnds1 ð44Þ

Integrating on both sides, one obtains:

f Z2ð Þ ¼ C � gsns1 ð45Þ

where f Z2ð Þ ¼ 27
32
Z2
2 � 3Z2 þ 1þ gsnð Þ2

� 	
ln Z2ð Þ.

The normalised pumping time at slow time scale

can be thus derived from Eq. (45) as:

Tpump ¼
f Z init

2

� �
� f Z2�

2

� �
gsn

ð46Þ

Note that Tpump is defined in this equation through

the slow time scale s1.
Figure 4a, b depicts the evolution of the pumping

time and the energy dissipation ratio against different

values of gsn ranging from 0.001 to the maximally

allowed value for TET, i.e.
ffiffiffiffiffiffiffiffi
1=3

p
. For each value of

gsn, g3n is chosen such that the normalised initial

energy Z init
1 is 1.1 times greater than the threshold

value Zmax
1 where Einit

1 is set to 0.01. As shown, both

metrics monotonically decrease with an increase of

gsn. This means that a large amount of energy is

dissipated during TET when gsn is set to a relatively

small value, but this comes at the cost of a longer

pumping time. Therefore, there is a trade-off in

choosing a suitable value of gsn for the considered

performance metrics.

Figure 5a, b illustrates the same quantities but

against g3n when gsn is set to 0.1. The range of g3n is

defined such that the normalised initial energy Z init
1

varies from 1:1� Zmax
1 to 5� Zmax

1 . Contrary to the

previous case, both metrics monotonically increase

with an increase of g3n. This means that more energy is

dissipated for a greater value of g3n, but again it needs

more time to complete. Therefore, the same

(a) (b)Fig. 4 a Pumping time and

b energy dissipation ratio

against gsn when g3n is
chosen so that the initial

energy Zinit
1 is 1.1 times

greater than Zmax
1
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compromise is observed for the choice of g3n. In the

light of Fig. 5a, b, it is recommended to set it is slightly

above the threshold value as the pumping time Tpump

degrades more than the energy dissipation rate ETET

benefits from an increase of g3n.

(a) (b)Fig. 5 a Pumping time and

b energy dissipation ratio

against g3n when gsn is set to
0.1

Table 1 Parameters used for numerical simulations

System parameters gsn g3n xinit1
e

TET activated 0.2 2:6� 103 10�2 0.02

TET inactivated 0.2 1:7� 103 10�2 0.02

(a) (b)Fig. 6 Comparison of

numerical and analytical

results when TET is

activated for: a Z1 and b Z2
at the slow time scale
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3.3 Numerical validation

Numerical studies are performed in order to validate

the derived semi-analytic equations and to examine

the control effectiveness of the proposed ANES. The

MATLAB built-in integration function ode45 is used

to solve the original governing Eqs. (10) and (11). The

solutions are then substituted into Eqs. (31) and (32) in

order to compute the energy-like variables E1 and E2,

and eventually Z1 and Z2. The system parameters are

listed in Table 1. Two cases are considered, i.e. g3n is

chosen to be 1.2 and 0.8 times greater than the

minimum value required for triggering TET.

Figure 6 compares the results computed using the

numerical and the analytical approach when TET is

activated. It can be observed that Z1 decays with a

quasi-linear slope until the critical point at which Z2
undergoes a jump. In addition, the evolution of Z1 is

shown to be determined only by the slow time scale

dynamics as suggested by Eq. (19), whereas Z2
exhibits both fast and slow-scale dynamics. Despite

some differences present after the critical point, the

semi-analytical result in terms of Z1 is found to be in

good accordance with that obtained from the numer-

ical calculations. In contrast, Z2 behaves differently

between the numerical and analytical results. This is

because the semi-analytical approach neglects the fast

time scale contributions such that it fails to predict the

actual dynamics of Z2. Nevertheless, the semi-analytic

solution for Z2 gives the trend of the response when

averaging out the fast components of the actual

solutions. It should also be noted that Z2 exhibits

initially some high-frequency oscillations. This is

caused by the fact that the initial state of the system

does not necessarily lie on the slow invariant manifold

such that it takes some time to be attracted to this

manifold. This is also referred to as nonlinear beating

(a) (b)Fig. 7 Comparison of

numerical and analytical

results when TET is inactive

for: a Z1 and b Z2 at the slow
time scale

Fig. 8 Comparison of control effectiveness when TET is

activated or deactivated
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[10]. The mismatch after the critical point is caused by

the fact that the sudden jump of Z2 is not well followed

by the fast dynamics. Overall, the semi-analytical

approach is shown to offer a good qualitative

description of the system’s dynamics.

Figure 7 plots the results obtained when TET is not

activated. A fairly good match is observed. Both Z1
and Z2 decay with an exponential slope, as linear

systems do.

The control performance in terms of the primary

structure’s displacement is compared in Fig. 8 when

TET is activated or not. It is clear that the energy is

damped much more quickly when the ANES is tuned

to activate TET.

Figure 9 depicts the variable x2, i.e. the normalised

force measured by the force sensor. It can be seen that

more energy is pumped into the ANES when TET is

activated, as evidenced by the comparison of the

oscillation amplitude for the two cases. The corre-

sponding driving forces, i.e.

Fa tð Þ ¼ gsn
Rt
t¼0

x2dt þ g3n
Rt
0

Rt
0

x2ð Þ3dtdt, for the two

cases are plotted in Fig. 10. Accordingly, more forces

need to be delivered when TET is activated. Note that

x1, x2 and Fa shown in Figs. 8, 9 and 10 are

dimensionless quantities. In order to implement the

proposed ANES for practical applications, special care

should be given on the specifications of the transducer

and the corresponding amplifiers such that the

required stroke and force are satisfied.

Fig. 9 Comparison of the normalised transmission force x2
when TET is deactivated or activated

Fig. 10 Comparison of the normalised driving force when TET

is deactivated or activated k2

m2

Fa

Fs
kac2

m1

k1c1

m3

k3c3

x2

x1

x3

Fig. 11 A linear MDOF system coupled with an ANES
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4 ANES tuning for MDOF systems

For MDOF systems, another appealing feature of a

mechanical NES is the capability of mitigating the

vibrations of multiple structural modes. The underly-

ing mechanism is referred to as resonance capture

cascade (RCC). In this section, it is shown that an

ANES can damp multiple structural modes through

RCC and the tuning law for triggering multi-frequency

TET is derived.

The considered system is shown in Fig. 11, where a

linear three-degree-of-system is taken as the primary

structure and an ANES is placed between m2 and m1.

The parameters of the primary structure are listed in

Table 2. The question is how to choose the control

parameters gs and gd3 such that multi-frequency TET

can be activated for this system. Similar to a mechan-

ical NES, the idea is to assume that ANES interacts

with a single structural mode at a time. If so, the

guidelines for triggering the occurrence of TET for a

SDOF system can be directly applied. The values of gs
and gd3 required for activating TET of each mode can

be obtained. Then, one can examine whether TET can

be triggered for all the structural modes of interest with

one single setting of gs and gd3.

Following upon this idea, the primary system is

firstly decomposed into three SDOF systems in modal

coordinates. The mass-normalised eigenvector matrix

of the primary system and the resonance frequencies

are:

E ¼
0:328 �0:737 0:591
0:591 �0:325 �0:737
0:737 0:591 0:328

2
4

3
5 ð47Þ

x ¼
0:445
1:247
1:802

2
4

3
5rad=s ð48Þ

The ANES stiffness ka ¼ 0:057 is chosen such that

the modal stiffness ratio between the ANES and the

primary system for mode 1 is equal to 2%. According

to Eq. (9), the normalised control parameter gsn

decreases with the resonance frequency. Therefore,

gs is chosen such that g
sn for mode 1 is equal to 2%. In

this way, gsn for the other modes is smaller than 2%

which automatically meets the condition given by

(38). The initial condition of the system Xinit is taken

as:

Xinit ¼ x1; x2; x3½ �T¼ 0:01; 0; 0½ �T ð49Þ

The initial condition in the modal coordinates can

be obtained:

Qinit ¼ E�1Xinit

¼ 3:3� 10�3 �7:4� 10�3 5:9� 10�3
� 
T

ð50Þ

The mode shape difference at the locations of the

ANES, i.e. Dei as in Eq. (8), is calculated by taking the
difference between the first two rows of the eigenvec-

tor E. Grouping them in vector form, one obtains:

De ¼ De1 De2 De3½ �T
¼ 0:263 0:409 �1:328½ �T ð51Þ

The actuator connection vector b as defined in

Eq. (1) for the considered system is given as:

b ¼ �1; 1; 0½ �T ð52Þ

where the indices l and k represent the first and the

second DOF indices to which the actuator is attached.

With the knowledge of gs, ka, Qint, De and x, the
threshold of gd3 for triggering each mode’s TET,

referred to as gmin
d3

� �
i
; 8i ¼ 1; 2; 3, can be derived by

substituting these parameters into Eqs. (41), (9) and

(8). The results are given in Table 3. It is found that

gmin
d3

� �
1
for mode 1 is greater than that for the other two

modes. This implies that TET can be triggered for all

modes if gd3 is greater than gmin
d3

� �
1
. The final value of

gd3 is thus set to be 1.2 times greater than gmin
d3

� �
1
,

completing the determination of the ANES parameters

gs, gd3 and ka.

The ANES performance is preliminarily assessed

by using the two performance indices, i.e. the pumping

time Tpump and the energy dropping ratio ETET. Their

values are listed in Table 3. It is seen that it takes

around 415 s for pumping out the energy associated

with mode 2, while only 71 s are required for mode 1.

This is mainly because the effective stiffness ratio and

Table 2 Parameters of the primary system

Parameters Value Parameters Value Parameters Value

m1 (kg) 1 m2 (kg) 1 m3 (kg) 1

k1 (N/m) 1 k2 (N/m) 1 k3 (Ns/m) 1

c1 (Ns/m) 0 c2 (Ns/m) 0 c3 (Ns/m) 0
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the damping ratio for the second mode are relatively

low. During TET, the energy possessed by modes 2

and 3 is almost completely dissipated by the ANES,

while approximately 80% of the energy is damped out

for mode 1. This is caused by the fact that the damping

ratio for the first mode is relative high and the

corresponding initial value Z init
1 is close to the

threshold Zmax
1 .

In order to verify the analytical analysis, a numer-

ical simulation is performed for the coupled system.

Figure 12a, b plot the time history and the time–

frequency analysis of the transmission force Fs,

respectively. As can be seen, the ANES is able to

interact with each mode sequentially. Once a sufficient

amount of energy has been dissipated, the ANES

escapes from the current resonance capture and

engages with the next mode, realising in essence a

RCC. The comparison between Fig. 12a and Table 3

highlights that the pumping time for each mode is

correctly predicted by the analytical results. The

vibration mitigation performance is evaluated by the

response of m1, the results of which are shown in

Fig. 12c, d, respectively. Interestingly, it is seen that

the energy associated with each mode is dissipated

only when the corresponding TET occurs, again

confirming the previous assumption. A benchmark

case is considered where gd3 is set to 1% of the current

value such that no TETs are triggered. The resulting

control performance in terms of the displacement of

m1 is superimposed in Fig. 12c. The comparison

clearly highlights the vibration mitigation efficiency

improved by the well-tuned ANES.

Next, the control effectiveness of the ANES is also

compared with that of a linear active tuned inerter

damper (ATID) [23] on the considered primary

system. The relationship between an ATID and an

ANES can be understood in analogy with a mechan-

ical TMD and a mechanical NES. The ATID is

configured such that the effective damping associated

with mode 1 is maximised according to the tuning law

in [34]. The corresponding control parameters, i.e.

gains of the single integrator gs and the double

integrator gd, are given in Table 3. The resulting

control performance is shown in Fig. 13 which is

superimposed with that of the ANES. Figure 14 plots

the time–frequency distribution of x1 when the

optimally configured ATID is used. As shown in

Fig. 13, the ATID seems to outperform the ANES in

the time window between 150 and 600 s. In fact, the

vibrations when ANES is used during this period are

mainly due to two vibration modes (mode 1 & mode

2), as seen from the time–frequency plot in Fig. 12d.

As ANES takes effect sequentially from high modes to

low modes, in this time window, ANES affects only

mode 2 and basically leaves mode 1 ‘undamped’. On

the other hand, the vibrations associated with mode 1

for ATID start to be attenuated from the very

beginning. When the time reaches 200 s, the energy

with mode 1 is already well dissipated and the

vibrations are basically dominated by mode 2, which

is not effectively damped by the ATID. The results

show clearly that ANES can effectively damp the

energy of all the modes of the system, while ATID can

only be tuned to one mode. This broadband efficiency

of ANES makes it also much more robust to the

presence of uncertainties in the primary system as

demonstrated by the comparison between a mechan-

ical NES and a mechanical TMD in [10].

5 Conclusion

This paper discussed an active nonlinear energy sink

concept realised by a pair of collocated reactive

actuator and force sensor. The equivalent mechanical

representation, i.e. serially-connected cube root iner-

ter, linear damper and linear spring, has been derived

to better understand the physics behind the coupled

Table 3 ANES parameters

and performance measures
Parameters gsnð Þi Zmax

1

� �
i

ei gmin
d3

� �
i

g3nð Þi Z init
1

� �
i

Tpump

� �
i

ETETð Þi

Mode 1 0.2 0.216 0.02 1:8� 107 2:4� 104 0.259 71.6 s 79.6%

Mode 2 0.07 0.2 0.006 1:0� 107 7:4� 103 0.403 415.8 s 98.3%

Mode 3 0.05 0.199 0.03 3:2� 106 3:7� 104 1.308 234.9 s 99.7%

ANES gs ¼ 0:09 gd3 ¼ 2:1� 107 ka ¼ 0:057 N/m

ATID gs ¼ 0:62 gd ¼ 0:32 ka ¼ 0:057 N/m
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electromechanical system. It is found that an ANES

and a NES behave similarly in terms of their slow-

scale dynamics and vibration mitigation effectiveness.

Closed-form tuning laws for regulating the control

parameters of the ANES have been derived for both

SDOF and MDOF systems. The well-known threshold

in terms of the host structure vibration’s energy for

triggering TET is converted into constraints on the

control parameters which allows a straightforward

implementation in practice. The influence of the

control parameters on the vibration mitigation perfor-

mance has also been investigated. More energy is

dissipated during TET if the control parameter gs is

relatively small, but it takes more time to do so. An
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(b)

Fig. 12 a time history of the transmission force Fs; b time–

frequency distribution of Fs; c time history of x1; d time–

frequency distribution of x1

Fig. 12 continued

Fig. 13 Control effectiveness comparison between ANES and

ATID
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opposite trend applies for the other control parameter

gd3. Numerical simulations have been performed to

verify the analytical developments. From a practical

viewpoint, the proposed ANES is preferable over a

mechanical NES as it not only features real-time

tuning of the control parameters, but also allows for a

flexible implementation of various forms of the

nonlinear exponent. In addition, one can envision to

develop an analogue electronic control system for the

collocated actuator-force sensor pair such that the

resulting ANES would be compact enough for smart

structure applications.
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Appendix A

In this appendix, it is shown that the systems sketched

in Fig. 1a, b are dynamically equivalent, or, in other

words, the networks shown in Fig. 15a, b are

equivalent.

Figure 15b depicts a pure mechanical systemwhich

consists of a cube root inerter, a dashpot and a spring

connected in series. A cube root inerter impedes the

relative acceleration across its terminals with a force

proportional to the cube root of its relative accelera-

tion. Under the excitation force denoted by F, the

governing equations of this system can be written as:

F ¼ �ma

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€x1 � €x2

3
p

ð53Þ

F ¼ �da _x2 � _x3ð Þ ð54Þ

F ¼ �ka x3 � x4ð Þ ð55Þ

where xi; 8i ¼ 1; 2; 3; 4 denotes the node displacement

of each mechanical component.

Expressing the relative motion in terms of the

transmission force F, Eqs. (53)–(55) can be rewritten

as:

�
Z t

0

Z t

0

F

ma

� �3

dtdt ¼ x1 � x2 ð56Þ

�
Z t

0

F

da
dt ¼ x2 � x3 ð57Þ

� F

ka
¼ x3 � x4 ð58Þ

Summing up Eqs. (56)–(58) and multiplying both

sides with ka, yields:

� ka
RR
F3

m3
a

� ka
R
F

da
� F ¼ ka x1 � x4ð Þ ð59Þ

According to the control law, the governing equa-

tions of the system shown in Fig. 15a can be expressed

as:

F ¼ �gs

Z t

0

Fdt � gd3

Z t

0

Z t

0

F3dtdt � kax ð60Þ

where x ¼ x1 � x4 represents the relative displace-

ment across the ANES.

Comparing Eq. (59) with Eq. (60), one can find the

equivalence between systems shown in Fig. 15a, b.

The feedback gains and their corresponding mechan-

ical components are thus related by the following

equation:

da ¼ ka=gs; ma3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ka=gd3

3
p

ð61Þ

Fig. 14 Time-frequency distribution of x1 when the optimally

configured ATID is used
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