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Abstract This paper introduces a new online method
for performing control-based continuation (CBC),
speeding up the model-less identification of stable and
unstable periodic orbits of nonlinear mechanical sys-
tems. Themain building block of the algorithm is adap-
tive filtering which can ensure the non-invasiveness
of the controller without the need for offline correc-
tive iterations. Two different strategies, termed stepped
and swept CBC, are then developed for performing the
continuation steps. A beam featuring different artificial
stiffness and damping nonlinearities is considered for
the experimental demonstration of the proposed devel-
opments. The performance of the CBC strategies are
compared in terms of running time and identification
accuracy.
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1 Introduction

Time-invariant nonlinear systems are known to exhibit
rich and complex behaviors with multiple branches of
orbits—possibly unstable—interconnected by bifurca-
tions and chaos. The characterization of such systems
is most often performed theoretically using numeri-
cal continuation techniques which are quite sophis-
ticated and advanced, see e.g., [1–3]. For nonlinear
mechanical systems which vibrate when subjected to
an external force, numerical continuation has been used
for computing the steady-state behavior in response to
harmonic forcing through frequency response curves
(FRCs), the nonlinear counterpart of the frequency
response functions of linear systems [4].

The experimental identification of FRCs of nonlin-
ear mechanical systems is a much more challenging
endeavor. Considering the harmonically forced Duff-
ing oscillator

ẍ(t) + ẋ(t) + x(t) + x3(t) = p sinωt. (1)

as an illustrative example, several FRCs corresponding
to increasing forcing amplitudes p are shown in Fig. 1.
For ease of notation, themaximumdisplacement ampli-
tude during the periodic oscillation is noted x . Because
the superposition principle does no longer hold for non-
linear systems, the topology of FRCs changes with the
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Fig. 1 FRCs of the Duffing oscillator: p = 4 (blue curve), 14
(orange curve), 24 (yellow curve) with stable (plain line) and
unstable (dashed line) orbits. (Color figure online)

forcing amplitude (e.g. the unstable branch absent from
the blue FRC but present in the orange FRC in Fig. 1).
An exhaustive characterizationmust therefore consider
a wide range of excitation amplitudes, which substan-
tially increases testing time. When considering classi-
cal excitation signals such as swept or stepped sines,
additional difficulties for the experimental identifica-
tion of FRCs arise:

– The same excitation signal can lead to distinct
steady-state responses of the system, depending on
its initial state. If perturbed, the system can also
jump from one periodic orbit to another.

– The basin of attraction of a stable branch shrinks
when approaching a bifurcation meaning that the
system might jump before reaching resonance,
leaving it unidentified.

– Periodic orbits can be unstable, i.e., the motion
quickly diverges from them and converges toward
some other (stable) orbits. The unstable branches
are therefore not observable in practice.

These three issues have motivated researchers to
develop new approaches to test nonlinear structures in
a more systematic and reliable way. One of which is
the extension of numerical continuation to a feedback-
controlled experiment. The feedback control is used to
stabilize an unstable periodic orbit, whereas the con-
tinuation process is exploited to move smoothly from
one orbit to another. Physicists were successful in sta-
bilizing unstable orbits by using time-delayed feedback
control [5]. Control-based continuation (CBC)was first
proposed by Sieber and Krausskpof [6,7] to calculate

experimental FRCs without the need for a mathemat-
ical model of the system at hand. CBC was then used
by the engineering community to perform the experi-
mental identification of FRCs of mechanical systems,
see e.g., [8–10].

CBC aims at (i) controlling an experimental param-
eter θ by comparing it to a reference θ∗, generating the
action u of a controller g(·), u = g(θ∗ − θ), which
stabilizes the sought periodic orbit and (ii) varying the
reference θ∗ during the continuation process to obtain
a complete family of periodic orbits. In order to iden-
tify orbits of the original system, the controller must be
noninvasive, i.e., u must vanish when the system lies
on the orbit.

The choice of the controlled parameter θ is thus
instrumental inCBC.Because of the folding that occurs
at resonance in Fig. 1, the forcing frequency under-
goes a non-monotonous increase at constant forcing
amplitude. Using the forcing frequency as continuation
parameter would thus require advanced continuation
schemes.RepresentingFRCs against the forcing ampli-
tude and the forcing frequency in a three-dimensional
plot reveals that the manifold to be identified (in grey
in Fig. 2) can be “sliced” at constant forcing frequency
(Fig. 2b) instead of constant forcing amplitude (Fig. 2a)
to obtain the so-called S-curves. Incidentally, impos-
ing a constant forcing frequency is easier than impos-
ing the amplitude. Figure 3 evidences the key feature
of S-curves, i.e., the system’s displacement increases
monotonically for a fixed forcing frequency, opening
the door to simple continuation schemes. The identi-
fication of S-curves with θ∗ taken as a reference dis-
placement x∗ thus represents an indirect, but effective,
way to identify FRCs [11].

This strategy was exploited in several studies,
including the following. Backbone curves were identi-
fied in [12]. CBC was applied to a structure with har-
monically coupled modes in [13], to a frictional struc-
ture in [14], a structure vibrating with impacts in [10],
and numerically to a biochemical system in [15]. The
stability of orbits was evaluated in [16], whereas bifur-
cations were tracked through frequency, forcing, and
displacement in [17]. The topology of the manifold
can also be estimated during the experiment to improve
continuation [18].

Tounderstandhow the unstable portions of aS-curve
can be stabilized using feedback control, a differential
controller of gain kd is applied to the Duffing oscillator.
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Fig. 2 Manifold of the Duffing oscillator linking displacement
amplitude x , forcing frequency ω and forcing amplitude p with
a FRCs at constant excitation amplitudes p = 4 (blue curve),
14 (orange curve), 24 (yellow curve) and b S-curves at con-

stant frequencies ω = 2 (green curve), 3 (red curve), 4 (purple
curve); the locus of saddle-node bifurcations ismarked by awhite
dashed line, it represents the boundary between stable and unsta-
ble orbits. (Color figure online)
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Fig. 3 a S-curves for ω = 2 (green curve), 3 (red curve), 4
(purple curve) with stable (plain line) and unstable (dashed line)
orbits, b basin of attraction for ω = 4 and x = 3.5 showing the
two competing stable orbits (• or ◦). (Color figure online)

Specifically, the displacement x is compared against a
harmonic signal of amplitude x∗:

ẍ(t)+ẋ(t)+x(t)+x3(t) = kd
d

dt
[x∗ sinωt−x(t)]. (2)

The terms of Eq. (2) are rearranged to highlight that
the differential controller leads to an increase in the
damping of the oscillator:

ẍ(t)+[1+kd]ẋ(t)+x(t)+x3(t) = kdx
∗ω cosωt. (3)

The controller is applied to the unstable orbit for
which x = 3.5 and ω = 4 in Fig. 3a. Its basin of
attraction in Fig. 3b highlights the existence of two
competing stable orbits. Figure 4a considers three dif-
ferent values of the controller gain kd. When kd = 0.5
or 1, the (x, x∗) curve remains unstable for x = 3.5;
the basins of attraction are given in Fig. 4b, c, respec-
tively. When kd = 2, there is a unique, stable orbit
for x = 3.5, as confirmed by the basin of attraction
in Fig. 4d. At this gain, Fig. 4a evidences a one-to-one
relation between the amplitude of the system’s response
x and the control parameter x∗; a complete unfolding is
thus achieved by the differential controller. The corre-
sponding forcing amplitude lies in the right-hand side
of Eq. (2).

Despite the stabilization of unstable orbits, the con-
troller must also be noninvasive, i.e., the action of the
controller must be zero at the sought orbit. This can-
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Fig. 4 a S-curves for ω = 4 and kd = 0.5 (yellow curve), 1 (orange curve), or 2 (blue curve) with stable (plain line) and unstable
(dashed line) orbits; b–d basins of attraction for x = 3.5 showing which stable orbit (• or ◦) is reached. (Color figure online)

not be achieved in Eq. (2) if higher harmonics in x
are not considered. One inherent limitation of the cur-
rent implementations of CBC is that fixed-point itera-
tions [11] (or even quasi-Newton iterations [7,8]) are
necessary to remove the invasiveness of the controller.
To do so, the system must reach steady state before
doing the corrective iteration. The central contribu-
tion of the present study is to introduce a new CBC
algorithmwhich cancels invasiveness online, i.e., with-
out the need for offline iterations, resulting in simpler
implementations and faster experiments.

There exist other methods which exploit feed-
back control to experimentally measure the dynamic
response of nonlinear systems. For instance, phase-
locked loops (PPLs) were proposed in [19,20] and con-
trol the phase lag between the applied excitation and
the response of the system. They were used to mea-
sure FRCs in [21]. In those applications, PLLs relied
on the unique parameterization of the response man-
ifold in terms of the phase lag. PLLs were also used
to identify backbone curves on a number of systems
including stiffness and friction nonlinearities [22–25].
FRCs were synthesized from the measured backbones
in [21]. Compared to CBC, PLLs are naturally nonin-
vasive methods. However, the control architecture of
PLLs is fixed.

Another method which uses feedback control to
characterize the response of nonlinear structures is
the so-called response-controlled stepped-sine testing
(RCT) [26,27]. CBC and RCT share an important
conceptual similarity as both methods directly con-
trol the response of the system to achieve a particular
response target. However, while CBC usually explores

the response of the system at a constant forcing fre-
quency but different response amplitudes, RCT maps
the response of the system at a constant response ampli-
tude but different excitation frequencies. As a result,
while the response manifold obtained using CBC com-
prises a collection of S-curves, the response manifold
identified using RCT is composed of horizontal slices
of the response manifold (in Fig. 2 for instance). FRCs,
S-curves and RCT’s constant-response FRFs are in fact
the three possible ways in which the response manifold
can be sliced. Data collected using RCT was interpo-
lated using the harmonic force surface (HFS) concept
to successfully identify the nonlinearities of structures
with stiffness [26], friction, and backlash [27] nonlin-
earities. However, RCT neglects the effects of non-
fundamental harmonics, leaving the controller invasive
and potentially affecting the identified orbits.

The article is organized as follows. The existing
CBC algorithm, termed offline CBC, is reviewed in
Sect. 2. The proposed online CBCmethod is presented
in Sect. 3; it relies on the use of adaptive filters derived
from a notch filter introduced in [28]. We will show
that the method can perform the continuation either by
discrete steps or by sweeping the continuation parame-
ter continuously. In Sect. 4, the algorithm is demon-
strated experimentally using a cantilever beam. The
three methods, namely offline CBC, stepped CBC and
swept CBC, are used to characterize one mode of the
beam with various artificial nonlinearities in stiffness
and damping. The methods are compared with respect
to the efficacy of invasiveness cancellation, accuracy
of the characterization, and time.
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(a)

(b)

Fig. 5 CBC feedback loop with a the separation of fundamental
(in blue) and non-fundamental (in red) components and b actual
implementation of the algorithm. (Color figure online)

2 Offline control-based continuation

This article focuses on the dynamics of a one-degree-
of-freedom oscillator under monoharmonic forcing.
Specifically, the objective is to stabilize the unstable
periodic orbits through feedback control which, in turn,
allows us to construct the different S-curves defining
the manifold of the oscillator.

The conceptual diagram of the feedback control
loop is shown in Fig. 5a. Because a nonlinear system
responds at different frequencies under monoharmonic
forcing, its displacement x can be decomposed into
fundamental and non-fundamental harmonic compo-
nents, i.e., x(t) = xf(t) + xnf(t). Likewise, the ref-
erence displacement x∗ is decomposed into funda-
mental and non-fundamental harmonic components,
i.e., x∗(t) = x∗

f (t) + x∗
nf(t). These different compo-

nents feed the controller which, in turn, synthesizes
an augmented excitation signal f (t) = ff(t) + fnf(t).
The fundamental component ff represents the mono-
harmonic excitation applied to the system. The non-
fundamental component fnf comprises undesired mul-
tiharmonic components, i.e., when fnf �= 0, the con-
troller is invasive. The invasive action of the controller

is therefore expressed

fnf(t) = g(x∗
nf − xnf). (4)

We remark that the practical implementation of the
algorithm schematized in Fig. 5b does not require
the explicit separation into fundamental and non-
fundamental components. To this end, a linear con-
troller can be used to guarantee the independence of
harmonic components such that f (t) = g(x∗ − x) is
the excitation eventually applied to the system. Specif-
ically, a proportional-derivative (PD) controller is used
herein:

f (t) = g(x∗ − x)

= kp[x∗(t) − x(t)] + kd[ẋ∗(t) − ẋ(t)] (5)

where kp and kd are the proportional and differential
gains, respectively. Similarly to what was illustrated in
Eq. (3), the influence of a PD controller can be intu-
itively understood as adding stiffness (kp) and damping
(kd) to the system. For adequate gains, the controller
modifies the system’s dynamics, stabilizes the unstable
orbits and unfolds the S-curves.

2.1 Fundamental excitation

The fundamental components of the signals are
expressed as a function of their Fourier coefficients:

xf(t) = X1s sin(ωt) + X1c cos(ωt) (6)

x∗
f (t) = X∗

1s sin(ωt) + X∗
1c cos(ωt) (7)

ff(t) = F1s sin(ωt) + F1c cos(ωt). (8)

The relation between them is expressed from Eq. (5){
F1s = kp(X∗

1s − X1s) − ωkd(X∗
1c − X1c)

F1c = kp(X∗
1c − X1c) + ωkd(X∗

1s − X1s).
(9)

The fundamental components of the displacement and
reference signals therefore generate the fundamen-
tal excitation applied to the system. The fundamental
amplitudes of the signals are expressed as

Xf =
√
X1s

2 + X1c
2 (10)

X∗
f =

√
X∗
1s
2 + X∗

1c
2 (11)

Ff =
√
F1s2 + F1c2. (12)
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2.2 Invasiveness of the controller

The non-fundamental components of the signals are
decomposed in Fourier series:

xnf(t) = X0 +
NH∑
k=2

Xks sin(kωt) + Xkc cos(kωt) (13)

x∗
nf(t) = X∗

0 +
NH∑
k=2

X∗
ks sin(kωt) + X∗

kc cos(kωt) (14)

fnf(t) = F0 +
NH∑
k=2

Fks sin(kωt) + Fkc cos(kωt), (15)

the relation between them is expressed from Eq. (5)
∀k ∈ {2, . . . , NH}⎧⎪⎨
⎪⎩
F0 = kp(X∗

0 − X0)

Fks = kp(X∗
ks − Xks) − kωkd(X∗

kc − Xkc)

Fkc = kp(X∗
kc − Xkc) + kωkd(X∗

ks − Xks).

(16)

Because a nonlinear system generates harmonics that
are not known beforehand, Fks and Fkc are nonzero,
and so is fnf(t). As a result, the controller is invasive
and causes the excitation force f (t) to contain multiple
harmonic components. This means that the system fol-
lows a periodic orbit that does not belong to the sought
manifold.

Equation (16) shows that modifying the reference
x∗
nf until it is equal to xnf is a way to render the control
noninvasive:

⎧⎪⎨
⎪⎩
X∗
0 = X0

X∗
ks = Xks

X∗
kc = Xkc

⇔

⎧⎪⎨
⎪⎩
F0 = 0

Fks = 0

Fkc = 0

∀k ∈ {2, . . . , NH}.

(17)

To cancel the invasiveness of the controller, current
implementations of CBC thus iteratively correct the
Fourier coefficients of the reference signal x∗ to achieve
Eq. (17) [11].

2.3 The offline CBC algorithm

The complete CBC algorithm is illustrated in Fig. 6a
where the feedback loop of Fig. 5b lies in the gray
area and the updating of the Fourier coefficients (17)

is made outside this area. For the stability of the sys-
tem to change, the feedback loop must run continu-
ously through time representing the online part of the
method. The correction stepmust be achievedwhen the
system is in steady state; it is thus the offline part of the
method, hence the name offline CBC algorithm.

The process starts with the initialization of the
Fourier coefficients of x∗ to generate a monoharmonic
signal of arbitrarily small amplitude X∗

1s,0 and fre-
quency ω0. When the system is at steady state, the
corrective iterations on the non-fundamental Fourier
coefficients of x∗ are performed. This iterative process
goes on until the control is noninvasive. Once this is the
case, a periodic solution on the sought S-curve has been
identified.We note that the fundamental Fourier coeffi-
cients X∗

1s and X∗
1c are never modified during the itera-

tions. They define the fundamental reference amplitude
X∗
f . Equation (9) shows how these coefficients implic-

itly set the fundamental response amplitude Xf of the
system.

To identify a new periodic solution on the S-curve,
X∗
f is incremented through X∗

1s := X∗
1s+h, performing

in essence what is referred to as sequential continua-
tion in the literature. Once a complete S-curve has been
identified, the continuation process is repeated for a dif-
ferent frequency ω. Eventually, the manifold in Fig. 2
can be constructed and subsequently sliced at constant
forcing amplitudes to calculate the FRCs.

3 Online control-based continuation

The key idea of this article is to impose Eq. (17) online.
Specifically, the synthesis of x∗

nf can be achieved by
an online estimation of the Fourier coefficients of x
through adaptive notch filters [28].

3.1 Adaptive filtering

An adaptive filter synthesizes the signal x̂ by perform-
ing a time-varying linear combination of a basis q such
that it approximates the measured signal x :

x̂(t) = wT (t)q(t) ≈ x(t). (18)
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(a)
(b)

Fig. 6 Comparison of the a offline and b online CBC algorithms for the identification of an S-curve. The gray area represents the online
steps of the algorithms

The basis q is composed of harmonic signals

q(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q0(t)
q1s(t)
q1c(t)
q2s(t)

...

qNHc(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
sin(ωt)
cos(ωt)
sin(2ωt)

...

cos(NHωt)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(19)

and the combination coefficients are the weights

w(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w0(t)
w1s(t)
w1c(t)
w2s(t)

...

wNHc(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

When the synthesis error ε = x − x̂ and the time vari-
ation of the weights w are small, Eq. (18) is similar to
a Fourier decomposition of x and the elements of w
approximate its Fourier coefficients:⎧⎪⎨
⎪⎩

w0 ≈ X0

wks ≈ Xks

wkc ≈ Xkc
∀k ∈ {1, . . . , NH}. (21)

Any harmonic component can be selected from q.
In particular, the identified non-fundamental harmonic
components and their corresponding weights can be
used to synthesize

x∗
nf(t) = wT

nf(t)qnf(t) ≈ xnf(t) (22)

meeting the objective in Eq. (17).
There exist several adaptivefiltering algorithms. The

simplest and least expensive is the least mean squares
(LMS) algorithm, which updates w discretely through
time. At time step i , the synthesis error is estimated,
ε(ti ) = x(ti )−wT (ti )q(ti ), and theweights are updated
accordingly

w(ti+1) = w(ti ) + μq(ti )ε(ti ) (23)

where μ is the step size factor, which is an internal
parameter of the LMS algorithm. For further informa-
tion about adaptive filters, the reader is invited to con-
sult reference books, e.g. [29].

3.2 The online CBC algorithm

The resulting algorithm is shown in Fig. 6b. It is seen
that the identification of a periodic solution on the S-
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curve can continuously run through time. The method
is thus referred to as online CBC.

To build the complete S-curve, there are two options
for the continuation step. The first alternative is to per-
form offline a sequential continuation on the funda-
mental amplitude X∗

f through X∗
1s := X∗

1s + h, as for
the offline CBC algorithm. The second possibility is to
impose a time-varying fundamental reference ampli-
tude X∗

f (t) = ηt in the online part of Fig. 6b. The two
methods are referred to as stepped and swept CBC,
respectively.

The advantage of swept CBC is that it requires no
offline action which can speed up the identification of a
S-curve. However, depending on the sweep rate η, this
can come at the expense of accuracy.

4 Experimental validation

The proposed online CBC algorithms are demonstrated
experimentally on a cantilever beam including various
artificial nonlinearities in this section.

4.1 Experimental set-up

The experimental setup in Fig. 7a comprised a can-
tilever steel beam excited by an electrodynamic shaker.
Its displacement was measured by a laser vibrometer
to form a single-input single-output (SISO) system.

The beam and its base in Fig. 7b were made from a
single block of metal in order to avoid micro-slips in
the beam-base connection. The absence of micro-slips
renders the physical structure as linear as possible so
that nonlinear behavior comes predominantly from the
artificial nonlinearity. Furthermore, the absenceof bolts
between the beam and the base is expected to improve
repeatability. The base was bolted to the ground. The
dimensions of the beam are listed in Table 1. The elec-
trodynamic shaker (TIRA TV 51075) was connected
perpendicularly to the beam at 30 cm from the base
through a stinger and an impedance head (DYTRAN
5860B) glued to the surface, see Fig. 7c.

The different nonlinearities were realized using the
real-time controller (RTC) dSPACE MicroLabBox.
The force applied by the shaker to the structure was
fshaker(t) = f (t) − fnl(x, ẋ) where f (t) is the exter-
nal force and fnl is the artificial nonlinearity. The RTC
sent the excitation signal as a voltage, transformed in

(a)

(b)

(c)

Fig. 7 Experimental setup composed of: (1) fixed base, (2) can-
tilever beam, (3) impedance head, (4) stinger, (5) shaker’s cas-
ing, (6) shaker’s magnetic core, (7) shaker’s electrical coils, (8)
shaker’s membrane, (9) laser vibrometer. (Color figure online)

current by the power amplifier (TIRA BAA 120). The
current then ran through the shaker’s coils, generating
a force on the magnetic core attached to the casing by
a membrane. For the generation of the artificial non-
linearities, it is important that the force applied to the
physical system corresponds to the signal sent by the
RTC. It is non-trivial to impose an exact force signal
at the impedance head, whereas the force inside the
shaker is proportional to the current running through
its coil. For this reason, the physical system includes
the impedance head, the stinger, the magnetic core, and
the shaker’s membrane in addition to the beam. The
excitation point is therefore the shaker’s magnetic core.
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Table 1 Dimensions of the cantilever steel beam [cm]

Length Width Height

100 0.6 2

Table 2 Natural frequencies ωn and damping ratios ξ of the
physical system’s first six modes

Mode ωn (Hz) ξ (%)

1 6.2 0.82

2 31.8 0.66

3 78.3 0.35

4 170.9 0.13

5 254.6 1.24

6 303.5 0.56

Under 20 Hz, a non-constant transfer function between
the input voltage of the shaker’s amplifier and its out-
put current is observed. In this case, the artificial non-
linearity cannot be implemented. Consequently, only
modes above 20 Hz can be studied. The proportional-
ity constant between the force applied to the core and
the RTC’s output was measured to be 160 N/V.

The laser vibrometer (Polytec NLV-2500-5) mea-
sured the displacement and velocity of the magnetic
core so that the excitation andmeasurement pointswere
collocated. The displacement and velocity signals were
then sent to the RTC for the calculation of the artificial
nonlinearities.

4.2 Experimental characterization of the linear beam

The beam was excited by sine sweeps at a low
amplitude of 0.3 N without artificial nonlinearity in
order to obtain its linear frequency response function
(FRF). ThePolyMAXmethod [30] identified themodal
parameters of the first six modes in Table 2. The FRF
was then expressed as a linear combination of six
single-pole transfer functions, each corresponding to
a mode. The single-pole transfer functions’ gains were
computed such that the amplitude of their sum at reso-
nance corresponds to the measurement. A linear mass-
spring-dampermodel of the beamwas also established.
The measured and synthesized FRFs are compared in
Fig. 8.

Fig. 8 FRFs of the linear beam: measured (orange curve) and
synthesized from the mass-spring-damper model (blue curve).
(Color figure online)

CBC will be applied in the next sections to the third
mode of the beam whose natural frequency is around
80 Hz. This mode is targeted because, as discussed
above, the implementation of the artificial nonlinear-
ity necessitates a constant transfer function between
the shaker’s voltage and force. Despite that a single
mode was targeted, we note that the multi-mode model
described above was necessary to validate the results
and handle potentialmodal interactions, a phenomenon
studied in [31].When the excitation levelwas increased
to 0.5 N in Fig. 9, this mode exhibited a slight softening
behavior. The nonlinearity

fnl,model(x, ẋ) = kstif x
2 sgn(x) + kdamp ẋ

2 sgn(ẋ),
(24)

was therefore included in the identified linear model
with kstif = −2.7×106 N/m2 and kdamp = −1.2Ns2/m2

manually defined to fit the experimental FRC visually.
A proper nonlinear model identification is feasible but
not necessary in this work.

4.3 Identification of a Duffing oscillator

The first artificial nonlinearity considered to demon-
strate the CBC algorithms is a cubic stiffness:

fnl,1(x) = k3 x
3, (25)

where k3 = 3 × 1011 N/m3. The offline, stepped and
swept strategies were applied to this Duffing oscillator.

As of today, there is no general method to design
an appropriate controller for CBC. This subject is an
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Fig. 9 Characterization of the physical system without artificial
nonlinearity with FRC at 0.5 N obtained by open-loop frequency
sweep (blue curve), the linearmodel (purple curve), the corrected
model (purple dashed line curve), and the dynamic manifold
(yellow curve). (Color figure online)

active area of research, e.g. a recent study developed
adaptive control schemes for the stabilization of equi-
librium points of linear systems using CBC [32]. In the
absence of such a method for the application at hand, a
differential controller was used throughout this study.
Its gain kd was chosen by trial and error and by allow-
ing the structure to jump between two stable solutions.
If there were jumps during the continuation, the gain
was too low, as shown in Fig. 4. In this case, the gain
was simply increased until there were no more jumps
during the continuation. Interestingly, it was found that
a high differential gain consistently leads to better sta-
bilization. The stability bound of this tendency was not
explored. A gain kd = 400 Ns/m was quickly found
to be adequate for stabilizing the different nonlinear
systems.

The user-defined parameters are listed in Table 3.
Five harmonics were considered for all CBC strategies
and a 10 kHz sampling frequency was sufficient for
measuring them properly. The step size h for the offline
and stepped methods was chosen to obtain approxi-
mately 50 measurement points on the S-curves, a good
compromise between short testing time and sufficient
refinement of the S-curves for manifold interpolation.
The sweep rate η for the swept continuation was such
that the testing time was significantly shorter than with
the other strategies.

The steady-state detection algorithm illustrated in
Fig. 10 was implemented for the offline and stepped

Table 3 Parameters of the different CBC strategies: (a) offline,
(b) stepped, (c) swept

(a)

h [m] interval [#per] buffer [#per]

1 × 10−5 10 5

tolinv,a [N] tolinv,r [%] tolconv,a [m]

0.01 1 2 × 10−7

(b)

h [m] interval [#per] buffer [#per]

1 × 10−5 10 5

tolconv,a [m] μ [–]

2 × 10−7 10/ fs

(c)

η [m/s] μ [–]

4 × 10−5 10/ fs

methods. The Fourier coefficients of the displacement
signal are estimated after each period. A buffer col-
lects the evolution of the coefficients over five peri-
ods and computes their standard deviations. The great-
est standard deviation among the Fourier coefficients
(“max std(X)”) defines the convergence indicator that is
compared to an absolute tolerance tolconv,a. Because of
transients, this indicator is evaluated after each interval
of ten periods. Similarly, the greatest non-fundamental
Fourier coefficient of the force signal (“max |Fnf|”)
defines an invasiveness indicator that is used for the
offline method. Because the amplitude of the force
varies greatly along an S-curve, this indicator is com-
pared to an absolute tolerance tolinv,a and its ratio to the
fundamental amplitude is compared to a relative toler-
ance tolinv,r. For the stepped and swept methods, the
internal parameter μ of the LMS algorithm in Eq. (23)
depends strongly on the sampling frequency and its
normalized value is listed in Table 3.

The S-curves obtained by the different algorithms
are displayed in Fig. 11. The curves slightly differ
depending on the invasiveness of the controller, i.e., on
the non-fundamental Fourier coefficients remaining in
the excitation signal. The effect is particularly impor-
tant near resonance, arguably the most critical point
of the S-curve. The offline and stepped methods are
however in very good agreement. The transient effects
related to the swept method are responsible for a some-
what greater discrepancy in the measured S-curve.
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Fig. 10 Steady-state
detection algorithm: a time
series of the displacement
with evaluation of
steady-state every ten
periods (black dashed line)
and with continuation steps
(black line) when the
indicator is below the
tolerance and b convergence
indicator computed every
period over buffers of five
periods (grey shade) with
the tolerance tolconv,a (green
shade). (Color figure online)
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Fig. 11 S-curve of the Duffing oscillator at 83.25 Hz: no correc-
tions (purple curve), offline (blue curve), stepped (orange curve),
and swept (yellow curve). (Color figure online)

To have a more precise view of the invasiveness of
the different schemes, Fig. 12 depicts the evolution of
the maximum Fourier coefficient of fnf. Without inva-
siveness cancellation, this coefficient rises above 1 N,
whereas it is reduced by more than one order of mag-
nitude with cancellation. The offline method is able to
reduce max|Fnf| down to two orders of magnitude by
performing corrective iterations. More iterations lead
to lower values, but max|Fnf| increases significantly
after each continuation step, rendering correction nec-
essary. The stepped method cannot reduce max|Fnf|
below twice what is achieved with the offline method
highlighting that there is a limit to the performance of
adaptive filtering depending on the parameter μ. Due

3 /4 /2 /4 0

 [rad]
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100
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nf
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Fig. 12 Invasiveness indicator at 83.25 Hz: no corrections (pur-
ple curve), offline (blue curve), stepped (orange curve) and swept
(yellow curve); correction and continuation steps marked with
(×) and (◦), respectively; phase lag �φ between Xf and Ff indi-
cating the progression along the S-curve. (Color figure online)

to transient effects, the swept method reaches values of
max|Fnf| up to twice what is obtained by the stepped
method.

By collecting S-curves measured at different fre-
quencies, the responsemanifold can be constructed and
interpolated by kriging [33], a relatively inexpensive
method capable of addressing noise in the data (kriging
was used online in [18]). The manifold of the Duffing
oscillator is shown in Fig. 13. The resemblance with
the manifold in Fig. 2b can be noticed. The manifold
can then be sliced at constant excitation amplitudes to
extract the FRCs in Fig. 14. For comparison, this fig-
ure also includes numerical FRCs calculated using har-
monic balance [34] on themodel developed in Sect. 4.2
togetherwith the FRCsmeasured using classical up and
down sine sweeps.
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Fig. 13 Duffing oscillator
identified by the stepped
algorithm a S-curves
measured around the third
mode, and b manifold
interpolated from the
S-curves

Fig. 14 FRCs of the Duffing oscillator at 1N forcing: open-loop
sweep up (blue curve) and down (orange curve), calculated from
the model (purple dashed line curve), offline CBC (green curve),
stepped CBC (yellow curve) and swept CBC (sky blue curve).
(Color figure online)

Table 4 Time in [mm:ss] to identify the S-curve at 83.25 Hz
and manifold of the Duffing oscillator

Algorithm S-curve Manifold

Swept 00:13 07:09

No cancellation 00.17 –

Stepped 00:18 10:14

Offline 00:32 14:29

The FRCs obtained by offline and stepped CBC
are indistinguishable whereas the FRC given by swept
CBC exhibits a slight discrepancy near the resonance
peak. They all correlate verywellwith the displacement
amplitudeobtainedunder open-loop sine sweeps.How-

ever, as the sweep up approaches the fold bifurcation
near resonance, the system jumps prematurely with the
result that the sine sweep excitation cannot identify the
periodic orbits close to resonance. This result nicely
evidences the practical relevance of CBC.

The testing time required for the identification of the
S-curve and of the manifold is listed in Table 4. It heav-
ily depends on the duration of transients in the system’s
response, themselves depending on theCBCcontroller.
Because transients last for a certain number of peri-
ods, they are expected to be shorter when identifying a
mode around 80 Hz than modes at lower frequencies.
Consequently, the absolute duration of the experiments
should not be directly compared to performance in the
literature. Rather, the relative performance of the online
CBC and swept CBC can be compared herein to the
state-of-the-art offline CBC. As anticipated, the swept
CBC method is the fastest. Interestingly, the stepped
method is almost as fast as the algorithm with no cor-
rective action. It stems from the fact that both methods
mustwait for steady state before performing the contin-
uation. The offline method is the slowest algorithm and
requires roughly twice the time needed for the swept
method.

4.4 Other artificial nonlinearities

Other artificial nonlinearities which generate different
harmonic contents in the displacement signal are now
considered.

The identification of a system with hardening-
softening-hardening stiffness

fnl,2(x) = k2 x
2 sgn(x) + k3 x

3 + k4 x
4 sgn(x) (26)
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Fig. 15 Hardening-
softening-hardening
stiffness a manifold
identified with stepped
CBC, and b FRC at
F = 0.6 N, open-loop
sweep up (blue curve) and
down (orange curve),
calculated from the model
(purple dashed line curve),
offline CBC (green curve),
stepped CBC (yellow curve)
and swept CBC (sky blue
curve). (Color figure online)

with k2 = 108 N/m2, k3 = −2 × 1011 N/m3, and
k4 = 1014 N/m4 is shown in Fig. 15. The hardening
at low and high displacement amplitudes was imple-
mented to avoid negative stiffness in the beam. One
can notice the existence of four bifurcation points in
the FRC, rendering the open-loop identification much
more challenging.

The capability of CBC to characterize a systemwith
non-smooth nonlinearity is demonstrated by introduc-
ing a piece-wise linear stiffness

fnl,3(x) =

⎧⎪⎨
⎪⎩
kpwl(x + xlim) for x ≤ −xlim,

0 for − xlim < x < xlim,

kpwl(x − xlim) for x ≥ xlim,

(27)

with xlim = 3 × 10−4 m and kpwl = 3 × 104 N/m.
The manifold (and thus the FRC) in Fig. 16 changes
suddenly when reaching the displacement amplitude
xlim.

Figure 17 presents the CBC results when quadratic
damping is added to a cubic stiffness:

fnl,4(x, ẋ) = k3 x
3 + kqd ẋ

2 sgn(ẋ) (28)

with k3 = 3 × 1011 N/m3 and kqd = 20 Ns2/m2. The
FRCs for a lower excitation level are included to illus-
trate the change in damping with amplitude.

Finally, friction is added to a cubic stiffness

fnl,5(x, ẋ) = k3 x
3 +

⎧⎪⎨
⎪⎩

−kfrict for ẋ < 0

0 for ẋ = 0

kfrict for ẋ > 0

(29)

with k3 = 3 × 1011 n/m3 and kfrict = 0.5 N. The
CBC results are given in Fig. 18. The lower amplitude
FRCs show that unlike quadratic damping, the effect
of friction is independent of the excitation amplitude.

The testing time to identify the different manifolds
is shown in Table 5. Consistent results are observed,
namely the swept CBC is the fastest algorithm fol-

Fig. 16 Piece-wise linear
stiffness a manifold
identified with stepped
CBC, and b FRC at
F = 0.6 N, open-loop
sweep up (blue curve) and
down (orange curve),
calculated from the model
(purple dashed line curve),
offline CBC (green curve),
stepped CBC (yellow curve)
and swept CBC (sky blue
curve). (Color figure online)
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Fig. 17 Quadratic damping
and cubic stiffness a
manifold identified with
stepped CBC, and b FRC at
F = 2 N, open-loop sweep
up (blue curve) and down
(orange curve), calculated
from the model (purple
dashed line curve), offline
CBC (green curve), stepped
CBC (yellow curve) and
swept CBC (sky blue
curve); FRC at F = 0.7 N
(dashed line) obtained by
CBC. (Color figure online)

Fig. 18 Friction and cubic
stiffness a manifold
identified with stepped
CBC, and b FRC at
F = 2 N, open-loop sweep
up (blue curve) and down
(orange curve), calculated
from the model (purple
dashed line curve), offline
CBC (green curve), stepped
CBC (yellow curve) and
swept CBC (sky blue
curve); FRC at F = 0.7 N
(dashed line) obtained by
CBC. (Color figure online)

Table 5 Time in [mm:ss] for the identification of the manifold with cubic stiffness (1), hardening-softening-hardening stiffness (2),
piece-wise linear stiffness (3), quadratic damping and cubic stiffness (4), and friction and cubic stiffness (5)

Algorithm System
1 2 3 4 5

Swept 07:09 04:22 06:51 05:18 04:38

Stepped 10:14 08:40 10:23 06:19 06:04

Offline 14:29 10:09 11:55 09:18 09:06

lowed by stepped CBC and then by the offline CBC. It
is also seen that the gain in time depends on the type
of nonlinearity. For instance, the softening and piece-
wise nonlinearities might increase the duration of the
transients, which could explain the greater difference
between swept and stepped CBC for those nonlineari-
ties.

5 Conclusion

Theobjective of this paperwas to exploit adaptivefilter-
ing to remove the need for offline corrective iterations
during the identification of stable and unstable peri-
odic orbits of nonlinear systems. Two different strate-
gies, termed stepped and swept CBC, were proposed
for performing the continuation sequentially or through
the sweep of the continuation parameter, respectively.

Both methods are simpler to implement and run
faster than the classical, offline CBC; they also require
less user-defined parameters. The experimental results
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obtained using different artificial nonlinearities demon-
strated that stepped CBC gives results which correlate
very well with those obtained using offline CBC. It
should, however, be noted that the offline algorithm
can reduce the controller invasiveness up to measure-
ment precision, whereas the invasiveness cancellation
of the stepped CBCmay be limited by the performance
of the adaptive filter. Swept CBC cannot reduce inva-
siveness to the same extent but offers a much shorter
running time. Swept CBC represents a very promising
nonlinear counterpart of sine sweep testing which is
routinely used in industry.

Further work needs to address the design of the CBC
controller, andmore specifically the choice of the gains
and its interaction with adaptive filtering.

An interesting perspective of adaptive filters for the
online Fourier decomposition ofmultiharmonic signals
is their application to other experimental methods than
CBC. For instance, an adaptive filter can be used in
the phase-locked loop methods for the evaluation of
the phase lag between the excitation and the response
signal’s fundamental harmonic.
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