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Abstract
The tuning of a simplified current blocking shunt circuit able to mitigate the vibration amplitude of multiple structural
resonances is addressed in this paper. The proposed strategy exploits the two-port network formalism in combination
with physically-motivated approximations to tune sequentially the electrical elements of the different branches of the
shunt circuit. The resulting tuning method does not resort to optimization algorithms and requires only the knowledge
of quantities that are easy to measure experimentally. It is demonstrated both numerically and experimentally using a
piezoelectric beam.
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Introduction

Piezoelectric shunt damping is a popular technique for
passive vibration control. A piezoelectric transducer bonded
to a structure transforms though the piezoelectric effect
part of the mechanical energy into electrical energy. The
electrical energy can then be dissipated using resistive
elements shunting the transducer. Inductive elements can
also be used to create an electrical resonance with the
inherent piezoelectric capacitance, thereby enhancing energy
dissipation. Hagood and von Flotow (1991) laid down the
theoretical foundations of resistive and series RL shunt
circuits. As an alternative, Wu (1996) proposed to connect
a parallel RL shunt circuit to the transducer. Caruso (2001)
demonstrated that series and parallel RL shunt circuits
are nearly equivalent in terms of vibration attenuation.
Thomas et al. (2012) provided alternative tuning rules and
assessed vibration mitigation performance thanks to the
effective electromechanical coupling coefficient. The exact
H∞-optimal solution corresponding to the minimization of
the maximum amplitude of the frequency response function
of a single-degree-of-freedom (SDOF) oscillator was found
by Soltani et al. (2014) for the series RL shunt circuit. It
was derived for parallel RL shunt circuits by Ikegame et al.
(2019), by noting the analogy of this problem with series RC
shunts for electromagnetic transducers (Tang et al. 2016).

In practice, engineering structures possess multiple vibra-
tion modes, which renders the tuning procedure more com-
plicated than when considering the single mode assump-
tion. Berardengo et al. (2016) showed that the frequency-
dependent character of the piezoelectric capacitance due
to the electromechanical interaction (see, e.g., de Marneffe
(2007)) is to be taken into account for improved accu-
racy. The significant impact on performance of non-resonant
modes was illustrated by Høgsberg and Krenk (2017), and
an explicit correction for background flexibility and inertia
was proposed. Gardonio and Casagrande (2017) showed that

simple lumped-parameter models yield inaccurate tuning
of the shunt parameters for a simply-supported plate. The
near-equivalence of using the effective electromechanical
coupling coefficient and a residual-mode corrected elec-
tromechanical coupling coefficient when tuning shunt circuit
parameters was demonstrated by Toftekær et al. (2018).

An advantage of piezoelectric absorbers is their conceptu-
ally simple extension to the control of multiple resonances.
A first approach is to use as many shunted transducers as
resonances to be controlled. Examples where this approach
was considered include beams (Viana and Steffen, Jr 2006)
and truss-cored sandwich panels (Guo and Jiang 2014). The
recent work of Toftekær and Høgsberg (2020) proposed
explicit corrections to account for non-resonant modes and
cross-interaction between the different shunt circuits.

A second approach for multimodal piezoelectric shunt
damping is based on multiple patches interconnected through
an electrical network. The network is designed to be the
electrical analog of the mechanical structure to which it is
coupled (Alessandroni et al. 2002; Giorgio et al. 2015). This
tuning strategy was validated experimentally, e.g., on plate
structures (Lossouarn et al. 2016).

A third approach uses a single transducer, as multiple
transducers cannot always be accommodated for practical
reasons (Moheimani and Fleming 2006). Since the classical
RL shunt resonates with the transducer at a specific
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frequency, one can devise a more complex electrical circuit
that resonates at multiple frequencies. Edberg et al. (1991)
tested this concept experimentally for two modes; the circuit
topology was later generalized by Hollkamp (1994) to
control an arbitrary number of resonances. In view of the
difficulty to tune the circuit, Wu (1998) introduced the
so-called current blocking shunt circuit, which, however,
requires a large number of electrical components. Behrens
et al. (2003) proposed a current flowing shunt circuit and
Fleming et al. (2003) developed a series-parallel impedance
structure requiring a lower number of components. The
downside of these latter topologies is that they provide
a rather low vibration reduction on the controlled modes.
The aforementioned shunt circuits are discussed in more
details in Moheimani and Fleming (2006). More recently,
ladder topologies were proposed by Agneni et al. (2006) and
Goldstein (2011).

Closed-form solutions for multimodal vibration damping
with a single transducer suffer from important approxima-
tions, yielding sub-optimal designs. This is why Fleming
et al. (2002) resorted to gradient-based optimization to min-
imize the H2 norm of a transfer function in order to deter-
mine the resistances of multiple-branch shunt circuits. Jeon
(2009) used particle swarm optimization to tune a series-
parallel impedance-type circuit whereas Cigada et al. (2012)
also exploited gradient-based algorithms to tune a current
flowing shunt circuit. More recently, Berardengo et al. (2017)
obtained the optimal impedance through optimization based
on linear matrix inequalities. An interesting feature of this
work is that the circuit topology is not assumed beforehand,
but it is rather an outcome of the optimization process.
Despite its versatility, numerical optimization suffers from
important drawbacks. First, it requires an accurate model of
the structure to be controlled, which is not often available
in practice. Second, there is no guarantee that the objective
function is convex, and the global minimum can be difficult
to reach.

In this context, the present paper introduces a non-
iterative, model-less strategy for tuning the electrical
parameters of the simplified current blocking shunt circuit in
(Agneni et al. 2006). This circuit, represented in Figure 1, is
made of cascade connections of different stages comprising
each a shunt branch Zi and a LC filter that provides some
degree of independence between the stages. Nonetheless,
owing to their electrical interconnections, the different
shunt branches of the circuit interact with each other.
To account for this interaction during the tuning process,
the circuit preceding a specific shunt branch is abstracted
out as a two-port network (Alexander and Sadiku 2000).
With this formalism, we propose to identify an equivalent
electromechanical structure such that a so-called fictitious
shunt branch can be tuned using the formulas available in the
literature. The parameters of the physical shunt branch are
then deduced from those of the fictitious shunt branch and of
the two-port network. Once the considered shunt branch has
been tuned, the cascade structure is exploited for tuning the
next branch of the current blocking shunt circuit. The process
is repeated until the last shunt branch ZN has been tuned.
The tuning procedure proposed in this work improves upon
the ones proposed previously in the literature (Wu 1998;
Agneni et al. 2006) because it accounts automatically for the

influence of non-resonant modes and assesses correctly the
electromechanical coupling between the shunt branches and
the structure.

Z1

C̃1

L̃1

Z2

C̃2

L̃2

C̃N−1

L̃N−1

ZN

· · ·

· · ·

Figure 1. Simplified current blocking shunt circuit (Agneni et al.
2006).

The paper is organized as follows. The basics of Resonant
piezoelectric shunt damping are first briefly reviewed
and are used to tune a Shunt branch connected to an
electrical network. To create a shunt circuit that works
at multiple frequencies, Multimodal shunt damping with a
single transducer is discussed. The proposed procedure for
tuning a Simplified current blocking shunt circuit is then
introduced. The approach is demonstrated both numerically
and experimentally with two Applications. Conclusion on
this work is finally drawn.

Resonant piezoelectric shunt damping
The equations governing the behavior of a SDOF spring-
mass system coupled to a piezoelectric stack are given by
(Hagood and von Flotow 1991)





(
ms2 + koc

)
x− θqp = f

1

Cε
p

qp − θx = −Vp , (1)

where m is the mass, koc is the structural stiffness
when the piezoelectric transducer is open-circuited, θ is a
coupling coefficient, and Cε

p is the piezoelectric capacitance
at constant strain. x represents the displacement of the
mechanical system, f is an external force, qp is the charge
flowing through the piezoelectric transducer, Vp is the
voltage across its electrodes, and s is the Laplace variable.
The coupling present between the mechanical and electrical
variables allows to design a shunt circuit connected to the
electrodes of the transducer in order to modify the dynamics
of the structure. Mathematically, this imposes a relation
between the variables Vp and qp. Typically, series RL and
parallel RL circuits are used to create an electrical resonance
that interacts with the mechanical resonance if the circuit is
properly tuned.

The open-circuit (qp = 0) and short-circuit (Vp = 0)
structural resonance frequencies are given by

ω2
oc =

koc
m
, ω2

sc =
ksc
m

=
koc − θ2Cε

p

m
, (2)

respectively. Assuming an unforced system (f = 0) and
condensing the first line of Equation (1) into the second one,
the inverse of the dynamic capacitance (de Marneffe 2007),
i.e., the dynamic elastance, is obtained as

Vp
qp

= − 1

Cε
p

s2 + ω2
sc

s2 + ω2
oc

. (3)
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The knowledge of Cε
p , ωsc and ωoc is thus sufficient to tune

the parameters of a shunt circuit. In the literature, the shunt
parameters are often expressed as a function of the effective
electromechanical coupling factor (EEMCF) whose square is
given by (Hagood and von Flotow 1991)

K2
c =

ω2
oc − ω2

sc

ω2
sc

(4)

The EEMCF can also be used as an indirect measure of
the expected attenuation performance (de Marneffe 2007;
Thomas et al. 2012; Soltani et al. 2014).

For the minimization of the maximum vibration ampli-
fication of the host structure, i.e., the minimization of the
H∞ norm of the frequency response function (FRF), the
optimal parameters for series and parallel RL shunts are
given in the Appendix. The resulting FRF exhibits two peaks
of equal amplitude, comparatively low with respect to the
uncontrolled structure (when the transducer is either short-
or open-circuited), as illustrated in Figure 2 for a series RL
shunt circuit (Soltani et al. 2014).

Frequency

M
a
g
n
it
u
d
e

Figure 2. FRF a SDOF spring-mass system with a
short-circuited transducer (—), an open-circuited transducer
(—) and a series RL piezoelectric shunt circuit (—).

Shunt branch connected to an electrical
network
In the previous section, the shunt branch was directly
connected to the piezoelectric transducer. This section
considers the case where an additional electrical network
G is present between the shunt and the transducer, as in
Figure 3. The electrical network is modeled using the two-
port network theory (Alexander and Sadiku 2000).

Dynamic elastance and capacitance seen from
the shunt branch
Assuming that the two-port network is composed of
linear elements, the electrical quantities at the piezoelectric
transducer and at the shunt branch can be related through a
transfer matrix G:
[
Vs
sqs

]
= G(s)

[
Vp
sqp

]
=

[
g11(s) g12(s)
g21(s) g22(s)

] [
Vp
sqp

]
.

(5)

G Zs

Cε
p

−
+ θx

q̇sq̇p

Vp Vs

Figure 3. Shunt branch Zs connected to a piezoelectric
transducer through an electrical network G.

If the network has no dependent sources, it is reciprocal,
and its transfer matrix has a unit determinant (Alexander
and Sadiku 2000). Forming the ratio of the two lines of
Equation (5), one gets

Vs
qs

= s

g12(s) +
Vp
sqp

g11(s)

g22(s) +
Vp
sqp

g21(s)
(6)

Depending on the considered transfer matrix, the dynamic
elastance (6) could in principle represent any transfer
function, but the simplicity of this expression illustrates one
of the driving reasons for the use of the two-port network
formalism in this work. It is assumed in this study that
this elastance is similar to that in Equation (3) so that a
piezoelectric shunt branch can be used. In other words,
around the frequency of the mode to be damped, Equation (6)
is approximated as

Vs
qs
≈ − 1

Ĉε
p

s2 + ω̂2
sc

s2 + ω̂2
oc

(7)

to identify the characteristics Ĉε
p , ω̂sc and ω̂oc of an

equivalent dynamic elastance seen from the shunt branch.
Similarly to the EEMCF defined in Equation (4), from ω̂sc

and ω̂oc, it is possible to form a modified EEMCF K̂c, termed
branch EEMCF (BEEMCF)

K̂2
c =

ω̂2
oc − ω̂2

sc

ω̂2
sc

. (8)

This BEEMCF is related to the considered shunt branch and
assesses the electromechanical coupling existing between
this branch and the structure. It may differ from the EEMCF
because of the presence of a network. As shown in the
examples, the BEEMCF has the same predictive capability
on performance as the EEMCF in the nominal case; it is
therefore a useful quantity to monitor.

As exemplified in Figure 1, the network can be composed
of capacitive, resistive and inductive elements. Equation (7)
is generally not able to model this accurately. A broader class
of impedances can be represented if one augments the model
given in Equation (7), by taking into account an inductance
L̂ and a resistance R̂, as

Vs
qs
≈ −L̂s2 − R̂s− 1

Ĉε
p

s2 + ω̂2
sc

s2 + ω̂2
oc

. (9)
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L̂ and R̂ are lumped representations of the inductive and
resistive elements of the network, respectively, enabling
to approximate more accurately the dynamics of complex
networks.

Alternatively to the dynamic elastance, one could form its
inverse, the dynamic capacitance

qs
Vs

=
1

s

g22(s) +
Vp
sqp

g21(s)

g12(s) +
Vp
sqp

g11(s)
(10)

Considering the lumped reluctance B̂ and conductance Ĝ of
the network, the dynamic capacitance is approximated as

qs
Vs
≈ − B̂

s2
− Ĝ

s
− Ĉε

p

s2 + ω̂2
oc

s2 + ω̂2
sc

. (11)

As shown in Figure 4, we adopt the idea of an equivalent
piezoelectric structure made of the cascade connection of
the piezoelectric transducer and the capacitive part of the
network G (Caruso 2001; de Marneffe 2007; Berardengo
et al. 2017). This equivalent system is fully defined by the
parameters Ĉε

p , K̂c and ω̂oc. The so-called fictitious shunt
circuit comprises the shunt branch Zs and the inductive-
resistive part of the network G, i.e., L̂ (or B̂) and R̂ (or Ĝ).
Before using these parameters to tune the shunt branch, an
identification procedure is needed which is illustrated in the
next section.

Piezoelectric
structure

Capacitive
part

Inductive -
resistive

part
Zs

Equivalent piezoelectric structure Fictitious optimal shunt circuit

Figure 4. Schematic representation of the approach adopted in
this work.

Network identification
The identification procedure starts with the determination
of the best model for the network, i.e., either elastive
or capacitive. In the former case, the parameters of
Equation (9) are fitted to approximate the true elastance
given in Equation (6). In the latter case, the parameters of
Equation (11) are fitted to approximate the true capacitance
given in Equation (10). Equation (9) results in elastances
with four zeros and two poles, whereas Equation (11) results
in elastances with four zeros (two of which are at s = 0)
and four poles. To discriminate between these two cases and
select the best model, a criterion based on the distance from a
frequency of interest ω0 (e.g., the resonance frequency with
a short-circuited transducer ωsc) to the poles or zeros of the
elastance is used. Let dp,1 and dp,2 be the distance from jω0

to the closest poles and dz,1 and dz,2 be the distance from
jω0 to the closest zeros. Then,

1. If dp,1 + dp,2 > dz,1 + dz,2, the network is assumed
to be of elastive type

2. If dp,1 + dp,2 < dz,1 + dz,2, the network is assumed
to be of capacitive type

Dynamic elastance identification The method seeks an
approximation

Vs
qs
≈ −L̂s2 − R̂s− 1

Ĉε
p

s2 + ω̂2
sc

s2 + ω̂2
oc

≈ −
L̂s4 + R̂s3 +

(
L̂ω̂2

oc +
1

Ĉε
p

)
s2 + R̂ω̂2

ocs+
ω̂2
sc

Ĉε
p

s2 + ω̂2
oc

(12)

Inspired from the importance of poles and zeros in the
feedback control theory, the approximation function

Vs
qs
≈ (as2 + bs+ c)(s2 − 2zrs+ z2)

s2 − 2prs+ p2
(13)

keeps one pole p and one zero z of the actual Vs/qs
(Equation (6)), the ones closest to the frequency of
interest ω0. This sets two conditions on the parameters of
the approximation function. The remaining conditions are
merely fitting conditions.

The identification of the parameters goes as follows:

1. The closest pole (of magnitude p and real part pr) of
Vs/qs to jωsc is selected. Then, ω̂oc = p.

2. The closest zero (of magnitude z and real part zr) of
Vs/qs to p is selected.

3. A function f(s) = (s2 − 2prs+ p2)/(s2 − 2zrs+
z2)Vs/qs is formed, and constants a, b and c
are determined such that =(f(s)), <(f(s)) and
<(df(s)/ds) are interpolated at s = jω̂oc. For an
experimentally-measured Vs/qs, a, b and c are
determined according to a least-squares error over a
frequency interval containing p and z.

4. The parameters L̂, R̂, ω̂sc and Ĉε
p are identified by

equating Equations (12) and (13).

Dynamic capacitance identification An approximation

qs
Vs
≈ − B̂

s2
− Ĝ

s
− Ĉε

p

s2 + ω̂2
oc

s2 + ω̂2
sc

≈ −
Ĉε

ps
4 + Ĝs3 +

(
B̂ + Ĉε

pω̂
2
oc

)
s2 + Ĝω̂2

scs+ B̂ω̂2
sc

s2 (s2 + ω̂2
sc)

(14)

is sought under the form

qs
Vs
≈ (as2 + bs+ c)(s2 − 2zrs+ z2)

s2 (s2 − 2prs+ p2)
(15)

to keep one pole p and one zero z of the actual qs/Vs
(Equation (10)). The identification method is summarized as
follows:

1. The closest pole (of magnitude p and real part pr) of
qs/Vs to jωoc is selected. Then, ω̂sc = p.
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2. The closest zero (of magnitude z and real part zr) of
qs/Vs to p is selected.

3. A function f(s) = s2(s2 − 2prs+ p2)/(s2 − 2zrs+
z2)qs/Vs is formed, and constants a, b and c
are determined such that =(f(s)), <(f(s)) and
<(df(s)/ds) are interpolated at s = jω̂sc. For an
experimentally-measured Vs/qs, a, b and c are
determined according to a least-squares error over a
frequency interval containing p and z.

4. The parameters B̂, Ĝ, ω̂oc and Ĉε
p are identified by

equating Equations (14) and (15).

Example A host system governed by Equation (1) is
considered, and its parameters are listed in Table 1. The
network identification procedure is illustrated with the
example of an LC circuit placed in parallel of the shunt
branch, as depicted in Figure 5, with L̃ = 1.5 H and C̃ =
1.5 F.

Parameter Value
m (kg) 1

koc (N/m) 1
θ (N/C) 0.1
Cε

p (F) 1
Table 1. Parameters of the SDOF host system.

Cε
p

−
+ θx

q̇sq̇p

Vp Vs
L̃C̃

Figure 5. Parallel LC branch placed in parallel with the shunt
branch.

The transfer function Vs/qs, i.e., the true dynamic
elastance, has two complex conjugate pairs of zeros and two
complex conjugate pairs of poles. This transfer function as
well as the frequencies of its poles and zeros are plotted
in Figure 6. Since dp,1 + dp,2 < dz,1 + dz,2, the best model
is a capacitive-type network (in this case, this is an exact
approximation), which is also confirmed by comparing the
fitted dynamic elastances to the true ones.

Shunt branch parameters
Once the electrical network has been identified, the fictitious
shunt circuit in Figure 4 is tuned such that it behaves as
an optimal shunt branch from the equivalent piezoelectric
structure’s viewpoint. The corresponding shunt parameters
L? and R? can thus be computed from the knowledge of
Ĉε

p , K̂c and ω̂oc (or ω̂sc) using the formulas given in the
Appendix.

The physical shunt parameters L and R are then deduced
from the knowledge of L?, R?, L̂ (or B̂) and R̂ (or Ĝ).
The formulas in Table 2 depend on the type of identified

-100

-50

0

50

100

M
a
g
n
it
u
d
e
 (

d
B

, 
re

f.
 V

/C
)

0 0.5 1 1.5

Frequency (rad/s)

Figure 6. True dynamic elastance (—), fitted dynamic
elastance assuming an elastive-type network (-·-) and fitted
dynamic elastance assuming a capacitive-type network (- -).
Poles (×) and zeros (◦) of the true dynamic elastance are
indicated below the magnitude plot, and the frequency of
interest ω0 = ωsc is given for reference (- -).

network and on the desired shunt branch (i.e., series or
parallel RL). These formulas make the cascade connection
of the inductive-resistive part of the network and the shunt
branch have an impedance equal to the optimal one (at ω̂oc

for the series RL case and ω̂sc for the parallel RL case).

Shunt circuit impedance
The shunt circuit impedance seen from the piezoelectric
transducer can easily be obtained thanks to the two-port
network formalism. Inverting Equation (5),

[
Vp
sqp

]
= G−1(s)

[
Vs
sqs

]

=

[
h11(s) h12(s)
h21(s) h22(s)

] [
Vs
sqs

]
. (16)

Since the voltage and charge of the shunt branch are related
by

Vs
sqs

= Zs(s), (17)

the impedance Z(s) of the shunt circuit is obtained by
forming the ratio of the two lines of Equation (16) as

Z(s) =
Vp
sqp

=
h11(s)Zs(s) + h12(s)

h21(s)Zs(s) + h22(s)
. (18)

Examples
The host system governed by the parameters listed in Table 1
is considered once again. R0 = 0.123 Ω and L0 = 1 H are
the resistance and inductance of the optimal shunt circuit
when it is directly connected to the piezoelectric transducer.
They are used to normalize the obtained resistance and
inductance when presenting the results.

Two cases, namely a capacitor placed in parallel with the
shunt branch and a capacitor placed in series with it, are
studied. It is well known that such capacitive elements affect
the electromechanical coupling (Caruso 2001; Fleming et al.
2003; de Marneffe 2007; Berardengo et al. 2018).
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Elastance Capacitance

Series shunt L = L? − L̂

R = R? − R̂

L =
ω̂2
ocL

?
(
1 − L?B̂

)
−
(
R?)2 B̂

ω̂2
oc

(
1 − R?Ĝ − L?B̂

)2
+
(
ω̂2
ocL

?Ĝ − R?B̂
)2

R =
ω̂2
ocR

?
(
1 − R?Ĝ

)
− ω̂4

oc
(
L?)2 Ĝ

ω̂2
oc

(
1 − R?Ĝ − L?B̂

)2
+
(
ω̂2
ocL

?Ĝ − R?B̂
)2

Parallel shunt
L =

(
R̂R? − ω̂2

scL̂L?
)2

+
(
L̂R? + R̂L? − L?R?

)2
ω̂2
sc

ω̂2
sc (R?)2

(
L? − L̂

)
− ω̂4

sc (L?)2 L̂

R =

(
R̂R? − ω̂2

scL̂L?
)2

+
(
L̂R? + R̂L? − L?R?

)2
ω̂2
sc

ω̂2
sc (L?)2

(
R? − R̂

)
− R̂ (R?)2

L =
L?

1 − L?B̂

R =
R?

1 − R?Ĝ

Table 2. Tuning formulas: from optimal to physical shunt parameters.

Parallel capacitor A capacitor of capacitance Cp is
connected in parallel to the shunt branch. The transfer
relation is given by

[
Vs
sqs

]
=

[
1 0
−sCp 1

] [
Vp
sqp

]
. (19)

Inserting this relation into Equation (10) and identifying the
parameters in Equation (11) yield

L̂ = 0, R̂ = 0, Ĉε
p = Cε

p + Cp,

ω̂sc = ωsc, ω̂oc =

√
Cpω

2
sc + Cε

pω
2
oc

Cε
p + Cp

(20)

i.e., a parallel capacitor affects the electromechanical
coupling via a change in the open-circuit resonance
frequency. After simple manipulations, the BEEMCF is
found to be

K̂c =
Kc√

1 +
Cp

Cε
p

, (21)

which is in complete agreement with the enhanced modal
electromechanical coupling factor defined in Berardengo
et al. (2018).

For further validation, the obtained results are also
compared to those of a brute-force numerical optimization
of the H∞ norm of the compliance of a controlled SDOF
system. A perfect agreement can be observed in Figure 7.

Series capacitor A capacitor with capacitance Cs is now
connected in series with the shunt branch:

[
Vs
sqs

]
=


 1 − 1

sCs
0 1



[
Vp
sqp

]
. (22)

Inserting this relation into Equation (10) and identifying the
parameters in Equation (11) yield

L̂ = 0, R̂ = 0, Ĉε
p =

Cε
pCs

Cε
p + Cs

,

ω̂sc =

√
Csω

2
sc + Cε

pω
2
oc

Cε
p + Cs

, ω̂oc = ωoc, (23)

i.e., a series capacitor affects the electromechanical coupling
via a change in the short-circuit resonance frequency. The
BEEMCF is

K̂c =
Kc√

1 + (1 +K2
c )
Cε

p

Cs

. (24)
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Figure 7. Evolution of the normalized shunt parameters (red:
resistance, blue: inductance) (a) and of the maximum
normalized amplitude (b) as functions of the normalized parallel
capacitance. •: numerical optimization, —: Berardengo et al.
(2018)/proposed method.

The formula is not exactly the same as the enhanced
modal electromechanical coupling factor given in Table 1
of Berardengo et al. (2018) because of the definition of the
coupling factor, defined as

√
(ω̂2

oc − ω̂2
sc)/ω

2
sc therein. The

slight difference is the term in K2
c which is important only

for structures with high coupling coefficients.
Figure 8 evidences that the proposed method is in

excellent agreement with numerical optimization and
Berardengo et al. (2018). As shown in the inset of
Figure 8(b), our method is somewhat closer to the reference
result given by numerical optimization.

Multimodal shunt damping with a single
transducer
Shunt circuits targeting multimodal damping are discussed
in the remainder of this paper. To create a shunt circuit
that works at multiple frequencies, one could imagine
a circuit with a parallel arrangement of shunt branches.
However, to damp a mode at frequency ω, the Appendix
shows that the inductance and resistance scale as ω−2

and ω−1, respectively. Hence, the impedance of a shunt
branch increases when the tuning frequency is decreased
with the result that lower-frequency branches are by-passed
and become ineffective.

In order to ensure that the current flows through the
appropriate shunt branch at the appropriate frequency,
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Figure 8. Evolution of the normalized shunt parameters
(red/black: resistance, blue/gray: inductance) (a) and of the
maximum normalized amplitude (b) as functions of the
normalized series capacitance. •: numerical optimization, - -:
formula from Berardengo et al. (2018), —: proposed method.

current bandpass or bandstop filters were introduced in
multi-resonant shunt circuits. The current blocking shunt
circuit originally proposed by Wu (1998) is shown in
Figure 9. If N resonances are targeted, each parallel branch
contains N − 1 current blocking (parallel LC) filters and
one shunt branch (parallel RL). Considering a specific shunt
branch targeting a particular structural frequency, the current
blocking filters in the other parallel branches are such
that they present an infinite impedance at this frequency,
so that the current is forced to flow through this branch.
A shortcoming of this architecture is that the required
number of electrical components grows quadratically with
the number of controlled resonances, which complicates the
practical implementation (Moheimani and Fleming 2006).

· · ·

· · ·

R1 L1

L̃1,N C̃1,N

...

L̃1,2 C̃1,2

R2 L2

L̃2,N C̃2,N

...

L̃2,1 C̃2,1

RN LN

L̃N,N−1 C̃N,N−1

...

L̃N,1 C̃N,1

Figure 9. Current blocking shunt circuit (Wu 1998).

Figure 1 depicts the layout of the simplified current
blocking shunt circuit introduced in Agneni et al. (2006). The
circuit is composed of ladder arrangement of repeated stages,

each consisting of either a series or parallel RL circuit and a
current blocking filter. The current blocking filter is tuned
so as to force current to flow through the adequate shunt
branch (and possibly the previous stages) and to prevent it
from flowing through the next stages which present lower
impedances.

As it will be shown in the Applications, the existing tuning
rules for these circuits (Wu 1998; Agneni et al. 2006) often
yield sub-optimal parameters. In the next section, a new non-
iterative, model-less tuning strategy is developed.

Simplified current blocking shunt circuit

Dynamic elastance seen from the piezoelectric
transducer
Multiple-degree-of-freedom piezoelectric structures can be
modeled with the finite element method (Hagood et al. 1990;
Thomas et al. 2009). For a structure with one piezoelectric
transducer (or multiple transducers electrically connected so
as to have one port), the electromechanical equations read





Mẍ + Cẋ + Kocx−Θqp = f
1

Cε
p

qp −ΘTx = −Vp , (25)

where M, C and Koc are structural mass, damping
and (open-circuit) stiffness matrices, respectively, Θ is a
piezoelectric coupling vector, x is the vector of generalized
mechanical DOFs and f the conjugated generalized load
vector.

Assuming an unforced structure (f = 0), Laplace-
transforming the first line of Equation (25) and condensing it
into the second line, a relation between Vp and qp is obtained

Vp
qp

= − 1

Cε
p

+ ΘT
(
Ms2 + Cs+ Koc

)−1
Θ (26)

Equation (26) is the dynamic elastance seen from the
piezoelectric transducer. It can be obtained experimentally
with an impedance analyzer or by measuring the capacitance
at high frequency and identifying the open- and short-circuit
resonance frequencies. If the latter approach is adopted, the
dynamic elastance may conveniently be approximated by
(de Marneffe 2007)

Vp
qp
≈ − 1

Cε
p

(
1−

N∑

n=1

K2
c,iω

2
sc,i

s2 + 2ζiωoc,is+ ω2
oc,i

)
, (27)

where ωsc,i and ωoc,i are the short-circuit and open-circuit
resonance frequencies of the ith mode, respectively, and Kc,i

is the EEMCF of that mode.

Dynamic elastance seen from a specific shunt
branch of the current blocking circuit
We now show how to obtain the transfer matrix when two-
port networks are connected in cascade, as in Figure 10.

According to the conventions used in Figure 11(a), the
input and output quantities are related through the transfer
matrix Gs as

[
Vout
sqout

]
= Gs(s)

[
Vin
sqin

]
(28)
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G1 G2 G12≡

Figure 10. Cascade connection of two-port networks.

Z(s)

q̇in q̇out

Vin Vout

(a)

Y (s)

q̇in q̇out

Vin Vout

(b)

Figure 11. Two-port representation of series (a) and parallel (b)
electrical elements.

The transfer matrix of a series element of impedance Z(s) as
in Figure 11(a) is given by

Gs(s) =

[
1 −Z(s)
0 1

]
. (29)

Similarly, the transfer matrix of a parallel element of
admittance Y (s) as in Figure 11(b) is

Gp(s) =

[
1 0

−Y (s) 1

]
. (30)

For the simplified current blocking shunt circuit, the
impedance of the nth current blocking filter is

Zf,n(s) =
L̃ns

L̃nC̃ns2 + 1
. (31)

The admittance of a series RL shunt branch is given by

Ys,n(s) =
1

Lns+Rn
, (32)

while that of a parallel RL shunt branch is

Yp,n(s) =
1

Lns
+

1

Rn
. (33)

The transfer matrix of a cascade of n two-port networks can
be computed as the (ordered) matrix product of the transfer
matrices of the connected networks (Alexander and Sadiku
2000)

G1n = Gn . . .G2G1. (34)

Eventually, Formulas (29), (30) and (34) can be used with
either (26) or (27) to compute the dynamic elastance (6)
and the dynamic capacitance (10) seen from a specific
shunt branch of the simplified current blocking shunt circuit.
This computation is readily implementable with a computer,
which is another incentive to use the two-port network
approach.

Sequential tuning of the shunt circuit
The tuning procedure is schematized in Figure 12 with its
flowchart presented in Figure 13. At stage n 6= N , four
parameters are to be determined, namely the filter, L̃n and
C̃n, and shunt, Ln and Rn, parameters.

Z1

C̃1

L̃1

Zn

C̃n

L̃n

ZN

· · ·

· · ·

· · ·

· · ·

Figure 12. Tuning procedure for stage n: quantities in black are
known, quantities in blue are to be tuned and quantities in red
are unknown.

Identification/computation of Vp/qp

Choice of filter capacitances

Pole of Vf/qf

L̃n =
1

C̃nω̂2
oc

Identification of Vs/qs

Computation of optimal parameters
L⋆(Ĉε

p , ω̂sc, ω̂oc), R⋆(Ĉε
p , ω̂sc, ω̂oc)

Computation of physical parameters
Ln = L(L⋆, R⋆, L̂ or B̂, R̂ or Ŝ),
Rn = R(L⋆, R⋆, L̂ or B̂, R̂ or Ŝ),

n = N?

n := n+ 1

n = N?

End

C̃1, · · · , C̃N−1

n := 1

ω̂oc

L̃n

L̂ or B̂,R̂ or Ŝ,Ĉε
p , ω̂sc

R⋆, L⋆

Rn, Ln

Yes

No

No

Yes

Figure 13. Flowchart of the proposed tuning method.

Filter parameters The current blocking filter parameters are
selected such that the filter impedance be infinite at the
targeted structural resonance frequency (Wu (1998)). The
impedance of the remaining stages associated with higher-
frequency modes is therefore negligible compared to that
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Z1

C̃1

L̃1

Zn

C̃n

L̃n

ZN

· · ·

· · ·

· · ·

· · ·

Figure 14. Simplified tuning procedure for stage n: quantities in
black are known, quantities in blue are to be tuned, and gray
parts are neglected.

of the filter. Thus, these stages may be approximated by
a short-circuit, as in Figure 14. This physically-motivated
simplification allows to ignore the remaining unknown
parameters in the circuit, which drastically simplifies the
problem.

The resonance of the current blocking filter at one
frequency sets one condition on L̃n or C̃n, leaving the
freedom to choose one of these parameters. Owing to
the predictable action of a Parallel capacitor and a Series
capacitor on the electromechanical coupling, the latter is
set arbitrarily in this work. The filter capacitor is placed in
parallel with the currently considered shunt branch, and in
series with the following stages. This sets a trade-off between
the electromechanical coupling with the currently considered
mode and that with higher-frequency modes. Choosing a
low value for C̃n gives high control authority on the nth

controlled mode, but deteriorates the authority on controlled
modes n+ 1 to N . The converse is also true. A quantitative
approach to choose this capacitance based on the BEEMCF
is illustrated in the Applications.

The transfer function Vf/qf is then formed from the
network composed of the previous stages and the filter
capacitor, as depicted in Figure 15, using Equation (6). Its
pole is identified as ω̂oc ; the filter inductance is finally given
by

L̃n =
1

C̃nω̂2
oc

(35)

Z1

C̃1

L̃1

C̃n

· · ·

· · ·
q̇f

Vf

Figure 15. Filter tuning: the black box and light gray box
represent the piezoelectric structure and a two-port network,
respectively.

Shunt branch parameters The next step is to form a
two-port network from an electrical network of known
characteristics, constituted of the previous stages and the
current blocking filter of the current stage, as shown in
Figure 16 (note that the circuits shown in this figure
and Figure 14 are topologically equivalent). The optimal

parameters of the fictitious shunt circuit may then be derived
using the method described in the section Shunt branch
connected to an electrical network from which the physical
shunt parameters can be calculated.

Z1

C̃1

L̃1

L̃nC̃n Zn

· · ·

· · ·

Figure 16. Shunt branch tuning: the black box and light gray
box represent the piezoelectric structure and a two-port
network, respectively.

Once the four parameters of the considered stage have
been determined, the cascade structure is exploited for tuning
the next branch of the current blocking shunt circuit. The
process is repeated until the last shunt branch ZN has been
tuned.

Applications
In this section, the proposed method is illustrated with
numerical and experimental application examples.

A piezoelectric beam
The piezoelectric beam studied by Thomas et al. (2012) is
taken as a first example to demonstrate the method. It is
a cantilever beam with two symmetrically-bonded patches
connected in series to form the port of a piezoelectric shunt
circuit. The finite element model of the beam was built
following the method described by Thomas et al. (2009).
Proportional damping of 0.1% was added to the first two
modes of the beam. Performance is assessed through the
driving-point receptance of the beam transversally excited at
its free end (simply referred to as ”FRF” hereafter).

Improvement brought by the proposed tuning method A
two-mode current blocking shunt circuit with parallel RL
branches is connected to the piezoelectric patches. The filter
capacitance C̃ is chosen equal to Cε

p . The circuit is tuned
according to three different methods, namely those proposed
in Wu (1998) and in Agneni et al. (2006) (adapted for parallel
RL shunt branches) and the present method.

Parameter Wu (1998) Agneni et al. (2006) This work
R1 (Ω) 1,408,917 1,408,917 973,609
L1 (H) 589.34 589.34 558.35
C̃1 (nF) 9.16 9.16 9.16
L̃1 (H) 570.79 570.79 576.54
R2 (Ω) 280,398 1,092,542 777,411
L2 (H) 33.48 33.28 32.52

Table 3. Parameters for a two-mode current blocking shunt
circuit with parallel RL branches.

Figure 17 compares the obtained FRFs whereas Table 3
lists the corresponding parameters. Wu’s and Agneni’s
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tuning rules yield unequal resonance peaks because they
neglect non-resonant modes (Høgsberg and Krenk 2017).
They also ignore the change in coupling caused by the filter
capacitance (e.g., the second mode is overdamped with Wu’s
method). Conversely, the proposed method yields a solution
very close from the H∞-optimal solution.
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Figure 17. FRF of the beam with open-circuited patches (—)
and with a two-mode current blocking shunt circuit (—: Wu
(1998), -·-: Agneni et al. (2006), —: proposed method): mode
1 (a) and mode 2 (b).

To check the validity of the approximations made
throughout this work, the dynamic elastance seen from the
first shunt branch is analyzed in Figure 18. The elastance
obtained when assuming that the second shunt branch is
a short circuit is in excellent agreement with the true
elastance obtained after tuning the whole current blocking
shunt circuit. In addition, the fitted elastance is also a close
approximation to the other elastances. Figure 19 shows
the dynamic elastance seen from the second shunt branch
and its fitted approximation. All these results justify the
approximations made to obtain Equation (9) and (11).
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Figure 18. Dynamic elastance obtained by neglecting the
second shunt branch (—), true dynamic elastance (-·-) and
fitted dynamic elastance around the first mode (- -). The
frequency ωsc,1 is given for reference (- -).
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Figure 19. True dynamic elastance (-·-) and fitted dynamic
elastance around the second mode (- -). The frequency ωsc,2 is
given for reference (- -).

Filter capacitance effect A two-mode current blocking
shunt circuit with series RL shunt branches is now
considered. Figure 20 shows the evolution of the BEEMCF
when the filter capacitance is varied. The aforementioned
trade-off is clearly visible, i.e., a small (large) capacitance
offers a good coupling with mode 1 (2).
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0.05

0.1

0.15

K
c

Figure 20. Evolution of the BEEMCF with the first (—) and
second (—) mode of the beam. Thin black dashed lines indicate
the nominal EEMCFs with mode 1 (left) and 2 (right).

Figure 21 compares the vibration attenuation brought
by shunt damping on both modes. This attenuation was
computed in two ways, namely directly from the FRF and
with the formula given by Thomas et al. (2012) where
the BEEMCFs replace the EEMCFs. The two approaches
give similar results, thereby supporting the relevance of the
BEEMCFs. They can even be used in conjunction with the
formula of Thomas et al. (2012) to give an approximate
measure of the expected attenuation to guide quantitatively
the choice of filter capacitances.

Control of multiple modes A final numerical investigation
is carried out by designing a current blocking shunt circuit
with series RL shunt branches aiming to control the first four
bending modes of the beam. For conciseness, only the case
where all filter capacitances are equal to the piezoelectric
capacitance at constant strain is discussed. Table 4 lists the
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Figure 21. Evolution of the attenuation with the first (—: direct
computation, - -: formula from Thomas et al. (2012)) and
second (— direct computation, - -: formula from Thomas et al.
(2012)) mode of the beam.

resulting parameters. Figure 22 evidences that the proposed
method offers an appreciable vibration reduction for the four
targeted modes.
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Figure 22. FRF of the beam with open-circuited patches (—)
and controlled by a four-mode current blocking shunt circuit (—).

Stage number n Rn (Ω) Ln (H) C̃n (nF) L̃n (H)
1 57,322 525.17 9.16 576.53
2 18,202 31.42 9.16 16.11
3 11,098 7.69 9.16 2.28
4 1,609 3.78 / /

Table 4. Parameters of the four-mode current blocking shunt
circuit

Experimental validation
The experimental set-up in Figure 23 comprises a cantilever
beam covered with an array of ten piezoelectric cells,
each cell corresponding to a pair of two stacked PZT-54A
piezoelectric patches placed on either side of the beam.
A clamped thin lamina is attached to the free end of the
beam. More information about the experimental set-up can
be found in Lossouarn et al. (2018).

The structure was excited by an electrodynamic shaker,
and an impedance head was used to monitor its dynamic

response. The excitation level was kept low enough so as to
avoid any nonlinear behavior. The two cells closest to the
clamped end of the beam were connected in parallel to form
one pole of the port of the piezoelectric shunt circuit, the
other pole being the line grounded to the beam.

Resonant shunt circuits may require a large inductance
for operation with low-frequency modes, typically from
hundreds to thousands of Henries, which is largely above
what is commercially available. This issue can be solved
using active means such as virtual inductors (Park and Inman
2003) and synthetic impedances (Fleming et al. 2000), or
using fully passive tailor-made inductors (Lossouarn et al.
2017). In this study, a digital absorber was used to emulate
different shunt circuits: either a single-mode series RL
circuit or a two-mode current blocking shunt circuit with
series RL shunt branches. The absorber enforces through
its analog circuitry an arbitrary voltage-to-current relation
by programming its digital unit. A sampling frequency of
10 kHz was chosen, and delay-induced destabilization was
compensated for using the method proposed in Raze et al.
(2019).

Shaker

Impedance head Power supplyBeam

Digital absorber

Figure 23. Experimental set-up.

The inputs for the proposed approach can easily be
obtained experimentally. The piezoelectric capacitance at
constant strain was measured with a multimeter. The
resonance frequencies of the first and second bending modes
of the beam with short- and open-circuited patches were
obtained through simple identification of the corresponding
FRFs. The identified parameters are gathered in Table 5. No
sophisticated model of the structure was required to tune the
shunt circuits. Equations (4) and (27) were used to obtain
an experimental transfer function Vp/qp from the data in
Table 5 (modal damping ratios were assumed to be zero, in
view of the lightly-damped character of the host structure).
Once a particular value for the filter capacitance was chosen,
the remainder of the tuning procedure was carried out
by implementing the method outlined in Figure 13. The
resulting electrical parameters of the shunt circuit were used
to emulate the latter with the digital absorber.

Figure 24 presents experimental FRFs obtained with
different electrical boundary conditions on the patches.
In particular, the FRFs corresponding to a single-mode
piezoelectric shunt circuit show that an attenuation of 21 dB
and 22 dB can be obtained for mode 1 and 2, respectively.

Figure 25 displays experimental FRFs of the structure
controlled by a two-mode current blocking shunt circuit with
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Parameter Value
fsc,1 (Hz) 30.43
foc,1 (Hz) 30.61
fsc,2 (Hz) 144.95
foc,2 (Hz) 145.21
Cε

p (nF) 103
Table 5. Identified parameters of the experimental setup.
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Figure 24. FRF of the experimental beam with short-circuited
patches (—), open-circuited patches (—) and with a
single-mode piezoelectric shunt (—). Mode 1 (a) or mode 2 (b).

various values of the filter capacitance. Clearly, the designed
circuit is able to provide effective, simultaneous vibration
mitigation of the two targeted modes.
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Figure 25. FRF of the experimental beam with open-circuited
patches (—) and with a two-mode current blocking shunt circuit:
C̃/Cε

p = 10−2 (—), C̃/Cε
p = 10−1 (—) and C̃/Cε

p = 1 (—).

Conclusion
This paper develops a tuning approach for a simplified
current blocking shunt circuit which, when connected to a
piezoelectric transducer bonded to a structure, can provide
multimodal damping. The case of a general shunt branch
connected to an electrical network was first studied with
the two-port network formalism. A procedure accounting
for the surrounding electrical elements and changes in

electromechanical coupling was established. The current
blocking shunt circuit was then simplified to be representable
by a two-port network of known characteristics. The tuning
procedure of each stage was finally detailed, including a
discussion on the effect of the arbitrary choice of the
filter capacitance. It should be noted that this procedure is
theoretically independent of the two-port network formalism
adopted herein, but the versatility of the latter makes it an
attractive modelling framework, as testified by the simple
expressions for the transfer functions involved.

The procedure was numerically demonstrated using a
piezoelectric beam example from the literature; it brought
noticeable improvements with respect to existing tuning
rules. It was also shown that the shunt circuit can control
an arbitrary number of modes. Eventually, the approach was
validated experimentally.
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Appendix

Series RL shunt tuning

The optimal characteristics of a series RL shunt circuit
can be computed from the knowledge of Cε

p , Kc and ωoc.
Introducing

r =

√
64− 16K2

c − 26K4
c −K2

c

8
, (36)

the optimal inductance L and resistance R are given by

L =
4K2

c + 4

3K2
c − 4r + 8

1

ω2
ocC

ε
p

(37)

and

R =
2
√

2 (K2
c + 1) (27K4

c +K2
c (80− 48r)− 64(r − 1))

(5K2
c + 8)

√
3K2

c − 4r + 8

1

ωocCε
p

, (38)

respectively ; see Soltani et al. (2014); Ikegame et al. (2019)
for details.

Parallel RL shunt tuning

The analytical H∞ solution was found by Tang et al. (2016)
for an electromagnetic transducer shunted with a series RC
circuit. As shown by Ikegame et al. (2019), this problem
is equivalent to a piezoelectric transducer shunted with a
parallel RL shunt. The optimal formulae are then obtained
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by first computing the series of coefficients

b0 = 64
b1 = −16K2

c

b2 = −64 + 16K2
c + 11K4

c

b3 = 2K2
c (8−K2

c )(2−K2
c )

b4 = −2K4
c (2−K2

c )
a6 = 27(b0b

2
3 + b21b4)− 9b2(b1b3 + 8b0b4) + 2b32

a5 = 12b0b4 − 3b1b3 + b22

a4 =
3

√√
a26 − 4a35 + a6

2

a3 =
1

2

√
b21
b20

+
4(a24 + a5 − 2b2a4)

3b0a4

a2 = −8b20b3 − 4b0b1b2 + b31
4b30a3

a1 =
3b21a4 − 2b0(4b2a4 + a24 + a5)

6b20a4

(39)

and finally,

r = − b1
4b0

+
a3
2

+

√
a1 + a2

2
(40)

and the optimal inductance L and resistance R are given by

L =
6

2r −K2
c +

√
16r2 − 4rK2

c +K4
c

1

ω2
scC

ε
p

(41)

and

R =
1

2

√
r

2r +K2
c −

√
16r2 − 4rK2

c +K4
c

(r − 1)(3r − 2K2
c )

√
L

Cε
p

(42)

respectively ; see Tang et al. (2016); Ikegame et al. (2019)
for details.
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