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Summary

Integral-force-feedback (IFF) is a popular control law in active vibration

damping of mechanical system when a force sensor is collocated with a force

actuator. While it is simple, robust to resonance uncertainty and stable for any

feedback gains, its efficiency is limited by system's parameters and in particu-

lar the stiffness ratio between the structure and the actuator. Therefore, the

control authority decreases at high frequency resonances or when the actuator

is weakly coupled to the structure. It has been shown that the use of double

integrator with a real zero, named α-controller, can improve the control

authority of a target mode. However, this technique like IFF cannot be easily

implemented in practice because of low frequency saturation issue induced by

significantly amplifying the low frequency content during the integration pro-

cess. This paper proposes a new control law, named resonant-force-feedback

(RFF), based on a second order low pass filter to damp a target mode reso-

nance. Through the mechanical analogy of the proposed system, RFF can be

seen as an active realization of an inerter-spring-damper (ISD) system. In addi-

tion, the parameters of RFF are optimized based on two methods, that is, max-

imum damping criterion and H∞ optimization which consists in minimizing

the settling time of the impulse response and the peak amplitude in the fre-

quency domain, respectively. It is shown that RFF always provides a higher

control authority of a target mode in comparison to IFF for a given stiffness

ratio and in particular when the stiffness ratio is low. Despite the fact that the

performance of the system, in terms of the closed-loop damping ratio or the

amplitude reduction, obtained by RFF is very close to that of α-controller, RFF

requires less control effort in comparison to α-controller. The stability of the

proposed system is also assessed in terms of the gain margin and the phase

margin although the system is unconditionally stable. Moreover, the robust-

ness of the designed RFF is compared to that of IFF under stiffness uncer-

tainty. Although IFF can tolerate a higher level of uncertainty, the

performance of RFF is superior to that of IFF for almost 50% of changes in the

stiffness of the primary system.
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1 | INTRODUCTION

Lightweight designs in engineering applications give rise to flexible structures with extremely low internal damping.
Vibrations of these flexible structures due to an unwanted excitation of system resonances may lead to high cyclic
fatigue failure and noise propagation.1 A common method to suppress the vibrations is to increase the damping of
the system using one of classical control techniques, that is, passive and active.2 Passive techniques are those control
systems which are simply integrated into the structures with no need of additional hardware for their operations, like
viscoelastic damping,3 piezoelectric and electromagnetic shunt damping,4,5 tuned mass damper6 etc. However, the
control performance of these systems is highly limited to the system properties.7 For example, viscoelastic damping
may not perform well at low frequencies and the performance of shunt damping is dependent on the electromechani-
cal coupling between the structure and the transducer.8 To overcome the passive limitations, it has been proposed to
use active control systems, which are less sensitive to system's parameters, to improve the control performance. It
requires an integration of sensors and actuators with a feedback loop containing control laws.9 The choice of the
control law for a system depends on the type of sensor/actuator leading to different shapes of the open-loop transfer
function in terms of pole/zero pattern. When an force actuator is combined with a displacement or a velocity sensor
as well as when a torque actuator is combined with an angular position or an angular velocity sensor, DVF can be
simply used as the control law.10 For collocated piezoelectric patches used as sensor and actuator, the open-loop
transfer function has no high frequency roll-off. Therefore, PPF is often used as the control law to avoid high risk of
spill-over at high frequency.11 For these configurations, the open-loop exhibits alternating poles and zeros, starting
with a pole at low frequency. On the other hand, the open-loop transfer function begins with a zero when a force
sensor is combined with a force actuator. In this case, it is proposed to apply integral-force-feedback (IFF) as the
control law.12

It has been shown that IFF is of interest in many engineering applications due to the simplicity of the control-
ler, guaranteed the stability, multimode resonance damping and robustness to resonance uncertainty. Nevertheless,
the control performance in terms of maximum achievable damping12 or maximum amplitude reduction13 is limited
by the distance between the system pole and zero which is a function of the system's stiffness relative to the actua-
tor stiffness. To the best of our knowledge, only a few studies have been focused on the damping improvement of
force feedback configurations. Teo and Fleming14 introduced a feed-through component in the system to increase
artificially the distance between the pole and zero and subsequently to improve the maximum modal damping
achievable with classical IFF. Chesné et al15 proposed a new control law (i.e., α-controller) containing double inte-
grator with a real zero to enhance the damping of a target mode. Zhao et al16 implemented the same control law
and used H∞ criterion to optimize its parameters. Moreover, the potential of using integral force feedback for mul-
tiple sensors and actuators has been investigated in Monnier et al17 based in centralized and decentralized
approach.

For a classical active control system, the same or a similar mechanical analogy might be obtained. The
mechanical analogy contains passive elements like masses, dashpots, springs, and inerters. Note that inerter is
known as a device which generates a force proportional to relative accelerations across its two terminals.18 This
can be used in mechanical designs to modify or substitute the mass of structures. The problem of realizing the
mechanical designs passively comes in practical implementations because of some imperfections which will be
inevitably present in the mechanical construction preventing them to act as idealized passive elements. For
example, springs may have unwanted internal resonances at high frequency19 which prevents from having high
frequency roll-off in the response. Several mechanical forms have been proposed to realize inerters in practice.
Two early ideas were to use rack and pinion based inerters18 as well as ball and screw based inerters.20 However,
their performance may degrade because of the friction and backlash or elastic effect of gears or screws.21 Hydraulic
inerters22 have been proposed although they may exhibit some nonlinear damping in addition to the inertance-like
behavior.23
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Other than the mechanical analogy of an active control system, it might be possible to obtain an electrical analogy
which consists of a piezoelectric or an electromagnetic transducer combined with an electrical network. A well-known
example is IFF24 which is analogous to the relaxation isolator (i.e., its mechanical analogy) as well as an electromag-
netic transducer connected to a RL circuit (i.e., its electrical analogy). For piezoelectric transducers, their low capaci-
tance may lead to a large inductance required for the electrical network.25 The large inductance cannot be easily
realized fully passively. Furthermore, high internal resistance of the coil can degrade the performance of the system for
electromagnetic transducers.26

Realizing the mechanical or the electrical systems by means of active techniques can overcome the aforementioned
problems. Tuned inerter damper (TID) system is a well-know mechanical passive control system27,28 which has been
realized semi-actively in Wang et al29 and actively in Høgsberg et al30 and Zhao et al.16 Similar study has been done in
Bani-Hani31 to realize active tuned mass damper (ATMD). In addition, direct acceleration feedback has been intro-
duced in Alujevic et al32 to synthesize the inerter actively. In Zhao et al,33 a nonlinear spring has been added to a canti-
lever beam experimentally by feeding back the displacement of the structure through a cubic function. Moreover,
piezoelectric shunt damping has been implemented actively by generating the signal corresponding to the RL circuit
digitally.34 Consequently, active techniques provide us a more flexible tool to shape the behavior of the possible
mechanical and electrical systems. Nevertheless, its advantage comes at the expense of a power consumption as an
external source is required for actuators.35

This paper studies the use of a second order low pass filter as the control law aiming to damp a target mode
resonance efficiently. The proposed absorber is named RFF. Optimal parameters of RFF are derived according to the
method of maximum damping and H∞ optimization. These are two classical tuning laws which have been used
exclusively for many control problems when their primary systems have no damping. For the method of maximum
damping, the parameters are designed such that the closed-loop damping gets maximized accompanied by minimizing
the settling time of the impulse response; while for H∞ optimization, the optimal parameters are set to minimize the
maximum steady state response of the structure under harmonic excitation. The optimal parameters are derived in a
closed-form formulations for a single-degree-of-freedom (SDOF) system. The efficiency of the optimal formula is
evaluated under a multi-degree-of-freedom (MDOF) system. The performance of the designed RFF is evaluated in
comparison to that of IFF and α-controller in terms of the control authority, the stability and the robustness to
stiffness uncertainties.

The remainder of the paper is organized as follows. In the next section, the mathematical model of the system is
derived and then the parameters of the controller are tuned based on the method of maximum damping and H∞ opti-
mization, separately. The mechanical analogy of the proposed active control system is also introduced in this section as
well. Section 3 studies the control effort of the designed system. In Section 4, stability margins of the designed RFF is
evaluated and a robustness analysis is studied under stiffness uncertainty. The effeciency of the proposed formula is
evaluated under a MDOF in Section 5 The conclusions are drawn in Section 6.

2 | MATHEMATICAL MODELING AND OPTIMIZATION

A typical flexible structure is excited by an external force Fd. An active mount including a force sensor Fs collocated
with a piezoelectric stack, and a feedback loop containing the control law H(s) is used for the purpose of vibration
damping. Assuming the resonances of the flexible structure are well-separated from each other, the target resonance of
the structure can be represented by a SDOF oscillator as shown in Figure 1a. The system is consists of an equivalent
mass m and an equivalent stiffness k with no internal damping for the sake of simplicity. It is shown in Figure 1b that
the piezoelectric stack can be modeled as a force actuator Fa in parallel to a spring with a stiffness ka. The governing
equations of motion in Laplace domain read:

ðms2þkÞx¼FdþFs ð1aÞ

Fs ¼Fa�kax ð1bÞ

where s and x are the Laplace variable and the displacement of the mass. Therefore, the transfer function from the actu-
ator to the sensor, when the feedback loop is open, can be derived as follows:
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G¼ Fs

Fa
¼ ms2þk
ms2þkþka

ð2Þ

which contains a zero at the frequency ω0 ¼
ffiffiffi
k
m

q
, representing the resonance frequency of the system when the force

sensor is removed, and a pole at the frequency Ω0 ¼
ffiffiffiffiffiffiffiffi
kþka
m

q
, representing the resonance frequency of the coupled system.

In addition, the control force Fa is formed like

Fa¼�HðsÞFs ð3Þ

where H(s) is the control law.

2.1 | Integral-force-feedback

A classical control law to damp the resonance of the system is known as IFF which includes an integrator with the gain
gi as follows:

HðsÞ¼ gi
s

ð4Þ

The optimal value of the feedback gain has been already derived analytically based on the maximum damping crite-
rion12 and H∞ optimization13 as shown in Table 1. According to it, it can be concluded that the maximum achievable
damping ξoptc rapidly decreases and subsequently the minimal maximum of the response j x

Fd
jmax increases under two

conditions. One is for high frequency resonance and the other one is when the actuator is weakly coupled to the struc-
ture which leads to a close location of the frequency of the pole Ω0 and the zero ω0.

2.2 | α-controller

To improve the control authority, Chesné et al15 proposed a new control law which includes double integrator and a
real zero as shown below:

FIGURE 1 (a) Mechanical diagram of the system under consideration including a single-degree-of-freedom (SDOF) system coupled

with a force sensor and a piezoelectric actuator. (b) An equivalent model

TABLE 1 Optimal parameters of the system using IFF

Parameters Maximum damping12 H∞
13

gopti Ω0

ffiffiffiffi
Ω0
ω0

q ffiffiffiffiffiffiffiffiffiffiffi
Ω2

0þω2
0

2

q
Optimized parameter ξopt ¼ Ω0�ω0

2Ω0
j x
Fd
jmax ¼ 1

m
4 ðΩ2

0�ω2
0Þ
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HðsÞ¼ gaðsþαaÞ
s2

ð5Þ

where ga and αa are its feedback gain and the tuning frequency of its zero. These parameters have been optimized
based on the method of maximum damping15 and H∞ approach16 as expressed in Table 2. It can be clearly concluded
that for a primary system, α-controller provides a higher closed-loop damping ratio ξ opt and subsequently a lower
maximum amplitude of response j x

Fd
jmax than the classical IFF when the parameters are optimized based on the

method of maximum damping and H∞ approach, respectively. The proposed control system is unconditionally stable as
explained in previous works.12,15

2.3 | Resonant-force-feedback

In order to avoid a significant amplification of the low frequency content which can be induced by the IFF
and the α-controller due to the pure integration, this paper proposes another control law based on a second order
filter like:

HðsÞ¼ gfω
2
f

s2þ2ξfωf sþω2
f

ð6Þ

where gf is the feedback gain, ξf and ωf are the damping ratio and the tuning frequency of the controller. In this case,
the actuator is driven by an active damping force which is generated by making the signal proportional to the force
applied to the structure resonate. By substituting Equation (6) into Equation (1), the driving point receptance of the sys-
tem can be obtained as follows:

x
Fd

¼ s2þ2ξfωf sþω2
f þ gfω

2
f

m ðs2þω0Þðs2þ2ξfωf sþω2
f þ gfω

2
f ÞþðΩ2

0�ω2
0Þðs2þ2ξfωf sþω2

f Þ
� � ð7Þ

In the reminder of the paper, the following numerical values are used: m=1kg, k=ka=1N/m, ka ¼ 0:1k. In the fol-
lowing sections, mechanical analogies for IFF, α-controller and RFF are first proposed and then two tuning laws based
on maximum damping criterion and H∞ theory are employed to optimize the parameters of RFF. These include the
damping ratio ξf, the tuning frequency ωf and the feedback gain gf.

2.4 | Mechanical analogy

The active mount of the system under consideration is schematically shown in Figure 2a. Considering the Maxwell
analogy, force and velocity in the mechanical domain are variables analogous to voltage and current in the electrical

TABLE 2 Optimal parameters of the system using α-controller

Parameters Maximum damping15 H∞
16

gopta 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

0�ω2
0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðΩ2

0�ω2
0Þ

2

q
αopta

ω2
0

2
ffiffiffiffiffiffiffiffiffiffiffi
Ω2

0�ω2
0

p 3ω2
0�Ω2

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðΩ2

0�ω2
0Þ

p

Optimized parameter
ξopt ¼

ffiffiffiffiffiffiffiffiffiffiffi
Ω2

0�ω2
0

p
2ω0 j x

Fd
jmax ¼

ffiffiffiffiffiffiffiffiffiffiffi
2ω2

0

Ω2
0�ω2

0

r
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domain, respectively. Therefore, its total mechanical impedance can be obtained by substituting Equation (3) into
Equation (1b) as follows:

ZT1 ¼F
_x
¼ ka
sþ s�HðsÞ ð8Þ

As presented in Figure 2b, an equivalent mechanical system of the active mount can be exposed as an equivalent
impedance Zeq in series to an additional stiffness representing the internal stiffness of the actuator ka. For such system,
the mechanical impedance is given by:

ZT2 ¼F
_x
¼ ka
sþ ka

Zeq

ð9Þ

Therefore, the equivalent impedance is obtained by equating Equation (8) and (9) as follows:

Zeq ¼ ka
s�HðsÞ ð10Þ

The equivalent impedance, when IFF is used, is calculated by substituting Equation (4) into the above
equation like:

ZIFF
eq ¼ ka

gi
¼Ceq ð11Þ

which presents an equivalent impedance of an viscous damper Ceq. As shown in Figure 2c, the mechanical model
of the active mount, when IFF is implemented, exhibits the same dynamic system as a relaxation isolator. Thus,
the classical IFF can be seen as the active realization of the relaxation isolator. Similar study to realize this
dynamic system with an electromagnetic transducer connected to a RL circuit has been introduced in De Marneffe
et al.24 To attain the equivalent impedance of α-controller, Equation (5) is substituted into Equation (10) as
follows:

Zα
eq ¼

kas
gaðsþαaÞ¼

meqCeqs
meqsþCeq

ð12Þ

FIGURE 2 (a) Schematic of the active mount. (b) Its equivalent mechanical model. (c) The equivalent mechanical model when integral-

force-feedback (IFF) is used. (d) The equivalent mechanical model when α-controller is used.16 (e) The equivalent mechanical model when

resonant-force-feedback (RFF) is used
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which represents an equivalent impedance of an inertance meq in series to a viscous damping Ceq. In this case, the
mechanical model of the active mount can be considered as tuned-inerter-damper (TID) as shown in Figure 2d. There-
fore, α-controller can be seen as the active realization of TID, that is, ATID. ATID has been exclusively discussed in
Zhao et al.16

For RFF, the equivalent impedance is obtained by substituting Equation (6) into Equation (10) like:

ZRFF
eq ¼ ka

gfω
2
f

sþ2ξf ka
gfωf

þ ka
gf s

¼meqsþCeqþkeq
s

ð13Þ

which indicates an equivalent impedance of an inertance meq ¼ ka
gfω

2
f
in parallel to a viscous damping Ceq ¼ 2ξf ka

gfωf
as well

as a stiffness keq ¼ ka
gf
as shown in Figure 2e. Clearly, it can be considered as an inerter-spring-damper system known as

ISD. Thus, RFF can be seen as active realization of ISD. Note that ISD has been used in vibration isolation,36 vehicle
suspension,37 railway vehicle suspension,38 aircraft landing gear suspension.39 From Equation (13), gf, ξf and ωf can be
obtained as a function of meq, Ceq and keq as follows:

gf ¼
ka
keq

, ξf ¼
Ceq

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meqkeq

p , ωf ¼
ffiffiffiffiffiffiffiffi
keq
meq

s
ð14Þ

where ωf and ξf can be seen as the natural frequency and the damping ratio of ISD, respectively. gf also shows the stiff-
ness ratio between ka and keq. One sees that ISD behaves like a rigid body motion with infinite mass, damping and stiff-
ness when g ! 0. Subsequently, it is no longer effective for vibration control and the coupled system resonates at Ω0.
For g ! ∞, all the parameters of ISD become zero. Since the stiffness ka is placed in series to ISD, the whole branch
becomes ineffective. Thus, the resulting resonance of the coupled system is the same as the primary system when the
active mount is removed, that is, ω0.

2.5 | Maximum damping optimization of the absorber

In this section, the parameters of the controller are optimized based on the method of maximum damping which
consists in minimizing the settling time of the impulse response. Figure 3 shows the root-locus of the loop gain
(i.e., G � H) choosing different control parameters. One sees that the controller adds another set of poles to the
resulting closed-loop system. Depending on the value of the feedback gain gf, the closed-loop poles can move
individually on two loops starting from the pole of the system as well as the pole of the controller. In addition,
the location of the controller pole in the locus is a function of the damping ratio ξf and tuning frequency ωf

of the controller which leads to different shape of the loops. By comparing Figure 3c with Figure 3a,b, it can be
concluded that the damping of the closed-loop system is locally maximized when the two loops intersect at one
point. In this case, the closed-loop poles are merged at the intersection. It is possible to realize an identical
closed-loop poles for different target damping by properly tuning the parameters of RFF. This can be seen from
Figure 3c,d that the controller which realizes equal closed-loop poles is not unique. However, there is only one
controller which makes the loops as large as possible and this occurs when the controller pole is critically
damped (i.e., ξoptf ¼ 1). It should be also noted that the closed-loop system is unconditionally stable for any value
of feedback gain, damping ratio and tuning frequency. Similar approach has been used to optimize the
parameters of positive-position-feedback (PPF) control system in Paknejad et al.11 It is worth pointing out that the
values of ωf, ξf and gf are taken arbitrarily to observe the different possible root locus curves in Figure 3. Considering
the values of ξf and ωf corresponding to Figure 3c as the local optimum ones, Figure 3a shows a typical root locus of the
system when a lower value of ξf or ωf is taken. For a higher value of ξf or ωf, the typical root locus of the system is
shown in Figure 3b.

The driving point receptance of the system when the two poles are merged is given by
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x
Fd

¼ s2þ2ξfωf sþω2þ gfω
2
f

ðs2þ2ξcωcsþω2
cÞ2

ð15Þ

where ξc and ωc are the damping ratio and the resonance frequency of the closed-loop system, respectively. The follow-
ing equations are obtained by equating the characteristic polynomial coefficients of Equations (7) and (15).

4ξcωc ¼ 2ξfωf ð16aÞ

ð4ξ2c þ2Þω2
c ¼ðgf þ1Þω2

f þΩ2
0 ð16bÞ

FIGURE 3 Typical root-locus of the system coupled with resonant-force-feedback (RFF) when the tuning frequency and the damping

ratio of RFF are set to (a) lower values than those of local optimal case, (b) higher values than those of local optimal case, (c) their local

optimal case, (d) their optimal case. (• shows the closed-loop poles)
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4ξcω
3
c ¼ 2ξfωfΩ2

0 ð16cÞ

ω4
c ¼ gfω

2
fω

2
0þω2

fΩ
2
0 ð16dÞ

Substituting Equation (16a) into Equation (16c) considering ξf ¼ ξoptf ¼ 1 leads to

ωc ¼Ω0 ð17Þ

which means that the resonance frequency of the closed-loop system is the same as the resonance frequency of the sys-
tem when the feedback loop is open. From Equation (16a), the closed-loop damping ratio can be obtained as a function
of tuning frequency of the controller as ξc ¼ ωf

2Ω0
. Therefore, by substituting it into Equations (16b) and (16d) and solving

the resulting equations for the tuning frequency of the controller and the feedback gain, the corresponding optimal
parameters of the controller can be derived as follows:

ωopt
f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

0�ω2
0

q
ð18aÞ

goptf ¼ Ω2
0

Ω2
0�ω2

0

ð18bÞ

And subsequently the closed damping ratio can be obtained:

ξoptc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

0�ω2
0

q
2Ω0

ð19Þ

Figure 4 presents the minimum closed-loop damping ratio of the system against the variation of parameters of RFF
normalized with respect to their optimal values. Note that when one parameter changes, the other parameters are set
to their optimal values. It can be clearly seen that only the optimal parameters provide maximum damping.

As it was already mentioned at the beginning of this section, the goal of the optimization is not only to maximize
the closed-loop damping but also to minimize the settling time of the impulse response. Therefore, Figure 5a shows the
impulse response of the system for ξf =ξ

opt
f : 1=1:3,1,1:3 while the tuning frequency ωf and the feedback gain gf are set to

their optimal values. Furthermore, the impulse response is demonstrated in Figure 5b for ωf =ω
opt
f : 1=1:3,1,1:3 when ξ

and gf are fixed at their optimal values. In addition, for gf =g
opt
f : 1=1:3,1,1:3 when ξf and ωf are kept at their optimal

FIGURE 4 Minimum closed-loop damping ratio of the system against the variation of the parameters of resonant-force-feedback (RFF)

normalized with respect to their optimal parameters
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values, Figure 5c illustrates the impulse response. It can be seen that only the optimal values of ωf and gf realize the
minimum settling time. However, for the case of ξf, a lower value offers a better settling time. To better illustrate this
issue, the settling time is shown in Figure 6 when the parameters of RFF are varied. 15% reduction in the settling time
happens when the damping ratio ξf is 10% lower than the optimal value. At this stage, it is not very clear the reason for
not having minimum settling time with the maximum damping. Although, this can be related to the fact that the set-
tling time can be dominated not only by the damping ratio but also by the resonance frequency of the system. It gets
even more complicated to estimate since the resulting closed-loop system contains two poles with the same damping
ratio but different resonance frequencies (according to Figure 3a) when the damping ratio of RFF gets detuned to a
lower value. The damping ratio and resonance frequency of both poles can affect the settling time. Therefore, a more
careful analysis needs to be done in the future to provide more detail in this subject.

On the other hand, this phenomenon only happens when ka
k <0:5. For example when ka

k ¼ 0:5, the minimum closed-
loop damping ratio and the settling time are plotted against the normalized parameters of RFF in Figure 7a,b, respec-
tively. Obviously, the optimal parameters not only realize the maximum damping but also the minimum settling time.
Comparing the performance of the system in terms of the settling time and the minimum closed-loop damping ratio
under deviations of the parameters of RFF from the optimal values (Figures 4–7), it can be concluded that the perfor-
mance of RFF is highly sensitive to the variation of the tuning frequency ωf. In other words, it shows how robust RFF
is under the resonance uncertainty which will be further discussed in Section 4.2.

FIGURE 5 Impulse response of the coupled system with resonant-force-feedback (RFF) for different values of (a) damping coefficient ξf,

(b) tuning frequency ωf, and (c) feedback gain gf

FIGURE 6 (a) Settling time as a function of the variation of the parameters of resonant-force-feedback (RFF) normalized with respect

to their optimal values, (b) a zoom from 0 to 100 s

10 of 25 PAKNEJAD ET AL.



Figure 8a shows the frequency-response-function (FRF) of the performance index with and without control systems.
It also compares the performance of RFF with IFF12 and α-controller13 when they are optimized based on the method
of maximum damping. In order to reveal the difference of using RFF in comparison to IFF and α-controller, Figure 8b
presents the evolution of the maximum closed-loop damping ratio under the variation of the stiffness ratio ( kka). It is
explicitly obvious that RFF and α-controller add more damping to the structure in comparison to the one with IFF. The
out-performance occurs since both RFF and α-controller introduce an anti-resonance to the primary system allowing a
better interaction between the actuator and the primary structure. Considering lightly damped structures where the pri-
mary system possess 1% or less damping ratio, it can be concluded that IFF is no longer effective when the stiffness
ratio is lower than 5%. However in this case, RFF and α-controller can add at least 10 times greater damping ratio.
Another interesting observation is that both RFF and α-controller provide a very close damping ratio especially when
the stiffness ratio is low, that is, ka

k <0:2. This can be seen by the root-locus of the system when α-controller is
implemented as shown in Figure 9 for ka

k ¼ 0:1. It shows that the maximum achievable damping ratio, which occurs
when the two loops are interesting at one point, is about 15.8%; while RFF can realize 15.1% damping ratio according
to Figure 3d. More details on the root-locus of the system coupled with the α-controller under the deviation of its
parameters can be found in.15 Although the α-controller gives a slightly better control authority when ka

k >0:2, the dif-
ference is not major. For example, if ka

k ¼ 1, the closed-loop damping ratios provided by RFF and α-controller are 0.35

FIGURE 7 Under the variation of the parameters of resonant-force-feedback (RFF) normalized with respect to their optimal parameters

when ka
k ¼ 0:5, (a) minimum closed-loop damping ratio and (b) settling time

FIGURE 8 When parameters of integral-force-feedback (IFF), α-controller as well as resonant-force-feedback (RFF) are optimized

based on the method of maximum damping, (a) frequency-response-function (FRF) of the the performance index with and without control

systems for ka ¼ 0:1k, (b) optimal closed-loop damping coefficient ξoptc under the variation of the stiffness ratio ka
k
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and 0.5, respectively. This slightly better damping ratio provided by α-controller affects the stability of the system in
terms of phase margin which will be discussed in Section 4.1.

2.6 | H∞ optimization of the absorber

Another tuning method based on H∞ optimization is used in this section to optimize the parameters of the controller.
The optimization is known as an approximation of fixed-point theory which has been introduced by Den Hartog40 to
optimally design parameters of tuned-mass-damper (TMD) system. The optimization aims to minimize the response at
the fixed-points. The fixed-points are defined as those frequencies where the magnitude of the deriving point receptance
of the system is invariant with respect to the damping coefficient of the controller ξf. The magnitude of the frequency
response of the driving point receptance is taken as the performance index and it is given by substituting s = jω into
Equation (7) as follows:

j x
Fd

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω4þð4ξ2fω2

f �2gfω
2
f �ω2

f Þω2þðgf þ1Þω4
f

q
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D8ω8þD7ω7þD6ω6þD5ω5þD4ω4þD3ω3þD2ω2þD1ωþD0

p
D8 ¼ 1;D7 ¼D5 ¼D3 ¼D1 ¼ 0

D6 ¼ 2ð2ξ4f �gf �1Þω2
f �2Ω2

0

D4 ¼ ðgf þ1Þ2ω4
f �ð8ξ2fΩ2

0�2gf ðΩ2
0þω2

0Þ�4Ω2
0Þω2

f þΩ4
0

D2 ¼ ð4ξ2fΩ4
0�2gfω

2
0Ω

2
0�2Ω4

0Þω2
f �ð2g2fω2

0þ2gf ðΩ2
0þω2

0Þþ2Ω2
0Þω4

f

D0 ¼ ðgfω2
0þΩ2

0Þ2ω4
f

ð20aÞ

The fixed-point frequencies are obtained by differentiating the above equation with respect to the damping coefficient
ξf and equating the derivative to zero, which yields:

Ω1 ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgf þ1Þω2

f þΩ2
0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgf þ1Þ2ω4

f �2gfω
2
0ω

2
f �2Ω2

0ω
2
f þΩ4

0

qr
ð21aÞ

FIGURE 9 (a) Root-locus of the system coupled with α-controller; (b) a zoom on a real axis from �0.5 to 0
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Ω2 ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgf þ1Þω2

f þΩ2
0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgf þ1Þ2ω4

f �2gfω
2
0ω

2
f �2Ω2

0ω
2
f þΩ4

0

qr
ð21bÞ

Ω3 ¼ 0 ð21cÞ

The third fixed-point Ω3 is neglected in the following process as it is basically invariant with respect to the parameters
of RFF. The optimal value of the tuning frequency ωf is defined as the one which realizes equal performance at the
fixed-point frequencies. This can be obtained by substituting Equations (21)a and (21)b into Equation (20) and equating
the resulting expressions for a ξf ¼ 0, which yields:

ωopt
f ¼ Ω0ffiffiffiffiffiffiffiffiffiffiffiffi

gf þ1
p ð22Þ

The performance index at fixed-points does not change for any value of the damping coefficient through the whole
frequency range. Therefore, the optimal value of the damping ratio ξf is obtained by passing the performance index hor-
izontally through the fixed-points. Two optimal damping coefficients corresponding to two fixed-points can be obtained
as follows:

ξf 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1gf H2ðgf þ1Þ�H1gf þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1gf �2H2ðgf þ1Þþð2ðgf þ1ÞÞΩ2

0þH1gf
� �r� �s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H2ðgf þ1ÞΩ2

0þH1H2gf �4H1gfΩ
2
0

q ð23aÞ

ξf 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1gf H2ðgf þ1ÞþH1gf þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1gf 2H2ðgf þ1Þþð2ðgf þ1ÞÞΩ2

0þH1gf
� �r� �s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H2ðgf þ1ÞΩ2

0þH1H2gf þ4H1gfΩ
2
0

q
H1 ¼ Ω2

0�ω2
0

H2 ¼ Ω2
2�Ω2

1

ð23bÞ

In practice, the optimal value of the damping is considered by taking the quadratic average of the two obtained
damping ratio Equations (23)a and (23)b:

ξoptf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2f 2þ ξ2f 1

2

s
ð24Þ

The optimal value of the feedback gain gf still needs to be obtained. Figure 10a illustrates the maximum amplitude
of the response against the feedback gain gf when the tuning frequency ωf and the damping ratio ξf are set to their opti-
mal values. It can be clearly seen that the maximum amplitude of response starts to decrease by increasing gf. However,
it stops decreasing after a certain value of a feedback gain which can be introduced as its optimal value. Figure 10b
shows the frequency-response-function (FRF) of the performance index for five different values of the feedback gain
gf : 0.1, 1, 28.0459, 30, ∞ when the other two parameters (ωf and ξf) follow their optimal values. One sees that the opti-
mal parameters of the damping ratio ξoptf and tuning frequency ωopt

f can realize equal peak for each value of the feed-
back gain gf. In addition, the performance index indeed decreases with an increase in the feedback gain until the
damping ratio reaches the critical damping. By increasing the feedback gain more, the resonance of the system is
shifted slightly to a lower value with a negligible change in the amplitude of response. Therefore, the minimum feed-
back gain gf, which realizes the minimal maximum amplitude of response, is defined as the optimal feedback gain. This
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occurs when the damping coefficients reaches the critical value. By equalizing Equation (24) to one and solving the
resulting equation, the optimal value of the feedback gain is given by:

goptf ¼
Ω2

0þ7ω2
0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64ω4

0þ112ω2
0ðΩ2

0�ω2
0Þþ97ðΩ2

0�ω2
0Þ2Þ

q
6ðΩ2

0�ω2
0Þ

ð25Þ

Figure 11a illustrates FRF of the performance index with and without control systems to compare the vibration
attenuation brought by IFF, α-controller and RFF when they are tuned based on H∞ optimization. It can be seen that
the maximum amplitude of the response associated with RFF or α-controller is more than four times lower than the
one with IFF. This plot is also interesting because it demonstrates that both α-controller and RFF realize equal peak
with slightly different frequencies. To better understand the difference between the performance of the control laws,
Figure 11b presents the maximum amplitude of the performance index as a function of the stiffness ratio when parame-
ters are tuned based on H∞ optimization. It is clearly visible that RFF and α-controller always offer a better amplitude

FIGURE 11 When parameters of integral-force-feedback (IFF), α-controller as well as resonant-force-feedback (RFF) are tuned based

on H∞ optimization, (a) frequency-response-function (FRF) of the performance index with and without control systems for ka ¼ 0:1k,

(b) maximum amplitude of the performance index under the variation of the stiffness ratio ka
k

FIGURE 10 (a) Maximum amplitude of response against the feedback gain gf. (b) frequency-response-function (FRF) of the

performance index for different values of the feedback gain gf when the other parameters follow their optimal values
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reduction especially when the coupling between the actuator and the structure is low (i.e. k
ka
<0:1). For example, RFF

or α-controller is able to reduce the amplitude of response 10 times lower than the one with IFF when the stiffness ratio
is about 2%. An additional observation from this plot is that the vibration attenuation brought by RFF and α-controller
is very close to each other especially for ka

k <0:5. For high stiffness ratio, the difference gets slightly larger such that
when ka

k ¼ 1, the maximum amplitude of response is 1.23 and 1.41 with the application of RFF and α-controller,
respectively.

It is worth pointing out that the application of RFF results in a dynamically softer system because of a higher static
response with respect to that of control-off. This can be justified using the mechanical analogy of RFF shown in
Figure 2e. At low frequency, RFF behaves like two stiffness (i.e. ka and keq) which are placed in series with each other.
In this case, the stiffness of the branch is equal to ka

1þgf
which is lower than ka.

It is also interesting to see how sensitive the performance of the system is when RFF is detuned. Figure 12a
shows the FRF for five different damping ratios as ξf =ξ

opt
f : 0,0:25,1,4,∞, while the other parameters are set to

their optimal values. The fixed-points can be seen at two frequencies where all the curves are interesting. For ξf < ξoptf ,
two resonances with higher peaks appear in the vicinity of the primary one; whereas, only one resonance peak
can be seen when ξf > ξoptf . It is aligned with the RFF's mechanical analogy shown in Figure 2e. According to
Equation (14) when ξf! 0, the equivalent damping approaches the zero value (≡Ceq! 0) while the equivalent
inertance and the stiffness are non-zero value (≡meq≠ 0 and keq≠ 0). This means that RFF adds another undamped
DOF to the system. However, Ceq!∞ when ξf!∞ as well. Therefore, RFF is no longer effective and the system
resonates at the resonance frequency of the primary system (≡Ω0). The performance degradation of RFF under the
variation of the tuning frequency ωf is demonstrated in Figure 12b for five different values as: ωf =ω

opt
f : 0,0:75,1,1:33,∞,

when ξf and gf are set to their optimal values. Moreover, to see how the performance is degraded when the
feedback gain is detuned, the FRF is plotted for five different values as: gf =g

opt
f : 0,0:5,2,∞ accompanied by fixing

the other parameters to their optimal values. RFF gets detuned in the same way by the variation of the tuning
frequency or the feedback gain such that the one peak increases accompanied by decreasing the other one. When
ωf! 0, it is equivalent to infinite value of the inertance and the damping (≡meq,Ceq!∞). Furthermore, when gf! 0,
all the equivalent parameters go to infinite value (≡meq,Ceq, keq!∞). In both cases, similar to ξf!∞, RFF is no longer
effective and the system keeps resonating at the resonance frequency of the primary system (≡Ω0). On the other hand
when ωf!∞, RFF degrades to a non-zero value stiffness (≡keq≠ 0) causing a reduction in the resonance frequency
since the equivalent stiffness is placed in series to the stiffness of the actuator. The total stiffness of the branch
(Figure 2e) is now equal to ka

1þgf
. In the case of gf!∞, the impedance of RFF becomes zero such that no force will pass

through the branch (Figure 2e) as if it is removed from the system. Hence, the resonance frequency of the system is
equal to the resonance frequency of the primary system when the force sensor is taken away (≡ω0). It is worth pointing
out that the amplitude of response is more sensitive to the tuning frequency than the others because the peaks get
detuned rapidly by slightly deviating from its optimum.

FIGURE 12 Frequency-response-function (FRF) of the performance index for different values of (a) the damping ratio ξf, (b) tuning

frequency ωf and (c) feedback gain gf when the other parameters are set to their optimal values
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3 | CONTROL EFFORT

It has been shown in the previous section that both RFF and α-controller provide almost the same control authority to
the system. The difference between them can be expressed in the terms of the control effort. To do so, the actuator force
with respect to the input disturbance force is taken as the performance function. This performance function can be
obtained using Equations (1) and (3) as follows:

Fa

Fd
¼ kaHðsÞ
ðms2þkÞð1þHðsÞÞþ1

ð26Þ

By substituting Equations (5) and (6) into the above equation,respectively, the performance function for α-controller
and RFF can be obtained as follow:

Fa

Fd
¼ kagaðsþαÞ
ðms2þkÞðs2þgaðsþαÞÞþ s2

ð27aÞ

Fa

Fd
¼ kagfω

2
f

ðms2þkÞðs2þ2ξfωf sþω2
f þgfω

2
f Þþ s2þ2ξfωf sþω2

f

ð27bÞ

Figure 13a,b shows the FRF of the actuator force when parameters are optimized according to the method of maximum
damping and H∞ approach, respectively. It can be clearly seen that α-controller requires a higher actuator force than
that of RFF. In addition, the maximum actuator force corresponding to α-controller is 2.67 and 2.54 greater than that of
RFF when the parameters are tuned according to the method maximum damping and H∞ approach, respectively. In
other words, the amount of current needs to be delivered to the actuator for α-controller is higher than that of RFF and
subsequently it consumes more power.

According to Figure 13a,b, no matter which optimization criterion is used, two peaks appear in the magnitude of
the force around the resonance frequency of the system for both RFF and α-controller. At the first peak, RFF requires
less force than α-controller while it is the other way around at the second peak. In addition, the magnitude of actuator
force contains a non-zero constant value at low frequency. It is worthwhile noting that this low frequency force inter-
acts on the stiffness of the structure leading to a dynamically softer system as it has been already observed in the previ-
ous section from Figures 8a and 11a where the static response has increased. For both optimization criteria,
α-controller requires a higher actuator force than that of RFF at low frequency. Therefore, other than the power needs
to be given to the actuator for reducing the resonance peak, an amount of current needs to be provided for the actuator
for the low frequency force. Since α-controller requires more force at low frequency than RFF, low frequency force has

FIGURE 13 FRF of the actuator force, (a) when the parameters are optimized according to the method of maximum damping,

(b) when the parameters are tuned based on H∞ optimization
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a big impact on the total power consumption of the control system. Even at high frequency, the control force
corresponding to α-controller is higher than that of RFF, although it can be neglected because of more than three order
of magnitude difference compared to the low frequency force. It is clear that a criterion, which is able to consider the
actuator force over the frequency-band of interest (±∞), is required to compare RFF with α-controller. H2 norm mea-
sures the energy of the actuator force through the whole frequency range. Consequently, H2 norm is proposed for fur-
ther comparison and it is assessed as follows:41

Faj jj j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2π

Z ∞

�∞
FdðωÞ kaHðjωÞ

ð�mω2þkÞð1þHðjωÞÞþ1

����
����
2

dω

s
ð28Þ

where Fd(ω) is the power spectral density of the input disturbance force. For the case of white noise excitation force, it
is constant as a function of the frequency, that is, fd(ω) = fd. Therefore, the H2 norm can be simplified as follows:

Faj jj j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fd

2π

Z ∞

�∞

kaHðjωÞ
ð�mω2þkÞð1þHðjωÞÞþ1

����
����
2

dω

s
ð29Þ

In other words, the above equation represents the root-mean-square (RMS) value of the actuator force. Then, its
normalized Inor is defined to highlight the ratio of the RMS of the actuator force to the excitation force with a uniform
spectral density like:

Inor ¼
ffiffiffiffiffiffi
π

Fd

r
Faj jj j2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ ∞

0

kaHðjωÞ
ð�mω2þkÞð1þHðjωÞÞþ1

����
����
2

dω

s
ð30Þ

Figure 14a,b present Inor under the variation of the stiffness ratio when parameters are optimized according to the
method of maximum damping and H∞ approach, respectively. Two observations can be made on this plot. One sees
that α-controller always requires a higher actuator force than RFF especially when the stiffness ratio increases. In addi-
tion, the actuator force of RFF when its parameters are tuned based on H∞ optimization is greater than that of RFF
when its parameters are optimized based on the method of maximum damping. However, this is not the case for α-con-
troller. For a vary low stiffness ratio ka

k < <0:1, it slightly requires less actuator force when its parameters are optimized
based on the method of maximum damping. It is the opposite for high value of the stiffness ratio ka

k � 0:1.

FIGURE 14 Normalized root mean square value of the actuator force Inor versus the variation of the stiffness ratio ka
k (a) when the

parameters are optimized according to the method of maximum damping and (b) when the parameters are tuned based on H∞ optimization
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4 | STABILITY AND ROBUSTNESS ANALYSIS

4.1 | Stability analysis

It is always important to estimate the gain margin and the phase margin of a control system even if it is unconditionally
stable like RFF. Enough margins could avoid an instability of the system in practical implementation. The bode dia-
gram of the loop-gain (i.e., G � H) is shown in Figure 15a when RFF is tuned according to the method of maximum
damping. The minimum stability margin is also highlighted in the figure. Clearly, the gain margin is infinity and the
phase margin is 30.1�. Similarly, for H∞ optimization, the phase margin is 18.7�. Furthermore, the loop-gain of the sys-
tem when α-controller is implemented is shown in Figure 15b when the parameters are optimized based on the maxi-
mum damping. Like RFF, the gain margin is infinity. However, the minimum phase margin is 29.2�. Similarly, for the
H∞ methods, the phase margin is 19.2�. Furthermore, α-controller significantly amplifies the low frequency content
due to the use of pure integration while this is not the case for RFF. This amplification of response can easily cause the
saturation of the actuator in the practical implementation of α-controller.

Those bode diagrams are obtained for a certain value of the stiffness ratio, that is, kak ¼ 0:1. The evolution of the min-
imum phase margin when the stiffness ratio ka

k is varied and the parameters of RFF and α-controller follow their opti-
mal values is demonstrated in Figure 15c. According to it, three important observations are made. First, the method of
maximum damping always offers a better phase margin than that of H∞ approach. Furthermore, the minimum phase
margin decreases by reducing the stiffness ratio. Noted that the classical IFF maintains an infinite gain margin and 90�

phase margin for any value of the feedback gain. It can be concluded that the better control performance obtained by
RFF or α-controller than IFF, as explained in Section 2, comes at the expense of a degradation in the phase margin.
Moreover, Figure 15c is connected to Figures 8b and 11b. In Figure 8b, it has been shown that α-controller gives a
slightly better control performance in terms of the closed-loop damping ratio than RFF for high value of the stiffness
ratio. This out-performance is reflected directly in the minimum phase margin shown in Figure 15c. It is the other way
around when the parameters are tuned according to H∞ optimization. According to Figures 11b and 15c, the better con-
trol performance provided by RFF in terms of the amplitude reduction comes at the price of a lower phase margin com-
pared to that of α-controller.

4.2 | Robustness analysis

What follows is a robustness study of IFF, α-controller, and RFF under the stiffness uncertainty. To check the robust-
ness of the systems based on the method of maximum damping, the minimum damping ratio of the closed-loop system,

FIGURE 15 The bode diagram of the loop-gain (G � H) when the parameters of resonant-force-feedback (RFF) are tuned according to

the method of the maximum damping and when the parameters of α-controller are tuned according to. (c) Minimum phase margin with

respect to the stiffness ratio when the parameters are set to their optimal values
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named μ, is shown in Figure 16a under the variation of the stiffness of the primary system k normalized with respect to
the initial value k¼ k0 ¼ 1. In addition, the normalized maximum amplitude of the response with respect to its static
response (i.e., Y ¼ðkþkaÞj x

Fd
jmax) is considered for the robustness analysis of the systems designed based on H∞ opti-

mization. Figure 16b shows Y against k
k0
. In both figures, the robustness is evaluated for three different stiffness ratio ka/

k0 : 0.01, 0.1, 1 while the corresponding optimal parameters of RFF, α-controller, and IFF are tuned for k= k0 and kept
constant. For k< k0, it is interesting that the closed-loop damping μ realized by IFF started to increase and subsequently
the maximum amplitude of response at the frequency of resonance decreases with respect to the static response. This is
because the distance between pole and zero in the open-loop transfer function increases which subsequently leads to a
higher control performance even if the feedback gain is constant. In addition, the robustness of RFF and α-controller
are generally degraded for any changes in the stiffness of the primary system since the resonance of the control systems
has been perfectly tuned for the initial stiffness k0. It has been already shown in Figures 3 and 12 that any changes in
the tuning frequency of RFF ωf can significantly affect the control performance. On the other hand, the robustness of
RFF and α-controller depend on the stiffness ratio ka

k0
such that the degradation rate of the control performance

decreases with increasing in the stiffness ratio ka
k0
. It should be noted that despite the loss of efficiency under the varia-

tion of the stiffness (i.e., k
k0
¼ ½0:6,1:5�), the performance of RFF is still superior to that of IFF, which is an appealing fea-

ture of RFF. It can be also observed that RFF can tolerate a higher level of uncertainty than α-controller when k< k0.

FIGURE 16 Under the variation of the stiffness k of the primary system while the parameters of the controller are kept constant at

their optimal values for the specified stiffness ratios, that is, ka/k0 : 0.01, 0.1, 1, (a) closed-loop damping coefficient μ of the performance

index and (b) normalized maximum amplitude Y of the performance index with respect to the static response

FIGURE 17 Multi-degree-of-freedom (MDOF) system combined with a force actuator and a force sensor for vibration damping
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5 | MULTIPLE DEGREE OF FREEDOM SYSTEM

In this section, the performance of the designed RFF is evaluated on a lightly damped system with multiple resonances
representing a flexible structure. In particular, a three degree of freedom (DOF) system, as shown in Figure 17, is con-
sidered as the numerical example. The following numerical values have been used: m1 = m2 = m3=1kg, k1=100kN/m,
ka ¼ 0:1K1, and k2= k3=400kN/m. Note that Dashpot constants c1, c2, and c3 are tuned in order to provide a modal
damping ratio of 0.2%. All the mathematics are given in Appendix A1.

For the system under consideration, the frequencies of the poles and the zeros are listed in Table 3. Considering
these, an optimal RFF controller is designed for each mode individually according to the method of maximum damping
explained in Section 2.5. According to Equation (19), the closed loop damping achieved by an optimal RFF for each
mode is also shown in Table 3. The closed-loop damping is compared to that of a system damped by an optimal IFF
according to Table 1. It can be seen that higher damping is obtained by RFF especially at higher resonance frequency
as the controlability is lower due to close frequencies of pole and zero.

The root-locus for an optimal RFF targeting each mode is shown in Figure 18. One sees that the closed-loop poles
are not identical. This is because of the presence of other modes affecting the shape of the loops and the damping of the
primary system. For the first and second modes, they are fairly close to each other at the vicinity of the closed loop
damping ratio presented in Table 3. In fact, the closed loop poles for the first and second modes are 10% off with respect
to a pair of identical closed-loop poles. Targeting the first mode as an example, Figure 19 compares the impulse
responses of the optimal RFF to the ideal RFF which provides exactly the same closed-loop poles. It is clear that the dif-
ferences in terms of the settling time and the amplifications can be negligible. As expected, the closed-loop poles are
not placed at the vicinity of 3.9% damping ratio for the third mode. This is because the third resonance is not well sepa-
rated from the other resonances. Although the poles are not identical providing the desired damping ratio, they are still
much higher than the damping ratio obtained by IFF.

It is very interesting to note that the RFF can be used for vibration isolation of the system under a base excitation.
Moreover, the method of maximum damping is independent from excitation sources. This means that no matter

FIGURE 18 Root-locus plot for the resonant-force-feedback (RFF) targeting (a) the first, (b) the second, and (c) the third modes

TABLE 3 Frequency of pole and zero

Frequencies Mode 1 [rad/s] Mode 2 [rad/s] Mode 3 [rad/s]

Pole 177.4 677.3 1105.9

Zero 170.3 672.4 1102.5

ξoptIFF
0.02 0.003 0.0015

ξoptRFF
0.14 0.06 0.039
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whether the system is excited by the an external force or the base motion, the RFF can add the designed damping to
the system. Figure 20 shows the transmissibility of the system from the base excitation Ud to the displacement of the
first mass x1. The transmissibility compares the response of the system without the control system and with the RFF
targeting each mode individually. It can be seen that RFF can effectively damp the modes.

The following section evaluates the performance of the designed RFF in Section 2.6 according to H∞ optimization
on the MDOF system. For this purpose, three optimal RFFs targeting each mode individually are designed according to
Equations (22)–(25). The performance index is defined by a transfer function from the disturbance force Fd of the first
mass to the displacement at the same location x1. The FRFs of the performance index are shown in Figure 21 for the
system with and without the control system. Note that the frequency is normalized with respect to the frequency of the
first resonance. First, one sees that higher vibration reduction at the resonance frequency is achieved by RFF compared
to that of IFF. In addition, two equal peaks at the vicinity of the primary resonance frequency can be detected when
RFF is applied. The equal peak may be distorted at higher resonance frequency as the modal density increases by fre-
quency in this example.

From Figure 21, it can be seen that the RFF does not have any effect on the resonances above its tuning frequency.
This is because the RFF as a low-pass filter suppresses all the high frequency contents. Due to this property, the RFF

FIGURE 19 Impulse response of the multi-degree-of-freedom (MDOF) system when the optimal resonant-force-feedback (RFF)

designed to target the first mode and when an ideal RFF is used

FIGURE 20 Transmisibility of system with and without resonant-force-feedback (RFF)
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avoids high frequency amplifications (known as spillover) and the saturation of the actuator. However, low frequency
contents amplified with respect to the feedback gain are fed back to the actuator. This leads to a decrease in both the
static stiffness and the dynamic stiffness of the modes with the frequencies lower than the tuning frequency of the RFF.
These resonances are therefore shifted to a lower value.

The optimal RFF tuned according to H∞ approach is based on the performance index from an external excitation
force to a displacement response of the same location. This means that the optimal RFF is no longer be able to provide
equal peaks at a resonance of a the system excited from the base.

6 | CONCLUSION

A new resonant control system based on the force feedback configuration, named RFF, has been proposed and opti-
mally designed to overcome performance limitations of the classical IFF when a resonance of a structure is targeted. It
has been shown that RFF can be seen as an active realization of an inerter-spring-damping (ISD) system which can also
be used for vibration damping, vibration isolation and suspension systems in different applications. Then, its equivalent
mass, damping and stiffness have been derived. The controller possess three unknown parameters including the
damping coefficient, tuning frequency and feedback gain. These parameters have been optimized according to two dif-
ferent tuning laws i.e. the method of maximum damping and H∞ optimization. The closed-form expressions of these
parameters have been obtained for a single-degree-of-freedom (SDOF) system. It has been shown that second order fil-
ter as the control law in the feedback loop from the force sensor to the force actuator leads to the design of an absorber
with an excellent performance. Therefore, the control authority of a target mode can be significantly increased using
RFF in comparison to IFF. In addition, since α-controller is another control law to offer a better control performance
than the classical IFF, the performance of RFF has been evaluated in comparison to that of α-controller in terms of the
vibration mitigation and the control effort. Although both techniques provide almost the same control authority, RFF
requires less actuator force than α-controller. Therefore, RFF can be considered as a low energy consumption technique
to enhance the vibration mitigation of flexible structures using force feedback. It has been also demonstrated in the

FIGURE 21 Frequency-response-function (FRF) of the performance index when RFF targets (a) the first mode, (b) the second mode,

and (c) the third mode. Zoom around (d) the first mode, (e) the second mode, and (f) the third mode
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robustness analysis that RFF brings a superior performance to that of IFF up to almost 50% changes in the stiffness of
the primary system while IFF can tolerate a higher level of uncertainty.

It is interesting to note that RFF can be used for vibration isolation under a base excitation.
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APPENDIX A: MATHEMATICS OF MDOF

A state-space system is modeled for the MDOF system with the inputs including the disturbance force Fd, the base exci-
tation Ud, and the actuator force Fa and with the outputs including the displacement of the first mass x1 and the force
sensor Fs. The matrices are given below:

A¼

0 1 0 0 0 0 0

�k1þk2þka
m1

�c1þ c2
m1

2
m1

c2
m1

0 0 0

0 0 0 1 0 0 0
k2
m2

c2
m2

�k2þk3
m2

�c2þ c3
m2

k3
m2

c3
m2

0

0 0 0 0 0 1 0

0 0
k3
m3

c3
m3

� k3
m3

� c3
m3

0

�ka 0 0 0 0 0 0

2
666666666666664

3
777777777777775

ðA1Þ

B¼

0 0 0
1
m1

1
m1

k1þka
m1

0 0 0

0 0 0

0 0 0

0 0 0

0 1 ka

2
6666666666664

3
7777777777775

ðA2Þ

C¼ 1 0 0 0 0 0 0

�ka 0 0 0 0 0 0

� 	
ðA3Þ

D¼

0 0 0

0 1 ka
0 0 0

0 0 0

2
6664

3
7775 ðA4Þ
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