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Hybrid Mass Damper: Theoretical
and Experimental Power
Flow Analysis
In this paper, a hybrid mass damper (HMD) and its hyperstability due to a power flow
approach are studied. The HMD proposed combines an active control system with an
optimal passive device. The initial passive system is an electromagnetic tuned mass
damper (TMD) and the control law is a modified velocity feedback with a phase compensa-
tor. The resulting hybrid controller system is theoretically hyperstable and ensures fail-safe
behavior. Experiments are performed to validate the numerical simulation and provide
good results in terms of vibration attenuations. Both excitation from the bottom in the fre-
quency domain and shock response in the time domain are tested and analyzed. The differ-
ent power flows in terms of active and reactive powers are estimated numerically and
experimentally on the inertial damper (passive and active) and on the HMD. Moreover,
through a mechanical analogy of the proposed system, it is shown that this hybrid device
can be seen as an active realization of an inerter based tuned-mass-damper associated
with a sky-hook damper. Observations and analysis provide insight into the hyperstable
behavior imposed by the specific control law. [DOI: 10.1115/1.4053480]
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1 Introduction
Tuned mass dampers (TMD) and dynamic vibration absorbers

(DVA) exhibit interesting properties in terms of vibration attenua-
tion. They are passive devices which are widely used in industrial
sectors like aerospace and civil engineering [1–5]. The perfor-
mances of these practical and robust devices are directly linked to
the mass ratio between the weight of the absorber and that of the
vibrating primary structure. The natural frequency of the TMD is
tuned to a frequency near the natural frequency of the primary struc-
ture, and the vibration energy is dissipated through the damping in
the TMD. The most popular tuning method is called equal peak
design [6] with improvements for non-linear systems [7,8] and
the integration of robust design [9]. The main disadvantage of a
TMD is the sensitivity of the tuned frequency, its optimal
damping ratio and the resulting difficulties of tuning these mechan-
ical systems. Other passive systems exit such as the electromechan-
ical shunted damper [10–12], the shunted piezoelectric patch
[13,14], and the particle tuned mass damper [15].
A more efficient method is to use active mass dampers (AMD)

proposed by Ref. [16]. The performance obtained is better than
those of passive systems but active systems are generally more
complex and costly. A compromise must be found between

performance and cost. Nevertheless, active control requires
sensors (strain, displacement, velocity, acceleration, force) and
actuators (force, inertia). The communication between actuators
and sensors is directly linked to the design of the controller (feed-
back or feedforward), without neglecting robustness and stability.
In order to control a lightly damped structure, the active damping
feedback control strategy is often used. Active damping can
reduce the response amplitude of the structure around its resonance
frequencies. A model of the structure is not needed and stability is
guaranteed by a co-located pair consisting of an actuator and a
sensor. In the literature, active damping strategies can be found
such as the lead controller that produces a phase lead, hence its
name, direct velocity feedback (DVF) which can be considered as
a particular case of lead controller (the actuator is driven with a
signal proportional to the velocity, which is a natural way to add
damping), positive position feedback (PPF) proposed by Refs.
[17,18], integral force feedback (IFF) proposed by Ref. [19], reso-
nant control from Refs. [20,21], and the regenerative damping
systems in which dissipated energy is reutilized for actuation pre-
sented in Refs. [22,23]. However, for most systems and for high
gain values, DVF can lead to instabilities, compromising the stabi-
lity of the system. Methods can be found to improve the stability of
the DVF: the placement of pairs of poles and zeros in the open-loop
transfer function [24,25], a compensator in the feedback loop [26],
compensator filters to counterbalance the phase lag [27], and iner-
ters to increase the apparent mass [28].
With hybrid mass dampers (HMD) the idea is to combine active

systems with an optimal passive device. The objective is threefold:
(1) improve performance, (2) reduce power consumption, and
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(3) ensure fail-safe behavior, i.e., the damper will work as a tuned
mass damper when the controller is turned off [29]. Systems have
been proposed such as an HMD with H∞ optimum parameters to
minimize both response and control effort [30], a fail-safe system
[31], a dual loop approach to increase stability margins [32], an
FXLMS controller with a resonant isolation system (SARIB) for
helicopter applications [33], delay resonators [34], a tunable vibra-
tion absorber [35], an adaptive inertial mass device [36], and an
hyperstable HMD [25,37].
Active systems need a power supply to feed the actuator. The

analysis of the power flow delivered by this external source pro-
vides an indication of the stability and performance of the control
device, as shown in Refs. [38,39]. These observations are essential
for understanding the stability of the devices, especially when the
dynamics of the actuator can modify the phase between the
command and the resulting control force, as in the case of an inertial
actuator [39,40].
SISO based on a simple input of the supporting structure (unlike

many more complex control laws such as the dual loop control law
[29]).
In this paper, a focus is done on HMD which combines passive

damping and active vibration control which is based on a SISO
system with a single input from the primary mass (unlike many
more complex control laws such as the dual loop control law
[29]). The analysis is carried out in terms of power flow and the
interpretation of the hybrid device in term of equivalent mechanical
system. The proposed hybrid system controller is fail-safe but also
unconditionally stable in theory [25]. Numerical simulations based
on an experimental model illustrate the system’s performance. The
experimental validation is performed with the Hybrid-TSAR, devel-
oped and patented by Airbus Helicopter and INSA-Lyon [41]. The
first part is dedicated to the theory with a power flow analysis
carried out on an inertial damper and an extension to HMD and
the α-HMD. The second part is devoted to the experimental valida-
tion via performance and power flow with both excitation from the
bottom in the frequency domain and shock response in the time
domain.

2 Theory and Working Principle
2.1 Power Flow Analysis on An Inertial Damper. One of the

main issues of active and hybrid systems is to understand the power
flows between the device and the main host structure because it
gives information on stability properties and the power supply
needed. In order to understand these flows, an isolated Active
Mass Damper is analyzed. The device is illustrated in Fig. 1, the
dynamics of the host structure is not modeled, in order to decouple
the possible interactions in this first analysis.
In Fig. 1, a feedback loop representing the active part of the

device can be observed. The sensor is a velocity sensor (ẋ1 = V1),
and the actuator generating the control force Fa, is ideal. It acts
between the host structure (here the ground) and the mobile mass
of the damper (mabs). The mobility of the device is written in the
Fourier domain as:

Y(jω) =
V1(jω)
F1(jω)

=
−ω2mabs + jωcabs + kabs

−ω2mabs(H(jω) + cabs + kabs/(jω))
(1)

where V1(jω) and F1(jω) are the velocity and the force, respectively,
of the host structure, mabs, cabs, and kabs are the mass, the damping,
and the stiffness of the damper, respectively, ω is the pulsation and
H(jω) is the control law.
In the case of a passive device, the control law H(jω) is set to

zero. Usual AMD uses a control law known as DVF where H(jω)
is a simple gain. Depending on the dynamics of the host structure
and the damper this control law can be very efficient but is never
unconditionally stable. These stability limits are well known. The
resulting active power can be computed by

Pa(jω) =
1
2
V∗
1 (jω)Re Y(jω)−1

( )
V1(jω) (2)

where V∗
1 (jω) and Y(jω)−1 are, respectively, the complex conjugate

of the velocity and the impedance: the inverse of mobility of the
host structure.
Basically, the device is considered as hyperstable if this quantity

is always positive. That means that the device only absorbs and dis-
sipates energy from the host structure in the same way as a purely
passive system does.
In the first calculus, for the sake of simplicity, a perturbation is

considered as an imposed displacement of the ground. Then, the
input of the system is the velocity V1, a white noise with constant
power spectral density. This results in a weak coupling in which
the AMD does not modify the dynamics of its host structure. Nev-
ertheless, it provides clear understanding of the power flows at the
interface. The parameters of the system are mabs= kabs= 1 and
cabs = 0.02 (ξabs = cabs/

���������
kabsmabs

√
= 1%).

The resulting active power for a passive damper (deep blue
curve) and a classical AMD using DVF (dotted black curve) are
shown in Fig. 2. Both active systems have a gain loop of g= 2000.
It can be seen that the active power of the passive damper is always

positive, which means that the system is purely dissipative. It can
also be seen that the active power linked to the AMD using the
DVF law is not always positive. Under its resonance frequency its
active power drops; that means that the device delivers energy to
the host system. These curves depict the well-known stability
problem under the resonance frequency of the resonant device.
This is the reasonwhy commercial AMDs have very low frequencies
compared to the frequencies of the host structures that they equip.
A specific control lawH(jω) can be designed to modify the result-

ing power flow. Again considering that V1 is a white noise with
normal power spectral density and without damping (cabs= 0), con-
ditions are found on H(jω) in order to obtain Pa> 0.
The active power can be written as

Pa(ω) =
1
2
Re Y(jω)−1

( )
(3)

Fig. 1 Implementation of active damping using DVF
Fig. 2 Active power comparison among passive TMD, AMD
using DVF and α-HMD (Color version online.)
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using the mobility expression,

Pa(ω) =
1
2
Re

−ω2mabs(H(jω) + kabs/(jω))
−ω2mabs + kabs

( )
(4)

after several steps,

Pa(ω) =
−ω2Re[H(jω)]
2mabs(ω2

abs − ω2)
(5)

to ensure stability, the active power has to be positive (Pa> 0).
Thus, the resulting two conditions depend on the pulsation (ω):

• for ω < ωabs, the real part of the control has to be negative
(Re[H(jω)] < 0)

• for ω > ωabs, the real part of the control has to be positive
(Re[H(jω)] > 0)

These conditions result in a phase shift of the control law around
the resonance frequency of the control device. A simple way to
achieve these conditions is to build the control law as follows:

H(jω) = g
jω + ωabs

jω

( )2

(6)

where g is the gain of the control loop.
The active power using this modified direct velocity feedback is

plotted in Fig. 2 in light blue. It can be clearly seen that the active
power is now positive over the whole frequency range. The hybrid
mass damper is now theoretically hyperstable. That means that
whatever the gain (g) of the control loop, the device always
absorbs energy from the host structure.

2.2 Extension to Hybrid TunedMass Damper. As described
in the introduction, the use of a Tuned Mass Damper coupled with
an active loop can present several advantages (fail-safe behavior,
low consumption, etc.). The aim of this part is to extend the previ-
ous analysis of power flow to hybrid systems based on a TMD. The
dynamics of the host structure must now be considered to under-
stand the interaction with the tuned damper. The structure to be con-
trolled and the hybrid damper are illustrated in Fig. 3. The TMD is
designed according to the Den’Hartog criteria.
Passivity formalism can be used to understand the hyperstable

behavior of the device. The passivity theory is a convenient way
of interpreting and representing Lyapunov-like functions [42], as
Lyapunov functions can be considered as a generalization of the
notion of energy in dynamic systems. Passivity theory formalizes
the use of these functions to describe and analyze the energy flow
in subsystems.
The dynamics of a physical system satisfies the energy conserva-

tion principle: the variation of stored energy is the sum of external

power input and internal power generation. This concept can be
written for a system i [42]:

V̇ i(t) = yTi .ui − Gi(t) (7)

with Vi is the scalar function representing the stored energy in sub-
system i, Gi is the scalar function representing the internal power
generation (Vi and Gi are scalar functions in SISO case), yi vector
of the outputs, and ui vector of the inputs.
In our case, for the sake of simplicity, without internal mechan-

ical damping (cstruc= cabs= 0), the internal power generation mech-
anisms are linked only to the power flow generated by the actuator
driven by the controller and its control law H(jω). Considering a
perfect sensor and actuator and velocity feedback, the G function
can be written in the Fourier domain as:

G(jω) = −Fa(Ẋabs − Ẋstruc) (8)

and then

G(jω) = (Ẋstruc)
2H(1 − Ẋabs/Ẋstruc) (9)

As explained previously, the resulting system is considered
passive if:

Re[G(jω)] > 0 (10)

This passivity behavior means that the system is purely dissipa-
tive. Once again, H can be tailored to interact with the dynamics
of the structure to ensure hyperstability. This condition allows to
adopt the same design of H as in the previous section. The sign
of H has to change depending on the sign of the transmissibility
function, which obviously depends on the tuning frequency of the
absorber.
To illustrate this unconditional stability, Fig. 4 show the open

loop transfer functions (Bode and Nyquist) for a usual DVF (in
blue) and a modified DVF (alpha controller in red).
Depending on the loop gain stability is not guaranteed for a clas-

sical DVF. This instability can be clearly identified in Fig. 4 blue
curves), where the phase of the open-loop transfer function rises
above 180 deg at low frequency and where the Nyquist diagram
passes to the left of the −1 point.
Regarding the control law proposed, it can be interpreted as a

phase compensator. The phase of the resulting control law is illus-
trated in Fig. 4(a). This phase compensator results in an open loop
transfer function satisfying the condition of Eq. (10), where the
active power must be positive to ensure stability. The open loop
transfer function plotted in red in Fig. 4(a) illustrates the final stabi-
lity. Moreover, on the Nyquist diagram (Fig. 4(b)), the −1 point is
now on the left whatever the gain of the control loop.
These considerations were established with the simplification of a

null damping (cstruc= cabs= 0). In practice, the tuning of the alpha
parameter does not have to be very accurate. With a non-zero
damping, another source of dissipation exists and the condition
on the phase of the controller law written in Eq. (10) is not perfectly
verified. It can be shown using the Rooth-Hurwitz criterion that the
stability condition on parameter α is

ω1 < α < ω2 (11)

where ω1 and ω2 are the two eigenfrequencies of the coupled system
(HMD + host structure) and where α is the frequency when
ϕH(jω) = −90 deg. The frequency range [ω1, ω2] depends on cabs
and cstruc.
Figure 5 shows the template of the phase of the controller to

ensure hyperstability.

2.3 The α-Hybrid Mass Damper. The authors have already
shown in Refs. [25,37] that applying direct velocity feedback on
a TMD is not a viable solution in terms of stability. Sections 2.1
and 2.2 show that the phase must be modified. Consequently, inFig. 3 Diagram of the hybrid damper on the primary structure
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previous sections, the so called α-controller was introduced to
ensure stability and performance. It can be written as follows:

Hα(jω) = g
jω + α
jω

( )2

(12)

where α is tuned on the resonance frequency of the device (ωstruc) to
ensure the hyperstability of the system g is the gain.
Figure 6 shows the resulting transmissibility function. A compar-

ison is made between the passive tuned mass damper (dark blue
curve) and the α-HMD with a gain (g) equal to 2000 (light blue
curve). Stability is guaranteed due to the phase compensation in
the open-loop transfer function (Fig. 4(a)). The previous parts
focused on stability, whereas Fig. 6 quantifies the performance.
As expected, the transmissibility amplitude is drastically reduced
in the vicinity of ωstruc. More theoretical and simulation analyses
can be found in Refs. [25,37].
The power that flows from the structure is calculated using the

formula below:

P = F∗
aVrel + cabsV

2
rel + kabsxrelVrel (13)

where Fa is the active force, xrel is the relative displacement, and
Vrel is the relative velocity. The active power (Pa) is the real part
of the power:

Pa = Re(P) = Re(F∗
aVrel + cabsV

2
rel + kabsxrelVrel) (14)

The active power of a spring is null, so the total active power
which flows from the structure can be written as follows:

Pa = Re(F∗
aVrel + cabsV

2
rel) (15)

Figure 7(a) shows the numerical active power which flows for
passive TMD and for hybrid-TMD (HMD) using the α-controller

with the gain g equal to 1000 and 2000. As expected, pole spreading
is observed when the gain increases, illustrating the virtual addition
of mass. Only a few modifications of the active power at the reso-
nance frequency of the primary structure are observed. In the fre-
quency domain, the active power is always positive (Re(P) > 0)
which means stability is ensured. Figure 7(b) shows the numerical
cumulative sum of the active power flows for passive TMD and for
hybrid-TMD (HMD) using the α-controller with the gain g equal to
1000 and 2000. The numerical cumulative sum of the active power
flows for passive TMD is eight times greater than for the passive
TMD.

2.4 Mechanical Analogy. One interesting way to understand
the hyperstability properties and the dynamical behavior of the pro-
posed controller is to find and equivalent mechanical model. In this
part, for sake of simplicity, the mechanical damping of the absorber
is omitted. The resulting hybrid device is represented in Fig. 8(a).
Considering Fa(jω) = H(jω) × V1(jω), one can written the result-

ing impedance ZH of the hybrid device, in Fourier domain:

ZH(jω) =
F1(jω)
V1(jω)

=
jωmabskabs

kabs − ω2mabs
+

−ω2mabs

kabs − ω2mabs
H(jω)

= ZTMD(jω) + Za(jω) (16)

where ZTMD is the impedance of a passive TMD and Za represents
the active part. The two systems can be considered as acting in
parallel.

Fig. 4 Comparison of open loop gain between usual DVF and α-controller: (a) bode diagram
and (b) Nyquist diagram (Color version online.)

Fig. 5 Phase profile limits of the control law to ensure
hyperstability

Fig. 6 Transmissibility functions x1/x0 without TMD, for passive
TMD and for hybrid-TMD using the proposed controller

041003-4 / Vol. 144, AUGUST 2022 Transactions of the ASME



For the active part, by applying the α-controller law, with
α = ωabs, then H(jω) = g (jω + ωabs)/jω

( )2
, one can find:

Za(jω) =
−ω2mabs

kabs − ω2mabs
H(jω) =

−gω2 + 2gωabsjω + ω2
absg

ω2
abs − ω2

(17)

An equivalent mechanical system having the same impedance
can be found as shown below.
On the other side, the system illustrated in Fig. 8(b) represents a

passive TMD, associated with a sky hook damper ceq and an iner-
tance meq in series with a spring keq. Let’s remind that an inerter
is a device which generates a force proportional to relative acceler-
ations between its two connections. One can find its equivalent
mechanical impedance Zeq that can be written:

Zeq = ZTMD + ceq +
1

jω
keq

+
1

jωmeq

(18)

with ω2
eq = keq/meq, Eq. (18) can be written as follows:

Zeq = ZTMD +
−ceqω2 + keqjω + ω2

eqceq
ω2
eq − ω2

(19)

By identification with Eq. (17), considering α = ωabs,
the mechanical parameters of the analogy can be found:

keq = 2gα, meq =
2g
α
, ceq = g (20)

In conclusion, the proposed control law increases the equivalent
mass of the absorber in proportion to the gain of the control loop,
while keeping its tuning constant. In addition, it adds in parallel a
skyhook damper whose damping is equal to the gain.
One can note that the existence of a full mechanical analogy

prove again the stability of the active system. Thus, the hyperstabil-
ity property is guaranteed given idealized sensors and actuators are
employed.

3 Experimental Validation
3.1 Setup and Transducer. The experimental setup is a

two-degrees-of-freedom system, one linked to the main structure
which has to be controlled, and one linked to the absorber. The main
structure (mstruc= 153.4 kg) is designed to behave like a single-
degree-of-freedom (x1) which is suspended by flexible blades.
High stiffness is ensured by these blades working in flexion. Its
resonance frequency is experimentally tuned to be around 17Hz,
by testing various blades with different widths. Finally, the resulting
stiffness of the primary structure kstruc is equal to 1745.1 kN/m. The
blades are made of blue steel in order to resist high strain.
The HMD presented is based on the Hybrid-TSAR, developed

and patented by Airbus Helicopter and INSA-Lyon [41]. Basically,
it consists of a one mechanical degree-of-freedom system (x2)
designed as a TMD. The moving mass is guided by two sets of flex-
ible membranes that guarantee the resulting stiffness. Two magnets
are fixed at the extremities of the moving mass, contributing to the
total mass of the moving part. Each magnet is surrounded by a coil.
One voice-coil system is dedicated to the passive behavior, dissipat-
ing energy through a tunable load, and the second one represents the
active part.
The two-degree-of-freedom system is mounted on the 6-axis

shaker of the Equipex PHARE (Fig. 9). This unique test facility
in the national public research facility has large capacities and
can generate vibrations on six axis. The excitation from the
bottom is provided by the six-axis shaker though only the x-axis
is used for this application (x0). The optimal TMD’s parameters
are experimentally identified (mabs= 9.6 kg, kabs= 96.7 kN/m, and
ξabs = 10.6%), and the resonance frequency of the absorber is
around 16Hz. Since its mechanical damping is very weak
(around 1%), damping is provided by the coil-magnet combination
coupled with a tunable resistor (R1). The active part (second voice-
coil system) is driven by a current amplifier (Kepco BOP 72-6M).
Another set of tuning parameters (a different ωabs) was studied in
a previous publication [29] to validate a fail-safe dual-loop control-
ler. The experimental setup is consistent with the two degrees-of-
freedom illustrated in Fig. 3.

Fig. 7 (a) Numerical active power and (b) numerical cumulative sum of the active power

Fig. 8 (a) Schematic of the hybrid device and (b) its equivalent mechanical model
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For the applications intended, the frequency aspects are discussed
(Sec. 3.3), and the concepts related to the shock response in the time
domain time response are studied (Sec. 3.4).

3.2 Practical Considerations. The control law is a modified
velocity feedback with a phase compensator where alpha is tuned
on the resonance frequency of the device (ωstruc) to ensure the
hyperstability of the system. This hyperstability property can also
be observed on the root locus (Fig. 10, gray curves). Whatever
the loop gain, the poles are still on the left side of the root locus.
Theoretically, an infinite gain margin is ensured. Pole spreading
is observed when the gain increases as expected in Fig. 6. In prac-
tice, a low frequency drift of the feedback instruction is observed
due to the double integration. Therefore, a Chebyshev type I
(order 4) high pass filter is used. The yellow curves on Fig. 10
show the practical root locus where the Chebyshev filterpole is
observed (Fig. 10(b)). The root locus obtained from the experimen-
tal model shows that hyperstability is lost. A short part of the root
locus goes to the right half plan but it corresponds to very high
gain behavior (50 times higher than the chosen gain of 2000).

The stability margins are still very high, but they do not represent
a limit to the performance. Other limits due to the stroke displace-
ment of the absorber and the saturation of the amplifier will be more
restrictive than this stability limit.

3.3 Excitation From the Bottom – Frequency Analysis

3.3.1 Vibration Attenuation. The excitation from the bottom is
provided by the six-axis shaker but only the x-axis is used for this
application. Six hydraulic cylinders work together to ensure
correct enslaving in the x direction, driven in displacement.
Keeping the five other directions slaved to 0. A swept sine is applied
by the shaker between 5 and 30Hz (x0 = 0.05 × 10−3×
cos (ωt) [m]). Three configurations are tested without TMD, with
passive TMD and with the HMD Hybrid-TSAR. The last configu-
ration used the α-controller in closed loop with several control gains
g. The speed of the main structure (ẋ1) is obtained by integrating the
signal of an accelerometer placed on it.
Figure 11(a) shows the experimental transmissibility functions

x1/x0 without TMD, for passive TMD and for hybrid-TMD
(HMD) using the α-controller with the gain g equal to 1000,
2000, and 2500. At 17Hz, the resonance of the primary structure,
the transmissibility amplitude is drastically reduced from 23 dB
for the passive TMD until 37 dB for the higher control gain. In
the best configuration (g= 2500), the actively added mass, pre-
dicted by mechanical analogy, is about 46 kg. This results in a
total mass 5.8 times greater than the initial mass of the absorber.
It appears consistent with the observation of pole spreading (as
also predicted by the rool locus). What is notable is that transmissi-
bility is less than 0 dB, meaning that the amplitude of x1 is smaller
than that of x0.
The active force is proportional to the current delivered by the

amplifier. In Fig. 11, when the gain is equal to 2500, the second
mode around 22Hz was impacted, and the saturation of the
current amplifier was observed. The control current driving
the HMD was up to ± 6 A. This is not a stability problem and the
main limitation is practical.
Numerical simulations were performed and good agreement with

the experimental data is observed (Fig. 11(b)).
It could be interesting for civil engineering for example to eval-

uate the cumulative sum of the transmissibility. This indicator

Fig. 9 (a) Six-axis shaker of the Equipex Phare with the whole
system mounted on it and (b) diagram of the system

Fig. 10 (a) Theoretical root locus with the α-controller in gray. Practical root locus including the Chebyshev type-I filter in
yellow and (b) zoom on the root locus.
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shows the wideband effect and can be generally related to the
fatigue of the materials. Figure 12 shows the cumulative sum of
the transmissibility functions x1/x0 for passive TMD and
hybrid-TMD using the α-controller at different gains g. The perfor-
mances of the different configurations are compared over the fre-
quency range of interest. With the best configuration (g= 2500),
the cumulative sum of the transmissibility is divided by two com-
pared to the configuration without absorber.
For applications where the perturbation is harmonic, the reduc-

tion of transmissibility can be observed on the time domain at 17

Hz (Fig. 13(a)). The amplitude is divided by 14 for the passive
TMD until 70 for the higher control gain. Figure 13(b) shows a
zoom to show the amplitude of the response for the passive and
hybrid systems.

3.3.2 Power Flow Measurement. The power flowing from the
structure is calculated using the same formula (Eq. (13)) as in
Sec. 2.3.
The power is a complex quantity; it is necessary to consider the

active part and the reactive part of the power to conclude on the
hyperstability of the system. Figure 14(a) shows the experimental
active power which is the real part of the total power. In the fre-
quency domain, it can be observed that the active power is
always positive (Re(P) > 0). The system is proved experimentally
to be purely dissipative.
Figure 14(b) shows the experimental cumulative sum of the

active power. As shown in the numerical part (Sec. 2.3, Fig. 7),
the same trend is observed experimentally. Pole spreading is
observed when the gain increases and the experimental cumulative
sum of the active power flowing at the interface for the hybrid TMD
is greater than that of the passive TMD (six times).

3.4 Shock Response – Time Analysis

3.4.1 Vibration Attenuation. This part focuses on the transient
response of such a system. Shocks were injected using a light pen-
dulum system with direct impact on the mass mstruc (x1). Very high
repeatability was observed. Consequently, the next figures illustrate
the behavior of the system for one representative impact.
Figure 15 shows the acceleration response to an impact with a

passive TMD and with a hybrid one. It can be seen that the accel-
eration is globally reduced, especially at the beginning (cf. zoom)

Fig. 11 Transmissibility functions x1/x0 without TMD, for passive TMD and for hybrid-TMD using the α-controller at different
gains g: (a) Experimental results and (b) numerical simulations

Fig. 12 Experimental cumulative sum of the transmissibility
functions x1/x0 without TMD, for passive TMD and for hybrid-TMD
using the α-controller at different gains g

Fig. 13 (a) Experimental displacements versus time at 17Hz for the passive TMD and the hybrid-TMD using the α-controller at
different gains g and (b) zoom
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where the maximum acceleration is reduced by a factor 3. Indeed,
passive TMDs are known to have poor ability to reduce the first
period of vibration or globally transient perturbation. This can be
understood by looking the relative velocity of the absorber
(ẋ2 − ẋ1) shown in Fig. 16.
Figure 16 presents experimental relative velocity signals between

the moving mass of the hybrid tuned mass damper and the displace-
ment of the mass m1 without and with control (closed loop). One

can clearly see the slow increase of the oscillation amplitude for
the passive device. The hybrid one reacts much faster and with
higher amplitudes, therefore dissipating energy and counteracting
the vibrations. This is mainly due to the active force illustrated in
Fig. 17. Hybrid systems combine two behaviors that can be sum-
marized as follows:

• Passive behavior: HMD has higher relative amplified stroke
displacement than usual TMD, dissipating more energy.

• Active behavior: HMD acts as an AMD, the applied force is
opposed to the velocity of the main structure in order to
absorb energy.

In practice, depending on the transducer and the control law,
active force can introduce energy into the host structure. The exper-
imental power flow estimation is presented in Sec. 3.4.2.

3.4.2 Power Flow Estimation. Figure 18 shows the power dis-
sipated in the passive part, which is positive. This part is directly
quantifiable because the setup allows the measurement of the rela-
tive velocity between the host structure and the absorber (measured
via the voltage at the passive voice-coil terminals). This part of the
power, proportional to the square root of the relative velocity
(Fig. 16) is greater for the HMD than for the passive TMD. It
results in a higher amount of energy electrically dissipated
through the load associated with the passive part for the HMD.
Figure 19 shows the total power of the active part of HMD.

Although it is mainly positive (meaning dissipation), it can be
seen that it can be negative. In practice the sign of the power

Fig. 14 (a) Experimental active power and (b) experimental cumulative sum of the active power

Fig. 15 Measured acceleration of mass mstruc, without and with the α-controller: (a) global view and (b) zoom

Fig. 16 Relative velocity under impulse excitation
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seems too restrictive to conclude on the hyperstability property. The
quantities plotted concern the active part and the reactive part of the
power which cannot be separated in a transient signal with the setup
proposed.
The cumulative sum of the total power which flows at the inter-

face is shown in Fig. 20. For the HMD, the slope is mostly positive
except around t= 0.2 s, the power is mainly absorbed. The total
power is 6 times greater after 1 s for the HMD than for the
passive TMD.

4 Conclusion
This paper presented an original analysis and experimentation for

a HMD which combines an active system with an optimal passive
device. The approach is based on the power flow analysis and the
equivalent mechanical system of the hybrid device. The control
law is a modified velocity feedback with a phase compensator.
The α-controller is hyperstable and ensures fail-safe behavior. A
comparison was made between the passive tuned mass damper and
the α-HMD with control in terms of the transmissibility function.
The amplitude was drastically reduced at the vicinity of ωstruc. The
numerical model was fed with experimentally identified parameters.
The theoretical analysis of the power flow showed that the system is
purely dissipative, meaning hyperstable, as illustrated through the
full mechanical analogy. Hybrid device can be seen as an association
of an inerter, a spring and a skyhook damper. It results that the gain of
the control loop increases the equivalent mass and damping of the
absorber. The experimental validation was performed with a
two-degrees-of-freedom system. The main structure was excited in
one direction with the six-axis shaker of the Equipex PHARE. The
design of the HMD [41] was based on an optimal TMD integrating
a co-located pair of voice-coil devices. One was dedicated to the
passive behavior of the TMD, the other one was used as an actuator.
Good agreement was observed between the experimental transmissi-
bility function and the numerical one. Analysis in the frequency
domain clearly showed that the active power was positive, highlight-
ing that the system is purely dissipative. In the time domain subject to
shock, this notion appeared more difficult to analyze. Nevertheless,
the hybrid device reacted much faster and with higher amplitudes
than the passive one. In this case, a global indicator was used: the
cumulative sum of the power showed the increase in absorbed
energy versus the passive system. The high strokes of the HMD
can be considered as a significant drawback for applications where
the available space is limited. In future work and developments,
some non-linear behaviors will be introduced. This can be done in
the mechanical part to increase the resulting passive force or in the
control law itself. Smaller strokes will be expected but also a
greater robustness against frequency variations. Of course, these
future designs will rise the problem of stability.
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