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Abstract
The position of the transducers in active control architectures is critical to ensure the performance and has
consequently been studied during the last few decades. However, the placement criteria often require the
use of extensive search algorithms that demand numerous iterations, leading to prohibitive computational
time for large and/or complex structures. To overcome this limitation, this paper investigates the use of the
pole-zero (PZ) distance placement criterion as the starting point for a simple gradient algorithm. This open-
loop criterion is based on the direct link between the PZ distance and the maximum reachable damping:
the obtained position locates in the vicinity of a high damping area which ensures the convergence of the
search algorithm, for fewer iterations. A numerical simulation is performed to assess the performance of
the proposed approach and compared to a genetic algorithm optimization. A significant reduction of the
processing time is observed while the solution shows an improved robustness to transducers misplacement.

1 Introduction

Active control strategies can be used on flexible structures that present limited damping to reduce the level
of internal and/or external induced vibrations. The appropriate positioning of the transducers for those active
control strategies is a well-established concern. It is indeed well-known that a poor choice of their locations
can deteriorate the performance of the control architecture by inducing a lack of observability and/or con-
trollability or, in the worth case, it can lead to stability concerns (e.g. when non-collocated sensor/actuator
(SA) pairs are considered). This placement concern is highlighted by the numerous researches that have
been performed during the past decades and by the availability of technical reviews that analyze the different
optimal placement techniques such as [1] or [2].

The selection of the placement criterion to use among all the ones that are available in the literature is of
major importance. Indeed, different SA positions can be obtained depending on the chosen objective func-
tion, influencing consequently the performance of the closed-loop system. Nevertheless, and although each
criterion focuses on its specific objective (e.g. the maximization of the controllability and/or the observabil-
ity, the maximization of the modal damping, the reduction of the spillover effect...), the implementation of
a search algorithm is usually required to obtain the optimal solution. The aim of such an algorithm is to



converge towards the best solution without computing all possible combinations, which can be prohibitive
when the calculation of the objective function is expensive and/or when too many combinations are possible.
The genetic algorithms (GA) are fairly suited for the optimal SA placement studies and, consequently, often
considered because: (i) they are appropriate to apply in situations where non-prior knowledge is required, (ii)
they can solve linear and nonlinear problems and (iii) they can find the global optimum despite the presence
of multiple local ones [3]. A GA is for example applied in [4, 5] for the placement of piezoelectric actuators
based on the maximization of the controllability or in [6] for the optimal sensor placement using a modified
modal assurance criterion. Moreover, placement criteria in closed-loop (i.e. when the parameters of the con-
trol law are added to the optimization process) also use GAs to converge towards the optimal solution such
as in [7] which seeks to reduce the average closed-loop gain or in [8, 9] that are based on linear quadratic
controllers.

Despite the advantages of using a GA to obtain the optimal solution, a major drawback inherent of such a
search algorithm is that it needs numerous iterations to converge, which can induce extremely long compu-
tational time for the optimization. The reason why the gradient descent method is not commonly used for
the optimal placement studies is that it requires the appropriate starting parameter values to avoid obtaining
a local optimum as solution. Nevertheless, if the starting values are wisely chosen (i.e. in the vicinity of the
global optimal solution), the gradient descent method can be highly efficient since it requires significantly
fewer evaluations to converge than the GAs. The aim of this study is to investigate the use of the PZ distance
placement criterion as the starting position for a simple gradient algorithm whose purpose is to maximize
the damping. The solutions are compared with the convergence of a GA in terms of performance, robustness
and number of iterations. Consequently, the second part of this paper briefly recalls the basics of the gradient
descent and the genetic search algorithms. The third section describes the PZ distance criterion and why such
criterion is well suited for fast convergence. The fourth part provides a numerical validation on a specific
case (a cantilever beam) while some conclusions are given in the last section.

2 Basics on the gradient descent and the genetic search algorithms

The GAs are stochastic algorithms inspired by the process of natural selection: starting from a randomly
generated set of parameters, the ones that provide high performance with respect to the objective function
are combined and mutated to produce a new generation. Then those new parameters are evaluated again and
the best ones are used to produce another new generation. This procedure is stopped when one of the termi-
nation conditions is met, e.g. a defined threshold value for the average relative change in the cost function
has been reached or a specified number of generations has been obtained. The different combinations (called
crossover) and mutations performed by the GAs reduce the risk that the retained parameters correspond to a
local optimal solution, which is one of the main advantages of these algorithms [10]. Nevertheless, because
the objective function has to be evaluated for the entire population of each generation, this major advantage
comes at the expense of an extremely long computational time [11].

The gradient descent method is known to be less expensive in terms of computational cost. Indeed, its con-
vergence is based on the calculation of the gradient of the objective function and the use of this gradient
to proportionally modify the value of the parameters. Once the parameters reach a local optimal solution,
the gradient value tends to zero and the optimization process stops when the defined threshold is reached.
Although very simple and cost-effective in terms of computational time, this method is highly sensitive to
the provided starting values of the parameters to be optimized because the algorithm converges towards the
local optimal solution [12]. This latest observation is the major reason why GAs are mainly used for the SA
placement studies since the different criteria show a lack of prior knowledge which would allow to ensure
the appropriate selection of the starting values.

Nevertheless, if the starting values are wisely chosen (i.e. in the vicinity of the global optimal solution),
then the gradient descent method can be highly efficient since it requires significantly fewer evaluations to
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Figure 1: Graphical illustration of the link between pole-zero distance and maximum reachable damping
ratio for three positions

converge than the GAs. Consequently, the use of a SA placement criterion requiring only a limited number of
configurations to be tested and providing pertinent starting values for the gradient descent algorithm would
be highly efficient compared to the frequently used GA convergences.

3 Description of the pole-zero distance criterion and its use for fast
convergence

For active control systems, the SAs are often positioned in collocated configurations in order to benefit from
the alternating poles and zeros property which ensures a 180 degrees bound of the open-loop system phase
lag. In addition to this interlacing property, collocated systems exhibit a direct link between the maximum
reachable damping ratio once in closed-loop and the open-loop distance between the pole and the zero (i.e.
the frequency at which a non-zero actuation leads to a zero output in the response), as illustrated by Fig. 1.
Consequently, such property allows to obtain preliminary closed-loop knowledge based only on open-loop
information and, therefore, it can induce highly efficient estimation of the placement performance.

A new SA placement criterion based on this PZ distance concept which aims to maximize the closed-loop
modal damping has first been introduced by [13] in which the cost function for the positioning of a single
input single output (SISO) collocated pair is the following:
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where k contains the nmodes of interest, |PZ(x)|k is the pole-zero distance of the targeted mode at position
x and |PkZadj(x)| corresponds to the adjacent pole-zero distance. The first factor aims to guarantee the
overall maximization of the distance while the second factor ensures a small cost function value if one of the
modes of interest presents a pole-zero cancellation (i.e. a zero distance). Finally, the third factor prevents any
pole-zero cancellation with the adjacent zero of the mode of interest which could induce a loss of control-
lability and/or observability or a root-locus reshaping and, consequently, wrong damping predictions. The
graphical representation of those three factors is shown in Fig. 2 for the second mode of the system when,
due to the applied control law, the pole appears before the zero.
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Figure 2: Graphical representation of the PZ distance criterion factors for the second mode. The interlacing
property of collocated systems can be observed as well

The use of Eq. 1 as cost function for the placement of a single force-displacement collocated pair on a can-
tilever beam provides better damping performance compared to other open-loop criteria, as demonstrated in
[13]. Nevertheless, the above-mentioned study has been performed by computing the cost function for all
the possible positions, which is not acceptable when too many combinations are possible and/or when the
computation of the cost function requires too much computational time. However, and unlike the other place-
ment criteria, the PZ distance criterion is based on a direct and physical link between open-loop knowledge
and closed-loop behavior (respectively the PZ distance and the maximum reachable damping). Moreover,
all the zeros are always bounded between two surrounding eigen frequencies due to the interlacing property
of collocated systems and their values continuously evolve within the bounded intervals. Because of those
properties, it is clear that only a limited number of positions x would need to be computed by Eq. 1 to
produce a preliminary trend of the PZ distance. The position among the limited tested ones that maximizes
the distance could therefore be defined as the starting value for the gradient convergence algorithm, allowing
consequently its usage which is not feasible with other criteria due to the lack of prior knowledge.

Furthermore and considering the aforementioned properties of the zeros, the number of limited positions to
be computed by the PZ criterion can be directly proportional to the wavelength of the targeted mode shape(s)
of interest. Nonetheless, a straightforward wavelength value of a mode shape is not always easily defined,
which is for example the case when considering a cantilever beam. Therefore, and to remain as general as
possible, the number of limited positions to be computed by the PZ criterion can be directly proportional
to the mode ID. This is consistent with the dynamics of a vibrating system: the higher the mode ID, the
smaller its mode shape wavelength and, consequently, the higher the number of points required to accurately
describe the dynamics. Hence, if the mode ID is defined as i, the number of limited positions to be computed
by the PZ criterion r can be obtained by Eq. 2 where γ is the proportionality factor.

ri = γ × i (2)

Accordingly, the PZ distance criterion provided by Eq. 1 requires only ri times its evaluations to obtain a first
trend of the PZ distance of mode i as a function of the SA pair positions. Due to the physical link between
the PZ distance and the maximum reachable damping, the position that provides the maximum obtained
distance can be defined as the starting value for the gradient search algorithm, which will converge towards
the optimum that locates in its vicinity. Therefore, and unlike the GA convergence, only a small amount of
iterations is needed, reducing considerably the overall processing time for the optimization study. In order to
validate this approach, it is applied on a cantilever beam in the next section in which the optimal placement
of a collocated force actuator/displacement sensor pair is studied.



4 Application to a cantilever beam

The proposed strategy is numerically illustrated on a cantilever beam for the optimal placement of a collo-
cated force actuator/displacement sensor pair whose purpose is to separately maximize the modal damping
of the first three bending modes. The beam is modeled using the Structural Dynamics Toolbox (an open and
extendable finite element modeling Matlab based toolbox for dynamics problems [14]) with the following
properties: dimensions of 300 mm x 25 mm x 2 mm and use of a lightly damped steel (Young’s modulus
E = 210 GPa, Poisson’s ratio ν = 0.285, mass density ρ = 7800 kg/m3 and modal damping ratio ξ = 0.004).
Because only the bending modes of the beam are targeted, the finite element model is built using beam el-
ements that allow only the 2 degrees of freedom out-of-plane bending motion. The mesh accuracy in the
longitudinal direction is set to 0.1 mm which leads to a total of 3001 elements, each one being a potential SA
pair position except for the constrained node at the clamped end of the cantilever beam. The convenience to
apply such high accuracy for the mesh size is that it provides an extensive number of positioning candidates
while using a simple demonstration structure.

As described in the previous section, the proposed approach consists of (1) computing the PZ distance cri-
terion of Eq. 1 for r positions and (2) using the position that maximizes the computed distances as starting
value for the gradient descent algorithm. The number of position r is obtained by Eq. 2 in which the propor-
tionality factor γ is defined to 10 for this study. It can be noted that a more advanced selection of this value
could be accomplished by, for example, performing a sensitivity analysis of the zeros with respect to the SA
position. Because the current validation focuses on the benefits of applying the proposed approach only, this
additional sensitivity analysis could be performed in a separate future work.

The aim of the optimization being to separately maximize the modal damping of the first bending modes, the
search algorithm can directly focus on the closed-loop performance by applying the cost function J̃ defined
by Eq. 3, where ξi is the closed-loop modal damping of mode i and g is the gain value of the applied
controller. Consequently, the gradient descent algorithm will perform the optimization on two parameters:
the SA position x and the controller gain g.

J̃(x, g) = ξi (3)

Regarding the controller, a lead control law as described by Eq. 4 is considered where the zero zc and the
pole pc only depend on the targeted mode as follow: zc = ωi/2 and pc = ωi × 2 where ωi is the natural
pulsation of the mode i. Because the PZ distance criterion does not deal with the optimal gain, the starting
value of g is set to gstart = zi×

√
zi/ωi where zi is the zero value of the ith mode at the considered position.

This starting gain value is directly based on the analytic gain that provides the maximum reachable damping
for a lead control as described in [15].

C(s) = g
s+ zc
s+ pc

(4)

Since the controller has been characterized, it is possible to properly define the PZ distance: because the
pole appears before the zero when applying a lead controller, the PZ distance is computed by subtracting the
pole to the zero [15]. Applying the PZ distance criterion of Eq. 1 at ri locations obtained by steps of equal
size for the first three bending modes provides the following positions from the clamped end of the beam:
0.778×L, 0.474×L and 0.345×L for the first, second and third modes respectively where L is the length
of the beam. Each of those results is used as the starting position for the gradient descent algorithm whose
cost function is defined by Eq. 3 for the separate control of the first three modes.

The performance obtained with the proposed approach can be compared to the ones obtained with the com-
monly used genetic search algorithm. Consequently, the GA available within Matlab is implemented with the
following properties: the cost function to maximize is given by Eq. 3 using the same control law described
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Figure 3: Convergence of the gradient descent algorithms for the first bending mode of the beam

by Eq. 4, the population size per generation is set to 50, the crossover fraction is defined to 0.8 and a random
mutation from bounded Gaussian distributions is used.

The comparison between the two approaches is available in Tables 1 and 2 where the optimal positions and
the related optimal gain values for each mode are available, for the two tested algorithms. Moreover, the cor-
responding closed-loop modal damping and the total number of evaluations of the cost function performed
by the two algorithms are available as well. Because the proposed approach implies ri computations of the
cost function J(x) to determine the starting position as well as the evaluation of J̃(x, g) for the convergence
of the gradient descent, the total number provided in Table 1 combined those two evaluation numbers. Nev-
ertheless and as it can be observed, the GA convergence demands significantly more evaluations than the
gradient descent to achieve convergence. There is indeed a factor 7 for the optimization of the first mode and
this factor goes up to 10 for the third mode convergence.

This faster convergence is highlighted by the comparison between Figs. 3 and 4 that respectively show the
modal damping convergence obtained with the gradient descent optimization and the GA for the first bend-
ing mode. As it can be seen, the gradient search algorithm presents several stationary levels with respect
to the damping value. Those phases correspond to the few evaluations the algorithm requires to determine
the convergence directions. Because the different establishments of the directions are straightforward, the
optimization needs only 36 evaluations of J̃(x, g) in total to converge. Conversely, the GA is based on a
stochastic approach: a population of 50 members is first randomly initiated. This initial population is then
entirely evaluated in order to select the adequate members to form the new evolved generation by mutations
and crossovers. The convergence consequently emerges only after the evaluation of the entire population
when the new generation is created, as it can be seen in Fig. 4 where each generation of 50 members is
delimited by an alternating background color. As a result, the algorithm requires numerous evaluations of
the cost function which leads to a total of 321 to converge.

Table 1: Optimal results obtained with the gradient descent convergence.

Gradient descent optimization
Normalised optimal position (/L) Optimal gain Optimal damping Evaluations

Mode 1 0.7997 701.06 0.25 46
Mode 2 0.5003 21219 0.23 65
Mode 3 0.3553 103101 0.22 84
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Figure 4: Convergence of the genetic algorithm for the first bending mode of the beam

Table 2: Optimal results obtained with the genetic algorithm convergence

Genetic algorithm optimization
Normalised optimal position (/L) Optimal gain Optimal damping Evaluations

Mode 1 0.7867 722.97 0.25 321
Mode 2 0.8570 16135 0.35 561
Mode 3 0.9287 56306 0.34 881

Interestingly, it can be observed that the gradient descent provides optimal positions close to the starting ones
obtained with the PZ distance criterion (i.e. 0.778 × L, 0.474 × L and 0.345 × L for the first, second and
third modes respectively). The proximity between the starting positions and the optimal ones is illustrated
by Fig. 5 which shows the convergence of the two parameters during the gradient descent optimization of
the first mode. This highlights therefore the efficiency of the PZ criterion that only requires a small num-
ber of positions to be tested while ensuring the selection of a solution in the vicinity of high damping area.
Moreover, it also indicates that the gradient convergence is mainly employed to determine the optimal gain
value. Consequently, the selection of the starting gain value could be improved which would decrease the
total number of evaluations and reduce even further the computational time. Such an improvement could
be considered in a future work. The convergence of the SA pair position and the gain value during the GA
optimization of mode 1 is given in Fig. 6 for comparison purpose.

Although the proposed method allows faster convergence, it can be seen that the obtained solutions for
modes 2 and 3 provide lower damping than the GA optimization. This therefore means that the PZ distance
criterion induces the convergence towards local optima for the second and third modes while the GA cor-
rectly converges towards the global solutions. Nevertheless, even though the maximization of the damping
is the main objective of the optimization, special attention should be paid to the robustness of the obtained
solutions. More particularly, the robustness to transducer misplacement is of high importance because such
misplacement is indeed common to observe when the SAs are mounted on real-life structures. Consequently,
a sensitivity analysis of the damping with respect to the transducer misplacement can be performed to assess
the robustness of the optimal positions.

The sensitivity analysis is performed as follows: for the three solutions obtained for each mode and with the
two algorithms, the SA pair is moved along the longitudinal axis of the beam around the optimal position. A
misplacement up to 1% of the length of the beam is chosen in both directions, leading to a positioning error
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Figure 5: Convergence of the gradient descent algorithm for the first bending mode for: (a) the SA pair
position, (b) the gain value

interval of±3mm from the optimal positions. Naturally, the optimal gains as well as the control law are kept
without any changes. To ease the visualization and the comparison of the different sensitivities (i.e. between
the three modes and the two algorithms), the relative positioning error ∆x and the relative modal damping
error ∆ξ are introduced as follows:

∆x =
x− xoptimal

L
(5)

∆ξ =
ξ − ξoptimal

ξoptimal
(6)

where ∆x is defined as the ratio between the positioning error and the length of the beam and ∆ξ corre-
sponds to the ratio between the modal deviation and the optimal damping value.

The results obtained with the sensitivity analysis are shown in Figs. 7a and 7b, respectively for the gradient
descent and for the GA convergence. As it can be seen, the optimal positions obtained with the PZ distance
criterion and the gradient descent algorithm show a strong resilience to misplacement. Indeed, the relative
damping error ∆ξ does not exceed 2% over the full misplacement range. On the contrary, the optimal
positions obtained with the GA convergence present a damping error deviation down to 80%, as illustrated
by Fig. 7b. Such deviation can be explained by the fact that the optimal positions found by the GA for the
second and third modes locate in the vicinity of a complete root-locus reshaping due to (1) the pole/zero
cancellation of a surrounding mode and (2) the position of a zero near the pole of the targeted mode. Hence,
as soon as the positioning error reaches such area, the dynamics changes and the damping abruptly drops.

This situation is for example illustrated by Fig. 8 where the maximum reachable modal damping of mode
2 is shown. Such curve has been obtained by extensively computing, for each possible SA position along
the longitudinal axis, the maximum reachable damping obtained with the optimal gain. The starting point
provided to the gradient descent as well as the optimal results obtained with the two algorithms are plotted
as well. As it can be observed, the GA precisely reaches the global optimum while, due to the starting point
obtained with the PZ criterion, the gradient descent algorithm converges to a local optimum. Nevertheless
and as stated, the global optimum obtained with the GA locates right next to a major drop of the damping,
confirming therefore the poor misplacement robustness described by Fig. 7b. Interestingly, the positions that
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Figure 6: Convergence of the GA for the first bending mode for: (a) the SA pair position, (b) the gain value

stand in the vicinity of such a situation are directly rejected by the PZ distance criterion thanks to its third
term which analyzes the dynamics of the adjacent mode, as illustrated by Fig. 2.

Consequently, and although the damping values obtained with the proposed approach are slightly below the
GA ones, they present high robustness to misplacement while ensuring good damping performance because
of the valuable information contained within the criterion.

5 Conclusions

This paper presents a new approach for the determination of the optimal SA position in collocated SISO
systems. This approach is based on the computation of the PZ distance criterion on a limited number of loca-
tions in order to obtain a starting position for the gradient descent optimization algorithm. The PZ distance
criterion is based on the direct link between open-loop PZ distance and closed-loop damping, which ensures
that its solution stands in the vicinity of a high-damping location. This consequently ensures the proper
convergence of the search algorithm while requiring limited iterations. It is numerically proven with the
optimal placement study of a collocated force actuator/displacement sensor pair that the proposed approach
decreases the required number of evaluations up to a factor 10 with respect to the commonly used GA con-
vergence. Moreover, and despite the slightly lower damping values obtained with the proposed approach, it
is shown that the optimal solutions present high robustness with respect to transducer misplacement unlike
the solutions obtained with the GA.
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