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Abstract
Sensor fusion is a technique used to combine sensors with different noise char-
acteristics into a super sensor that has superior noise performance. To achieve
sensor fusion, complementary filters are used in current gravitational-wave
detectors to combine relative displacement sensors and inertial sensors for
active seismic isolation. Complementary filters are a set of digital filters, which
have transfer functions that are summed to unity. Currently, complementary
filters are shaped and tuned manually rather than being optimized. They can
be sub-optimal and hard to reproduce for future detectors. In this paper, H∞
optimization is proposed for synthesizing optimal complementary filters. The
complementary filter design problem is converted into an optimization problem
that seeks minimization of an objective function equivalent to the maximum
difference between the super sensor noise and the lower bound in logarithmic
scale. The method is exemplified with three cases, which simulate the sensor
fusion between a relative displacement sensor and an inertial sensor. In all cases,
the H∞ complementary filters suppress the super sensor noise equally close to
the lower bound at all frequencies in logarithmic scale. The H∞ filters also
provide better suppression of sensor noises compared to complementary filters
pre-designed using traditional methods.
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1. Introduction

Vibration noise, such as seismic noise, is one of the major noise sources for ground-based
large-scale scientific instruments like interferometric gravitational wave detectors. Current
gravitational-wave detectors, such as interferometric gravitational-wave detector like LIGO
[1], Virgo [2], and KAGRA [3, 4], use multi-stage pendulums to suspend the core optics of the
interferometers, passively isolating them from high-frequency external vibration in the detec-
tion band (10–1000 Hz) [5–9]. On top of that, the pendulums are typically mounted on isolation
platforms equipped with sensors and actuators to actively isolating the vibration noise at lower
frequencies (<10 Hz) and damping the resonances of the pendulums [7, 9, 10]. External seis-
mic disturbance, such as the microseism [11], at lower frequencies can cause the suspended
optics to move excessively. This will cause the instruments to misalign, and in severe cases,
result in the temporary shutdown of the detectors. In fact, low frequency seismic noise has ulti-
mately limited the duty cycle of the LIGO and KAGRA detectors [12, 13]. Therefore, active
isolation is extremely important in these large-scale instruments and it remains as an active
research topic in the field of experimental physics.

Active isolation comes with the price of control noise addition. Control noise can be injected
to the detector, compromising the sensitivity of the detector, and must be limited. One way
to reduce the control noise is to lower the noises of the sensors used for feedback control
in active isolation. Recent research has been made to develop low-noise inertial sensors for
active isolation systems in gravitational-wave detectors [14–16]. Inertial sensors can be used
to achieve active isolation. They have good noise performance at higher frequencies but have
poor performance at lower frequencies and could cause isolation platforms to drift. On the other
hand, relative displacement sensors, such as linear variable differential transformers (LVDTs)
used in reference [9], have lower noise at low frequencies. But they only measure relative
displacement so they cannot be used for active isolation. However, it is possible to utilize both
sensors together via a control strategy called sensor fusion. This way, active seismic noise
isolation can be achieved using the inertial sensors without drift.

Sensor fusion is a technique that combines two or more sensors to form a so-called ‘super
sensor’ that can have superior noise characteristics than the individual sensors. In this case,
we assume the sensors to measure a common signal but have individual uncorrelated intrinsic
sensor noises. There are multiple ways to achieve sensor fusion, such as the use of Kalman
filters [17, 18] and complementary filters [19]. In particular, complementary filters have been
widely used in active isolation platforms in gravitational wave detectors [10, 13, 20–26]. Com-
plementary filters are a set of digital filters that can take almost any arbitrary shape so long as
their transfer functions are summed to unity. The design of their shapes is important as it deter-
mines the final noise performance of the super sensor. Although the technique is used in current
gravitational-wave detectors, the design methodology was not thoroughly discussed and the fil-
ters designed were either sub-optimal and were hardly reproducible. While the method will be
adopted by detectors like KAGRA [9] and the Einstein Telescope [27], it would be convenient
to have a method to optimize complementary filters that minimize the noise floor of the super
sensors.
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Past research has used particle swarm optimization to design sensor correction filters at
LIGO [28]. And, it was already shown that the detector can benefit from improving control filter
designs. While numerical optimization approaches can be used to optimize complementary
filters and other control filters, there are certain limitations. The numerical approach requires
control filters to take a specified form of transfer function, e.g. 4 pairs of complex poles and
three pairs of complex zeros in reference [28]. This effectively limits the full parameter space
to a much smaller subspace for optimization. This is because control filters can have almost
any arbitrary number of simple and complex poles and zeros as long as it is stable and proper.
This would mean that filters from such an optimization approach may not truly be optimal, if
the optimal filter does not fall into the subspace that the numerical optimization takes place.

Recently, a complementary filter shaping method using H∞ synthesis was proposed [29].
In the work, it was shown that H∞ methods can be used to optimize complementary filters that
satisfy frequency-dependent filter shape specifications. In contrast to numerical optimization
approaches, H∞ optimization assumes no predefined structure of the filters. In this paper, we
will extend the idea and propose to use H∞ methods to synthesize optimal complementary
filters in such a way the super sensor noise is minimized.

This paper is structured as follows. Section 2 gives an overview to the sensor fusion tech-
nique using complementary filters and introduces H∞ methods for complementary filter opti-
mization. In section 3, the optimization of complementary filters for the fusion of typical
sensors used in active isolation platforms of gravitational-wave detectors is demonstrated. In
section 4, some discussions regarding the proposed method, limitations, and future works are
noted. In section 5, a summary of this paper is given.

2. Methodology

2.1. Sensor fusion using complementary filters

Without loss of generality, let us define complementary filters to be a set of filters whose transfer
functions are summed to unity, i.e.

∑
i

Hi(s) = 1, (1)

where Hi is the transfer function of the ith filter, and s is a complex variable. Each complemen-
tary filter is filtering the output of the individual sensors and the filtered signals are summed.
The super sensor readout Xsuper(s) is therefore given by

Xsuper(s) =
∑

i

Hi(s)Xi(s), (2)

where Xi(s) is the sensor readout of the ith sensor. Each sensor is modeled as having additive
sensing noise Ni(s). So, each sensor readout Xi(s) reads

Xi(s) = X(s) + Ni(s), (3)

where X(s) is the common signal that the sensors are all measuring. Substituting equations (1)
and (3) into equation (2), we get

Xsuper(s) = X(s) +
∑

i

Hi(s)Ni(s). (4)
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Figure 1. Generalized plant representation.

The super sensor readout Xsuper(s) is then equal to the common signal X(s) plus the noise of
each sensor filtered out by the complementary filters. As the sensors have intrinsic noise Ni(s)
with different frequency content, the goal of sensor fusion is to design a set of complementary
filters Hi(s) that achieve optimal trade-off between these sensor noises at different frequencies.

2.2. H∞ synthesis

In H∞ methods [30], a system is specified in the generalized plant representation as shown in
figure 1.

The augmented plant P has two inputs and two outputs. The inputs w and u are the exoge-
nous inputs and the manipulated variables respectively. And, the outputs z and v are the error
signals and the measurements respectively. Note that these variables are vector valued in
general.

In the open loop configuration, the input–output relation reads(
z
v

)
= P(s)

(
w
u

)
=

[
P11(s) P12(s)
P21(s) P22(s)

](
w
u

)
. (5)

When the loop is closed, the manipulated inputs u are generated from the measured output v
via a regulator K(s),

u = K(s)v. (6)

In such configuration, the input–output relation becomes

z =
[
P11(s) + P12(s)K(s)(I − P22(s)K(s))−1P21(s)

]
w, (7)

and the closed loop transfer function matrix is defined as

G(s;K(s)) ≡ P11(s) + P12(s)K(s)(I − P22(s)K(s))−1P21(s), (8)

where I is the identity matrix.
H∞ methods are used to synthesize H∞-optimal controllers for feedback systems.

H∞-optimal controller are stabilizing regulator that minimizes the H∞ norm of the close-loop
transfer function G(s; K(s)). So, the H∞ optimal controller can be seen as

K∞(s) = arg min
K(s)∈K

‖G(s;K(s))‖∞, (9)

4



Class. Quantum Grav. 39 (2022) 185007 T T L Tsang et al

Figure 2. Block diagram of a two-sensor complementary filter configuration.

where K is the set of all controllers such that the closed-loop transfer function is stable and
‖ · ‖∞ denotes the H∞ norm of a transfer function. The H∞ norm is defined as

‖G(s;K(s))‖∞ = sup
ω

σ̄(G( jω;K(s))), (10)

where ω is the angular frequency, j is the imaginary number, and σ̄(·) denotes the maximum
singular value.

There are a few ways to approach H∞-optimal controller, including Riccati-based methods
[31] and LMI-based (linear matrix inequality) methods [32]. In this work, theH∞ problems are
solved using H∞ synthesis function control.hinfsyn() in the Python Control Systems
library control [33]. This function is a Python wrapper for SLICOT [34] Fortran subroutine
SB10AD, which is a function that computes H∞ optimal controller using a modified version
of the Riccati-based method [35]. The complementary filter synthesis method is also made
available with an open-source Python package called Kontrol [36].

2.3. Complementary filter problem as an H∞ synthesis problem

Consider a two sensors configuration shown in figure 2. Two sensors are reading the same
signal X(s) but with different sensing noises, i.e. N1(s) and N2(s). The two sensor readouts are
filtered by complementary filters H1(s) and H2(s), respectively. The filtered signals are summed
eventually to become a super sensor which has the noise term

Nsuper(s) = H1(s)N1(s) + H2(s)N2(s), (11)

where Nsuper(s) is the sensing noise of the super sensor.
To convert the complementary filter synthesis problem to an H∞ problem, it has to be

expressed with the generalized plant representation as shown in figure 1. The generalized plant
representation of a two-sensor complementary filter configuration is shown in figure 3.

The exogenous inputs w = (w1,w2)T in figure 3 are arbitrary Gaussian processes that have
flat unitary amplitude spectral density. Ñ1(s) and Ñ2(s) are transfer functions used to model the
sensor noises N1(s) and N2(s) respectively. The amplitude spectral densities (ASDs) of N1(s)
and N2(s) are represented by the magnitude of these transfer functions, i.e.

NASD
1 (ω) =

∣∣Ñ1( jω)
∣∣, (12)

NASD
2 (ω) =

∣∣Ñ2( jω)
∣∣, (13)

where NASD
1 (ω) and NASD

2 (ω) are the ASDs of the sensor noises N1(s) and N2(s). W1(s) and
W2(s) are pre-compensators, which can be shaped to specify the frequency-dependent spec-
ifications of the filtered sensor noises. Here, the regulator of the plant is H1(s), which is the
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Figure 3. Complementary filter configuration augmented as a generalized plant.

complementary filter for filtering the sensor noise N1(s). The open-loop transfer matrix of the
augmented plant is

P(s) =

[
0 Ñ2(s)W2(s) 1

Ñ1(s)W1(s) −Ñ2(s)W2(s) 0

]
. (14)

And, the closed-loop transfer function matrix is

G(s) =
[
H1(s)Ñ1(s)W1(s) (1 − H1(s))Ñ2(s)W2(s)

]
. (15)

Consider the simplest case with W1(s) = W2(s) = 1, and noting that H2(s) = 1 − H1(s),
the output of the augmented plant in figure 3 has an amplitude spectral density equal to that
of the super sensor noise in equation (11). Using the plant with W1(s) = W2(s) = 1 for H2

synthesis will give complementary filters that minimize the H2 norm, which is equivalent to
the expected root mean square (RMS) value of the super sensor noise. This application may
not be particularly useful as the RMS of the super sensor noise is usually dominated by the
low-frequency intrinsic sensor noise of the inertial sensor. As a consequence, the H2 super
sensor may not benefit from low noise level of the inertial sensor at high frequency. While this
configuration can be useful for some applications, we seek for optimal complementary filters
that can reduce both sensor noises at all frequencies, where the level of sensor noises span a
few orders of magnitude. H∞ optimization can be a solution to this problem. This is because
the weights W1(s) and W2(s) can be specified as the reciprocal of the frequency-dependent
upper bounds of the filtered sensor noises H1(s)Ñ1(s) and H2(s)Ñ2(s), respectively. Choosing
the weights this way is similar to a standard mixed-sensitivity H∞ control problem [37] where
the weights can be used to specify the upper bounds of the closed-loop sensitivity functions of
a feedback system. In contrast, the weights do not have special meanings in the context of an
H2 problem.

To see how the weights can be chosen such that the super sensor noise is close to the lower
bound at all frequencies, one cost function that would be interesting in particular is

J(H1( jω)) = max
ω

(
log NASD

super(ω; H1( jω)) − log NASD
min (ω)

)
, (16)

where NASD
super(ω; H1(s)) is the ASD of the super sensor noise and NASD

min (ω) is the ASD of the
lower bound of the super sensor noise, defined as

6
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NASD
min (ω) ≡ min

(
NASD

1 (ω), NASD
2 (ω)

)
. (17)

Minimization of the cost function equation (16) would give optimal complementary filters
H1(s) and H2(s) ≡ 1 − H1(s) that best suppress the super sensor noise equally close to the
lower bound at all frequencies in logarithmic scale.

To convert this cost function to the objective of the H∞ problem, consider the frequency
region where NASD

1 (ω) � NASD
2 (ω). In this case, the super sensor noise in equation (16) could

be approximated by

NASD
super(ω) ≈ |H1( jω)|

∣∣Ñ1( jω)
∣∣, (18)

and the lower bound of the sensor noise is

NASD
min (ω) =

∣∣Ñ2( jω)
∣∣. (19)

Substituting equations (18) and (19) into equation (16), we get

J(H1(s)) ≈ max
ω

(
log

|H1( jω)|
∣∣Ñ1( jω)

∣∣∣∣Ñ2( jω)
∣∣

)
. (20)

Minimizing this is equivalent to minimizing a similar cost function without the logarithm, i.e.

J′(H1( jω)) = max
ω

(
|H1( jω)|

∣∣Ñ1( jω)
∣∣∣∣Ñ2( jω)

∣∣
)
. (21)

Now, let us find pre-compensators W1(s) and W2(s) such that the H∞ synthesis of the gen-
eralized plant in figure 3 is equivalent as to minimizing the cost function (21). Assuming that
W1(s) and W2(s) are set such that the magnitude of the first term in equation (15) is much
greater than the second term, the H∞ norm of the closed-loop transfer function G(s) could be
approximated as

‖G(s)‖∞ ≈ max
ω

(
|H1( jω)|

∣∣Ñ1( jω)
∣∣|W1( jω)|

)
. (22)

Comparing equations (21) and (22), it is obvious that if W1(s) = 1/Ñ2(s), the two cost func-
tions become equivalent to each other. A similar argument can be made for the case NASD

2 (ω) �
NASD

1 (ω), which gives W2(s) = 1/Ñ1(s). Therefore, by setting the weighting functions W1(s) =
1/Ñ2(s) and W2(s) = 1/Ñ1(s), the H∞ norm of the plant in figure 3 is approximately equal
to maximum difference between the ASD of the super sensor noise and its lower bound, as
described by equation (16). It follows that H∞ synthesis will give an optimal filter H1(s)
while its complementary filter can be obtained from the complementary condition, i.e. H2(s) ≡
1 − H1(s).

There is another simpler explanation behind these weighting functions W1(s) = 1/Ñ2(s) and
W2(s) = 1/Ñ1(s). Again, the weighting functions W1(s) and W2(s) can be thought as inverse
frequency-dependent specifications of the sensor noises N1(s) and N2(s), respectively [29].
When |N1( jω)| > |N2( jω)|, the target specification for N1(s) is N2(s) but not lower. Any specifi-
cation lower than that would be over-compensating as the super sensor noise will be dominated
by the higher one. Again, the same argument can be made for N2(s). And, it follows that the
weighting functions should be set as W1(s) = 1/Ñ2(s) and W2(s) = 1/Ñ1(s), if there are no
specific requirements for the sensor noises.

7
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2.4. Sensor noise modeling

To fully specify the generalized plant for a complementary filter sensor fusion configuration
shown in figure 3, Ñ1(s) and Ñ2(s) must be specified. They are the transfer function models
whose norms are shaped to fit the ASDs of the sensor noises NASD

1 (ω) and NASD
2 (ω), as in

equation (13). This problem can be as simple as a curve fitting problem but with one caveat.
That is, the inverse of the transfer function models must be stable, minimum-phase, and proper
as their inverse will be invoked. This restricts the transfer function models to acquire the
same number of zeros and poles, all with negative real parts, meaning that they will have flat
responses at very low and very high frequencies. This should not be a problem so long as the
features of the sensor noises are modeled within a frequency of interest.

There are a few ways to model noise spectral densities but this is not the main purpose of
this paper. For the completeness of the complementary filter method, a simple but effective
method is provided to model the sensor noises. But, readers are free to model the sensor noises
using their own method as long as the method results in transfer function models with norms
that fit well with the ASDs of the sensor noises in question. Also note that, as is the case for
any H∞ problems, the solution to the H∞ synthesis problem is only optimal relative to the
cost function specified. This means that the complementary filters synthesized this way will be
optimal relative to the modeled sensor noises, but not necessarily the real sensor noises.

We begin with a generic polynomial transfer function model

F(s; ai, bi) =

∑n
i=0 bisi∑n
i=0 aisi

, (23)

where ai and bi are the coefficients of the polynomial and n is the order of the transfer function.
The goal is to find optimal parameters that minimizes a cost function

Jnoise(ai, bi) =
M∑

m=1

(
log |F( jωm; ai, bi)| − log N(ωm)

)2
, (24)

where m = 1, 2, 3, . . . , M, M is the number of data points, ωm are the frequency values of the
sensor noise data, and N(ωm) is the ASD of the sensor noise. As is mentioned, the transfer
function models need to have flat responses at very low and very high frequencies. It is useful
to pad the data with flat lines below and above the measurement frequencies.

To minimize the cost function in equation (24), local minimization methods are recom-
mended because the parameters ai and bi are usually not well bounded. For the same reason, it
is recommended to replace ai and bi with 10log ai and 10log bi in equation (23) and optimize log ai

and log bi instead, as the parameters could vary with large orders of magnitude. Local mini-
mization methods, such as the Nelder–Mead method [38] and Powell’s method [39], require
initial specifications of the parameters, which can be hard to obtain.

As an intermediate step, consider a zero-pole-gain (ZPK) model

FZPK(s; zi, pi, k) = k

∏n
i=1s − zi∏n
i=1s − pi

, (25)

where zi and pi are negative real-valued zeros and poles of the transfer function, and k is the gain
of the transfer function. These zeros and poles are corner-frequencies where the amplitude fre-
quency response changes slope by 20 decibels per decade. They can be easily added and tuned
manually to lay out the general shape of the model that fits the sensor noise data. Alternatively,
it is possible to replace F(s; ai, bi) in equation (24) with the ZPK model FZPK(s; zi, pi, k) and
use global optimization methods, such as differential evolution [40], to find the zeros and poles.

8
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This is possible since the zeros and poles are expected to be bounded within frequency space of
the measured sensor noise data. Again, it is recommended to fit log zi and log pi instead due to
their large dynamic range. After obtaining a ZPK model, it can be expanded to the polynomial
form to obtain the initial coefficients for the transfer function model equation (23) used for the
local minimization of equation (24). At last, all non-negative real parts of the zeros and poles
must be negated to obtain the final stable, minimum-phase, proper transfer function that fits
the ASD of the sensor noise.

The choice of the transfer function order n during the ZPK fitting depends on the frequency
dependency of the noise profile. In general, this order needs to be higher than the most signif-
icant frequency dependency of the noise. For example, if the ASD of the sensor noise has a
1/ f −3.5 dependency, a choice of n = 4 would be a reasonable (and often sufficient) choice for
initialization. Increasing n would necessarily lead to a better fit of the noise spectrum. How-
ever, in practice, it was shown a choice of an excessive n would lead to pole-zero cancellation at
irrelevant frequencies during the transfer function fit, which are useless features for the model.
This is typically a good termination point when trying with different n.

3. Results

In this section, the proposed H∞ method is used to synthesize three different pairs of sensors.
The sensors to be considered are LVDTs and geophones, which are commonly used in active
isolation systems in current gravitational-wave detectors. The three configurations are

(a) LVDT and geophone with sensor noises estimated from reference [23].
(b) LVDT with seismic noise coupling and geophone.
(c) Hypothetical LVDT-like and geophone-like sensors.

Again, the H∞ complementary filters are obtained by H∞ synthesis, which seek an optimal
filter H1(s) that optimized the H∞ norm, equation (10), of the closed loop transfer matrix
defined by equation (15).

3.1. Sensor fusion of a relative displacement sensor and an inertial sensor

In this section, the proposed method will be demonstrated by synthesizing complementary
filters for blending an LVDT and a geophone, referred to as sensor 1 and sensor 2, respectively.
The sensor noises are taken from figure 5.8 in reference [23], and can be well described by
equation (26).

NASD( f ; na, nb, a, b) =

[(
na

f a

)2

+

(
nb

f b

)2
] 1

2
μm√

Hz
, (26)

where f is frequency in Hz, na, nb, a, and b are some parameters of the model. For demon-
stration, the parameters are chosen by a graphical estimation from a figure shown in reference
[23]. The parameters for the two sensors are summarized in table 1.

The ASDs of the sensor noises and their transfer function models are shown in figure 4.
In this case, sensor noise 1 is fitted with a 3rd-order transfer function while sensor noise 2 is
fitted with a 4th-order one. The selection of the two transfer function orders is based of the
exponents a and b of each sensor noise profile as shown in table 1. The order are chosen to be
the smallest integer that is larger than both a and b.

As shown in figure 4, the amplitude responses of the transfer functions fit well to the ASD
of the sensor noises.

9
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Table 1. LVDT and geophone intrinsic noise parameters.

Sensor na nb a b

LVDT 10−2.07 10−2.3 0.5 0
Geophone 10−5.46 10−5.23 3.5 1

Figure 4. Amplitude spectral densities of the sensor noises and the transfer function
models. Blue solid: LVDT intrinsic noise. Orange dash-dot: transfer function model of
the LVDT noise. Green dashed: geophone intrinsic noise. Red dotted: transfer function
model of geophone noise.

The transfer functions are used to synthesize complementary filters according to the pro-
posed method. The complementary filters synthesized usingH∞ method are shown in figure 5.

Using the synthesized filters H1(s) and H2(s) ≡ 1 − H1(s), the amplitude spectral density
of super sensor noise is predicted by

NASD
super(ω) =

[∣∣H1( jω)NASD
1 (ω)

∣∣2
+

∣∣H2( jω)NASD
2 (ω)

∣∣2
] 1

2
. (27)

The predicted ASD of the super sensor noise is shown in figure 6. As can be seen, the super
sensor noise is equally close to the lower bound in logarithmic sense at all frequencies, as
expected.

3.2. Sensor fusion for a seismic-noise-coupled relative displacement sensor and an inertial
sensor

In this section, the sensor fusion of a seismic-noise-coupled displacement sensor (LVDT) and
an inertial sensor (geophone) is demonstrated and compared.

LVDTs are relative displacement sensors. When they are used on the first stage of an active
isolation platform, they read relative displacements between the suspended platform and the
ground. The ground motion in the LVDT readout is an unwanted signal for active isolation.
Therefore, the seismic noise is often considered a part of the LVDT noise. The seismic noise
features a peak around 0.1–0.5 Hz, which correspond to the secondary microseisms. If this is
not filtered, the microseismic disturbance cannot be actively attenuated. Or, in the worst case,

10



Class. Quantum Grav. 39 (2022) 185007 T T L Tsang et al

Figure 5. Complementary filters. Blue: low-pass filter for the LVDT. Orange: high-pass
filter for the geophone.

Figure 6. Amplitude spectral densities of the sensor noises. Blue solid: LVDT noise
model. Orange: geophone noise model. Green dashed: predicted super sensor noise.

the seismic noise will be injected to the isolation platform. Pre-designed complementary filters
lack a quality that effectively suppresses the microseism while the H∞ method can take the
microseismic peak into account and optimize filters that can better attenuate the seismic noise.
To take seismic noise into account, the LVDT noise model is reused from section 3.1 but is
multiplied by a transfer function:

Nseis(s) =
4∏

i=1

1
ω2

i
s2 + 1

ωi
s + 1

1
ω2

i
s2 + 1

ωiqi
s + 1

, (28)

where ωi = 2π × {0.15, 0.2, 0.25, 0.3} rad s−1, and qi = 3. This will simulate a microseismic
peak around 0.2 Hz.
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Figure 7. Amplitude spectral densities of the sensor noises and the transfer function
models. Blue solid: original intrinsic LVDT noise. Orange dashed: transfer function
model of the seismic-noise coupled LVDT sensor noise. Green dash-dot: transfer func-
tion model of the geophone noise.

Figure 8. Complementary filters. Blue solid: low-pass filter for seismic noise-coupled
LVDT, synthesized using H∞ method. Orange solid: high-pass filter for geophone, syn-
thesized using H∞ method. Green dashed: pre-designed low-pass filter for the seismic
noise-coupled LVDT. Red dashed: pre-designed high-pass filter for the geophone.

The other sensor to be blended with this LVDT sensor is the geophone used in section 3.1.
The sensor noise models are shown in figure 7. The transfer function models of the seismic-
noise-coupled LVDT noise and the geophone noise are used to synthesize optimal complemen-
tary filters shown in figure 8 (blue and orange solid lines).

The pre-designed complementary filters to be compared with are 7th-order filters with
4th-order roll-off. These filters were pre-designed specifically to use with this sensor fusion
configuration in reference [23]. The filters were chosen to suppress the inertial sensing noise,

12
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Figure 9. Sensor sensor noise. Blue solid: seismic-noise-coupled LVDT noise model.
Orange solid: geophone noise model. Green dashed: super sensor with H∞-optimal
complementary filters.

which has a frequency dependency of f −3.5 at low frequency. There is only one design param-
eter for the pre-designed filter, that is, the blending frequency. The blending frequency in this
case is chosen to be at the crossover frequency between the LVDT and geophone noise, as
advised in reference [23]. In this case, the blending frequency of the pre-designed filters is
64.47 mHz. The pre-designed complementary filters are also shown in figure 8 (greed dashed
and red dash-dot lines).

As can be seen, the low-pass filter (blue solid line in figure 8)) generated using the pro-
posed H∞ method has a notch feature around 0.1–0.3 Hz. Compared to the pre-designed
filter, this provides significantly higher seismic noise attenuation around the microseismic fre-
quency. Conventionally, the additional notch features in the low-pass filter were artificially
added. Example filters can be found in references [10, 25]. In contrast, the notch feature is a
natural result of the H∞ optimization.

Figure 9 shows the predicted super sensor noise performance using the H∞-optimal com-
plementary filters.. As can be seen, the noise of the H∞ super sensor kept an amplitude spectral
density close to the lower bound at all frequencies, including the frequency range of the seismic
noise peak.

In figure 10, the noise performances of the super sensor using H∞ filters and the pre-
designed filters are compared. The expected RMS values of the sensor noises are for com-
parison and it is defined as

NRMS( f ) =

[∫ ∞

f
NASD( f ′)2 d f ′

] 1
2

, (29)

where NASD( f ) is the amplitude spectral density of the sensor noise. The expected RMS value
of each super sensor noise is shown as blue dashed line and orange dashed line in figure 10. In
this case, the expected RMS integrated from 10 Hz to 0.01 Hz. The expected RMS of the H∞
and pre-designed super sensors are 0.068 36 μm and 0.094 03 μm, respectively. Note that these
values are one type of performance indexes only and no definitive conclusions should be made
as long as they fall into the same order of magnitude. Moreover, the cost function of the H∞

13



Class. Quantum Grav. 39 (2022) 185007 T T L Tsang et al

Figure 10. Sensor sensor noise comparison. Blue solid: noise of the super sensor using
H∞ complementary filters. Blue dashed: expected RMS value of the H∞ super sensor
noise. Orange solid: noise of the super sensor using pre-designed complementary filters.
Orange dashed: expected RMS value of the pre-designed super sensor.

optimization is not necessarily related to the expected RMS. Therefore, there is no guarantee
that the H∞ super sensors will always have a lower noise level in terms of the expected RMS.
To minimize the expected RMS, H2 synthesis could be used instead but this is not the purpose
of this paper.

One way to evaluate the seismic attenuation performance of the sensor sensors would be
comparing the suppression ratio between the original LVDT noise and the super sensor noises
at the microseismic peak. In this particular example, the peak of the LVDT noise spectrum is
located at 0.231 Hz and the noise level is 0.2829μm/

√
Hz. At the microseismic peak, the ASDs

of theH∞ super sensor noise and the pre-designed super sensor noise read 0.004 499μm/
√

Hz
and 0.046 14 μm/

√
Hz, respectively. They offer a suppression ratio of 62.89 and 6.131 for the

H∞ case and the pre-designed case, respectively. This means the H∞ filters provide more than
an order of magnitude attenuation of microseismic noise compared to the pre-designed filters.

3.3. Sensor fusion of hypothetical relative displacement sensor and inertial sensors

There are many types of sensors that can be used to achieve sensor fusion in active isolation
systems. They all contain different sensor noise profiles and undoubtedly would require differ-
ent sets of complementary filters if they are used in a sensor fusion configuration. Generally,
reusing complementary filters from another sensor configuration would lead to sub-optimal
performance or even lead to unnecessary noise amplification. Therefore, complementary fil-
ters must be redesigned for new sensor configurations and the proposed H∞ method provides
a convenient way to do so.

To exemplify this, two new sensor noise profiles are considered in this section. The ASD of
the two sensor noise profiles are simply

NASD
1 ( f ) = 1

μm√
Hz

(30)

14



Class. Quantum Grav. 39 (2022) 185007 T T L Tsang et al

Figure 11. Sensor noise. Blue solid: sensor 1. Orange dash-dot: transfer function model
of sensor 1 noise. Green dashed: sensor 2. Red dotted: transfer function model of
sensor 2.

Figure 12. Complementary filters. Blue solid: low-pass filter for sensor 1, synthesized
using H∞ method. Orange solid: high-pass filter for sensor 2, synthesized using H∞
method. Green dashed: pre-designed low-pass filter. Red dashed: pre-designed high-pass
filter.

and

NASD
2 ( f ) =

0.1
f

μm√
Hz

. (31)

Figure 11 shows the ASDs of the hypothetical sensor noises.
Complementary filters were synthesized using the proposedH∞ method and they are shown

in figure 12 together with the pre-designed filters. The pre-designed filters have the same shape
as those in figure 8 but with a new blending frequency at 0.1 Hz, i.e. where the two sensor noises
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Figure 13. Sensor sensor noise. Green dashed: super sensor with H∞-optimal comple-
mentary filters. Red dash-dot: super sensor with pre-designed complementary filters.

meet. As shown in the figure, the H∞-optimal filters have a milder roll-off and with no noise
amplification around the blending frequency.

The predicted noise performances of the super sensors are shown in figure 13. As can be
seen, the super sensor fused with H∞-optimal filter has sensor noise almost indistinguish-
able from the lower bound at all frequencies. Meanwhile, the super sensor fused with the
pre-designed filter has a noise peak of 4.457 μm/

√
Hz at around the blending frequency at

0.1 Hz, amplifying the noise. This is a result of over-suppression at lower and higher frequen-
cies, which is one problem that the H∞ method aims to avoid. This makes the pre-designed
filter relatively unsuitable for this particular sensor configuration. In comparison, theH∞ super
sensor has a maximum noise amplification of 1.397 times, and the maximum ASD of the noise
is 1.397 μm/

√
Hz at 0.01 Hz.

4. Discussions

Using the proposed method, it is possible to synthesize optimal complementary filters that best
suppress the super sensor noise equally close to the lower bound at all frequencies in logarith-
mic scale. Unlike pre-designed filters, the method allows one to make complementary filters
that work with any arbitrary sensor, as long as the sensor noise can be modeled. Optimal com-
plementary filters can be generated from only the sensor noises themselves. In all the results
shown, the complementary filters generated fromH∞ optimization performed better, compared
to the pre-designed ones. And, the H∞ method provides a new way of optimizing complemen-
tary filters for virtually any type of sensor fusion configurations. This will be extremely useful
for future detectors such as the Einstein Telescope.

The method is able to produce complementary filters with special features, such as notches,
to cope with the special noise characteristics in sensors. In a conventional filter shaping process,
these special features would need to be added manually by control experts based on practical
experience. This would make the filters arguably sub-optimal, and most importantly, not repro-
ducible. But, with the proposed method, the features automatically appear in a natural way as a
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result of optimization. None or little human intervention is required in the whole synthesis pro-
cess. Also because of this, this opens up the possibility of rolling-update of control filters where
filters are synthesized automatically in real-time according to changes in the environment, e.g.
changes in seismic noise.

To use the H∞ method, one requires to model the frequency content of the sensor noises
as transfer functions. For other methods, an empirical model may suffice. Modeling noise
spectrum with transfer functions can be difficult as the amplitude spectrum of sensor noises
typically has fractional frequency-dependency, such as 1/ f 3.5. This is not well represented by
transfer functions since the transfer functions typically have integer order corresponding to the
number of zeros and poles of the underlying system. One needs to use a higher-order transfer
function to represent a sensor noise that has a lower-order fractional frequency-dependency, as
is done in section 3.1. As a consequence, the noise models fluctuate with a small magnitude
around the sensor noises as shown in figure 5. It should be noted that the error in modeling is
small compared to the relative difference between the two sensor noises. This type of error in
modeling may not be significant as the important quantity in the cost function is the relative
difference between the noises. In this case, the super sensor would be sub-optimal in the sense
that the super sensor noise fluctuates, with a small magnitude, around the truly optimal one.
Another source of modeling error is measurement error, i.e. the model is fitted to a measure-
ment that does not capture the real frequency content of the sensor noise. This error is common
to all methods. This is not an exclusive problem of the H∞ problem and must be solved inde-
pendently as a modeling problem. The error in modeling may not have a significant effect on
the design of the feedback controller for active isolation since they are separate processes. The
real super sensor noise can always be estimated or measured so the controller designer can
design controllers around the real data.

There are a few problems that need to be addressed for practical implementation of com-
plementary filters. These problems are not necessarily exclusive to the H∞ approach, but will
cause degradation to the H∞ filters, making them less than optimal. The inter-calibration and
alignment between the sensors need to be done well, or else the super sensor response will
not be unity. Moreover, the inertial sensors often require a calibration filter that represents
their inverse dynamics. Mismodeling of the inverse dynamics leads to frequency-dependent
calibration mismatch between the inertial sensors and other sensors, which will also cause
the super sensor response to be distorted. The inertial sensor readouts also require substantial
prefiltering at an early stage in the control signal path to avoid overflow at low frequency
due to integration. The prefilters add additional attenuation on top of one of the comple-
mentary filters, effectively making the complementary filters not complementary. All of these
could cause spurious responses in the control system that could lead to limited control perfor-
mance or even lead to instability. A post processing treatment of the complementary filters
to account for prefilters is proposed in reference [24]. However, the treatment could ruin
the result of the H∞ optimization and hence is not preferred. A future paper will focus on
the practical implementation of the H∞ complementary filters along with the experimental
results.

The proposed H∞ method complements some existing control strategies in active isolation
systems in current gravitational-wave detectors. A control strategy was used in LIGO called
‘earthquake mode’ where a pre-designed filter is swapped with another one when there is an
anticipated earthquake that could cause a lock-loss of the interferometer [13, 22]. These fil-
ters were made without any information of the upcoming earthquake or seismic noise, which
means the filters could again be sub-optimal. But with the proposed method, the filters can
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be synthesized in real-time, making the active isolation truly adaptive to the environment and
ultimately increasing the duty cycle of the detector.

Active isolation systems in GW detectors use many control filters other than complemen-
tary filters that to achieve active alignment control and seismic isolation. Some examples would
be the sensor correction filter, the seismometer feedforward filter, and the feedback controller,
which are all used in LIGO [10, 28]. Sensor correction filter is a filter used in LIGO that applies
on a seismometer, which is used to remove seismic noise coupling from relative displacement
sensors, making them available for seismic isolation via feedback control. Seismometer feed-
forward filter is a similar filter but is used for cancellation of the seismic noise by feeding
seismometer signal to actuators. Feedback controllers are digital filters that convert sensing
signals to actuation signals to achieve feedback control, which minimizes the displacement
level of a controlled platform to achieve active isolation. While not shown in this paper, we
claim that all of these filter design problems can be treated as a complementary filter design
problem because they are all optimization problems seeking an optimal trade-off between two
frequency dependent quantities such as seismic noise and sensor noise. So, they can all be
solved using the method provided for synthesizing complementary filters. These problems will
be solved and demonstrated in future work.

Although it is shown that optimal complementary filters can be synthesized for a sensor
fusion configuration with two sensors, active isolation systems can utilize even more sensors.
For example, some active isolation platforms in LIGO are equipped with relative displacement
sensors, geophones, and seismometers [10]. This requires a low-pass filter, a band-pass filter,
and a high-pass filter for sensor fusion of these three sensors. Although it was shown that
H∞ methods can be used for synthesizing complementary filters for any arbitrary number of
sensors if frequency-dependent specifications are given [29], the minimization of super sensor
noise in a three-sensor configuration was not. Therefore, it remains as a future work and will
be studied as an extension of this paper.

5. Conclusion

Sensor fusion is a technique that combines multiple sensors into one super sensor that has
better noise performance. Complementary filters are used for sensor fusion in active isolation
systems in gravitational-wave detectors. While conventional designs of complementary filters
can be sub-optimal and irreproducible, a method is proposed to synthesize complementary fil-
ters in the H∞-optimal sense. The generated complementary filters minimize the noise of the
super sensor at all frequencies, making it equally close to the lower bound at all frequencies
in the logarithmic sense. The proposed method only uses information of the sensor noise and
requires minimal human intervention. The effectiveness of the synthesis was demonstrated in
sensor fusion application using typical noises of sensors used in current gravitational wave
detectors. It was shown that the method gives complementary filters that perform better than a
pre-designed one and necessary features in the filters, such as notches, can be generated natu-
rally as a result of optimization. Also, it was shown that pre-designed filters cannot be reused
in a new environment while this method adapts and makes new complementary filters that are
optimized for the new environment. Other control problems in active isolation systems, such
as sensor correction, feedforward, and feedback control problems, can be treated as comple-
mentary filter problems and hence can be solved using the same method. With the H∞ method,
current GW detectors can be benefited from improved control performance and optimal con-
trol filters for active isolation can be designed easily for upcoming GW detectors such as the
Einstein Telescope.
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