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Members
Prof. Guillaume DRION

University of Liège
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Abstract

One of the key roles of structural engineering is to describe how
a structure vibrates, or “responds”, when a dynamic load, or “ex-
citation”, is applied to it. Often, the assumption of linear behavior
is adopted, meaning that the response to a combination of excita-
tion signals is the combination of the responses to the signals taken
individually. When this assumption does not hold, complex dynam-
ical phenomena can arise, including the coexistence of multiple re-
sponses for the same excitation, the sudden transition from one such
response to another, or responses that are not stable. They render
the experimental interrogation of engineering structures particularly
challenging. An emerging family of testing methods, termed control-
based methods, uses feedback loops and controllers to make the in-
terrogation exhaustive and predictable. In this context, this the-
sis investigates carefully two recently-introduced methods, namely
control-based continuation during which the excitation is corrected
or generated by a controller, and phase-locked loop testing which
imposes the phase lag between the response and the excitation using
feedback control. In the first part of the thesis, we aim to deepen the
understanding of control-based methods with the objective to design
and tune experiments more systematically, reducing the need for trial
and error. In the second part of the thesis, new developments ex-
ploiting adaptive filtering are carried out to expand the capabilities
of both control-based continuation and phase-locked loop testing,
but also to tackle dynamical features that were never identified ex-
perimentally before. Finally, this thesis opens the way towards more
robust control-based methods and, eventually, to their industrial ap-
plication.
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Résumé

Un des buts premiers de l’ingénierie des structures est de décrire
comment une structure vibre, ou “répond”, lorsqu’une charge dy-
namique, ou “excitation”, lui est appliquée. Souvent, l’hypothèse de
comportement dynamique linéaire est adoptée : la réponse à une
combinaison d’excitations est la combinaison des réponses aux ex-
citations prises individuellement. Quand cette hypothèse n’est pas
vérifiée, des phénomènes dynamiques complexes peuvent se produire
comme, par exemple, la coexistence de plusieurs réponses à la même
excitation, la transition subite d’une de ces réponses à une autre
ou des réponses qui ne sont pas stables. Ces phénomènes rendent
l’interrogation expérimentale des structures particulièrement diffi-
cile. De nouvelles méthodes basées sur le contrôle et utilisant des
boucles de rétroaction sont apparues pour rendre l’interrogation ex-
haustive et prévisible. Dans ce contexte, cette thèse étudie en détail
deux méthodes récemment introduites : la continuation basée sur le
contrôle durant laquelle l’excitation est corrigée ou générée par un
contrôleur et les tests en boucle à verrouillage de phase avec une
boucle de rétroaction imposant le retard de phase entre la réponse
et l’excitation. La première partie de cette thèse vise à approfondir la
compréhension de ces méthodes afin de concevoir les expériences plus
efficacement, notamment en diminuant le recours à des essais-erreurs.
La seconde partie exploite le filtrage adaptatif pour étendre le champ
d’action des méthodes ainsi que pour étudier des phénomènes dy-
namiques qui n’ont jamais été identifiés expérimentalement de cette
manière. Finalement, cette thèse ouvre la voie à des méthodes basées
sur le contrôle plus robustes et, un jour, à leur application indus-
trielle.
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Bruls. I thank them for the time they invested in following this project.

... all of the above, including Guillaume Drion, Ludovic Renson, and
Malte Krack for taking part in my thesis jury. I hope this work will spark
their interest.

... Ludovic Renson. He generously invited me for a two-months research
stay in his research lab in Bristol. A great deal of my expertise with CBC
exists thanks to him.

... Malte Krack, Florian Müller, Maren Scheel, and everyone from their
lab. I had a warm welcome for my short research stay in Stuttgart. Another
great deal of my expertise in PLL emanated from me working with Maren,
Florian, and Malte.

... Florian Müller, Erhan Ferhatoglu, the trainees, and the mentors
at the TRC camp. I will keep precious memories of our time together in
Houston.

... my lab colleagues and friends, including Jennifer, Ghislain, Nicolas,
Martin, Giancarlo, Samuel, Tong, and Thibaut. These years would not
have been the same without you.

... Silvia, mes parents, mon frère et ma sœur. Ils ont toujours été
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Introduction

An important part of structural engineering is to predict how a mechanical
system will evolve over time under dynamic excitation. The objective can
be either to predict the behavior of a system that does not exist yet or
to characterize experimentally an existing structure and predict how it will
behave under conditions different from the test. Both rely on the creation of
mathematical models that, ideally, predict accurately the system’s response
under any relevant excitation. Then, the model should be validated by
submitting the physical structure to experimental characterization [1].

If the structure’s behavior is close to linear, the superposition princi-
ple ensures that a response to a sum of two excitation signals is itself the
sum of the responses resulting from each excitation signal taken individ-
ually. The consequence is twofold. On the one hand, the response to a
multiharmonic signal is the combination of responses at each component
frequency taken individually. Identifying the frequency response function
in the frequency range of interest (either by testing each frequency indi-
vidually during stepped or swept sine testing, or every frequency at once
during random testing) allows to predict the response to any periodic ex-
citation [2], a method called modal testing. On the other hand, charac-
terizing the response at an excitation amplitude level allows to predict the
response at any other amplitude level. For these reasons, experimental
characterization methods for linear systems are now considered mature and
well-established [3, 4, 5].

The superposition principle can however not be applied to structures
that do not behave linearly, which constitute the norm, not the exception.
Nonlinear behavior can emanate from a large number of physical sources.
Examples include, but are not limited to, geometric and inertial nonlinear-
ities, nonlinear material behavior (foams, rubber), nonlinear damping (dry
friction, hysteretic damping) and boundary conditions (free surfaces, vibro-
impacts) [6]. When the nonlinear behavior is weak, linear testing methods

1



2 INTRODUCTION

can be applied using, e.g., stepped or swept sine testing [7, 8] or the time-
domain Hilbert transform [6]. In general, however, using modal testing
to identify the responses at each frequency is neither sufficient to predict
the behavior of the structure under multi-harmonic excitation, nor is char-
acterizing the structural behavior at low excitation amplitude to predict
high-amplitude behavior.

The absence of superposition principle is a challenge to an exhaustive
and general characterization of a nonlinear structure’s responses. Usually,
a choice is made about which families of responses will be considered. Fo-
cusing on responses to harmonic excitation allows for simple, repeatable
experiments. Only two input parameters are needed for an open-loop ex-
periment, i.e., the excitation frequency and amplitude, as shown in Fig. 0.1a.
We will focus on two types of response branches: backbone curves are a col-
lection of responses at resonance, showing the frequency-amplitude relation
of nonlinear normal modes [9]; and frequency response curves (FRC) are
collections of responses at constant excitation amplitude, analogous to the
frequency response function of linear systems [10]. The nonlinearity triggers
complex phenomena in the FRCs, ranging from bifurcations to chaos. Two
of them will be the focus of this work:

• The same excitation signal can lead to different responses [10]. We
will call this phenomenon “folding”, from the fold bifurcations that
appear in response branches. A sister-phenomenon happens when an
input parameter is changed toward and across a fold bifurcation, or
when a sufficiently large perturbation is applied. The system will
experience a “jump”; it will suddenly transition from one branch of
responses to another [10, 11].

• Some responses are unstable. In an ideal world with infinite precision
and no perturbation, the system would follow responses indiscrimi-
nately, stable or not. But the tiniest perturbation or error in the ini-
tial conditions makes the system diverge from the response. Another
way to understand unstable responses is to say that they correspond
to stable solutions when time is reversed. Going back in time, the
system converges toward an unstable response just like it would for a
stable solution in forward time [12]. Branches of unstable responses
cannot be observed in an experimental setting but are very impor-
tant in the characterization process because they can lead to stable
branches that would have been left unidentified otherwise.
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Figure 0.1: Diagrams for the (a) open-loop, (b) action CBC, (c) excitation
CBC, and (c) PLL experiments with p and Ω the excitation amplitude and
frequency, X∗1 the fundamental amplitude of the reference signal, φ∗ a phase
lag target, and x(t) the response



4 INTRODUCTION

One approach to obtain the FRCs of a nonlinear system without be-
ing confronted to folding or unstable responses is to build a model from
experiments staying close to the linear regime. Modeling a nonlinear sys-
tem usually comprises different steps, namely detection and localization of
the nonlinearities, approximation of their functional form and estimation
of the nonlinear parameters [13, 14, 15]. A model can predict the system’s
responses to a general excitation, and by extension, responses to harmonic
forcing. Branches of responses are identified numerically using continuation
techniques that have reached a high degree of maturity [16, 17, 18, 19]. This
approach is long and complex; it involves multiple phases from the design of
a finite elements model to post-processing experimental data. Furthermore,
it can be difficult to build predictive models for certain classes of systems,
e.g. frictional systems with uncertainties or bolted joints [20]. A more direct
approach to obtain the responses of interest is to measure them directly.
We will refer to this as experimental characterization of nonlinear systems.
It can be used to identify qualitatively nonlinear behavior, calibrate and
validate existing nonlinear models [1, 21], or estimate quantitatively modal
parameters [22, 23].

The objective is to design an experiment during which the structure is
subjected to a harmonic excitation. The dynamics of the experiment must
however be different than the open-loop experiment, such that all of the
experiment’s responses are stable. The usual way to ensure this is to use
feedback control. We will refer to the family of methods discussed below
as “control-based methods”. Furthermore, the input parameters of the ex-
periment must allow to identify responses across fold bifurcations. In other
words, each combination of input parameters must lead to one and only one
response. We will say that such an experiment is “unfolded”. Furthermore,
control-based methods have properties that can be useful during the service
life of a structure, such as stabilization [24] or vibration mitigation [25].

One method to design such an experiment is control-based continua-
tion (CBC), proposed in [26] to stabilize a chaotic system, then in [27] to
go around a fold bifurcation. It is a general framework whose objective is
to apply numerical continuation schemes (e.g. pseudo-arclength continua-
tion [28]) to experiments. In [29, 30, 31], CBC is implemented to stabilize
the orbits of a vertically actuated pendulum and go around a fold bifurca-
tion. To that end, the response is compared to a target signal constituted
of the response delayed by a number of periods with an arbitrary constant
term. The difference between response and target is fed to a PD controller
that acts on the pendulum in addition to the excitation. Feedback con-
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trol allows to stabilize the pendulum’s responses and the arbitrary constant
term in the target is an additional parameter needed to go around the fold
bifurcation. The constant term in the target is corrected until the response
exactly matches the delayed target, at which point the controller action is
zero and the CBC experiment responds like the open-loop experiment. It
is said that the control is “non-invasive”.

An implementation of a CBC experiment to identify the responses of an
oscillator under harmonic forcing was proposed in [32] and is schematized
in Fig. 0.1b. The target signal is still a time-delayed response, but the
arbitrary parameter allowing to go around the fold bifurcation is the target’s
first harmonic. A PD controller is still used. A discussion about practical
implementation and resilience to noise was proposed in [33, 34]. We will
refer to this implementation of CBC as “action CBC” because the controller
provides an invasive action in parallel to the excitation. The target is
modified until the action is canceled, in which case only the excitation is
applied to the structure. It is important to note that action CBC does not
exactly correspond to what is commonly called feedback control. Although
the objective is for the response and target to converge towards each other,
the controller does not modify the response until it reaches the target.
Rather, it is the target that is modified by the experimenter or an algorithm
until it reaches the response.

A simpler implementation of CBC was proposed in [35], in which the
response is compared to a completely arbitrary reference signal instead of
a target signal. The output of the controller is directly the excitation ap-
plied on the structure. We will therefore refer to this implementation of
CBC as “excitation CBC”. The objective of the experiment is to identify
responses of the system under harmonic excitation. One way to ensure
that the controller’s output is a harmonic signal is to ensure that the non-
fundamental harmonics of the reference signal are identical to the ones of
the response, as shown in Fig. 0.1c. Once again, excitation CBC should
not be understood as what is commonly called feedback control. The ob-
jective of the controller is not to make the response converge towards the
reference. Rather, the reference signal is modified until a specific controller
output is reached, exciting the structure as desired. Follow-up studies on
excitation CBC include a study on the effects of the PD controller gains [34],
response stability estimation [36, 37], continuation procedures to identify
different features of nonlinear oscillators [38, 39, 40, 41], and applications to
frictious systems [42] or even biochemical systems [43, 44] and pedestrian
flow [45].
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Another method to observe unstable responses of nonlinear oscillators
uses a phase-locked loop (PLL) and was proposed in [46, 47]. During a PLL
experiment, the excitation frequency is driven by a PI controller until the
phase lag between the response and the excitation reaches a target value,
as shown in Fig. 0.1d. The PLL corresponds to what is commonly thought
as feedback control. The objective of the controller is to cancel the phase
lag error between the measurement and the target. The phase lag target as
an input parameter allows the experiment to go around fold bifurcations of
FRCs [48]. The methods was applied to different nonlinear structures such
as beams and plates with nonlinear stiffness or damping [23, 49, 50, 51]. A
stability analysis on the PI controller gains was performed in [49].

Response-controlled testing (RCT) was proposed in [52] to character-
ize nonlinear oscillators by imposing the response amplitude. Although
the control law is proprietary, and therefore unknown, RCT is similar in
principle to excitation CBC in the sense that the oscillator is excited by
the controller and the input parameters are the frequency and amplitude
of a reference signal. The difference resides mainly in the continuation
procedure. Section 6.2.2 detains the so-called mapping-based continuation
procedures. The method has been applied on various engineering structures
such as a satellite [52], a T-beam and a guided missile [53, 54].

Finally, there are some other methods that use feedback control or a
feedback loop to explore the responses of nonlinear oscillators. In [55],
a Hopf bifurcation is created by a positive feedback of the velocity. A
maximum response amplitude is imposed by the negative feedback of a Van
der Pol oscillator. A similar idea for velocity feedback is proposed in [56].
In this case, the velocity feedback amplitude is arbitrarily chosen.

This work will focus on excitation CBC, hereafter only referred to by
“CBC”, and PLL. It is separated in two parts. In the first one, we will fo-
cus on understanding how these methods work. Chapter 1 focuses on why
and in which case CBC and PLL experiments are unfolded: how can these
control-based methods ensure that every input parameter combination cor-
responds to one and only one response? Chapter 2 develops analytical tools
to explain how unstable responses of the open-loop experiment can be stable
during a CBC or PLL experiment: can we always tune the control gains to
ensure stability? Chapter 3 proposes implementations of the control-based
experiments in finer details. It then demonstrates experimentally how they
compare to each other, what features they can identify, and how.

The second part of this work focuses on improvements to the CBC and
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PLL experiments. Chapter 4 proposes an online Fourier decomposition
that improves the performance of both control-based methods. Chapter 5
shows how the PLL method can be modified and applied to characterize
superharmonic resonances. Chapter 6 makes a summary of the different
CBC continuation procedures and proposes a simple and fast arclength
continuation scheme tailored for nonlinear oscillators. Chapter 7 presents a
specific case in which the PLL experiment is folded and proposes to combine
PLL and CBC into a single unfolded experiment.





Chapter 1

Folding in response surfaces

Abstract

Although control-based methods are increasingly popular in the
engineering community, the motivation behind their design is often
left unexplained. This Chapter aims to show how control-based con-
tinuation and phase-locked loop testing allow to solve one of the two
main problems in characterizing nonlinear oscillators in open-loop,
i.e., the folding phenomenon. Specifically, how does each method
ensure than one set of input parameters leads to one and only one
response. The input parameters of each method are described. Dur-
ing an open-loop experiment, the amplitude and frequency of the
excitation are chosen. On the one hand, control-based continuation
exploits monotonous fundamental S-curves by replacing the excita-
tion amplitude by the fundamental amplitude of the response as
an input parameter. On the other hand, phase-locked loop testing
exploits the monotonous drop in phase lag across a fundamental res-
onance peak by replacing the frequency by the phase lag as an input
parameter.

1.1 Introduction

In this work, an experiment is defined as the interrogation of a system and
the measurement of its response. The experimenter, who can be a person
when the experiment is manually driven or a computer when it is auto-
mated, defines a series of input parameters that drive the experiment. The
collection of responses corresponding to each input parameter combination

9
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is called a response space. We will mostly consider experiments with two
input parameters, thus we will mostly write about response surfaces.

It is important to distinguish between three types of parameters in an
experiment. The parameters governing the dynamics of the interrogated
system are called the system parameters and do not vary with time. They
can be internal if they correspond to the dynamics of the interrogated struc-
ture, in which case they are considered unknown by the experimenter, or
user-defined if they are specific to the method. Any parameter describing
the response is called a measured parameter. They are known to the ex-
perimenter, but their value cannot be directly imposed. The driver of the
experiment are the input parameters that are freely chosen by the experi-
menter.

One of the challenges when characterizing a nonlinear system experimen-
tally is the so-called folding phenomenon, i.e, the same input parameter set
can lead to distinct responses. It is therefore often difficult to explore all the
responses of a nonlinear experiment in a single test run [10]. Furthermore,
fold bifurcations lead to the jump phenomenon during which the experiment
suddenly changes its response, leading to potentially unidentified response
branches, damage to itself, the testing equipment, or the experimenter [10].

Three experiments are schematized in Figs. 0.1a, 0.1c, and 0.1d. Each
of the experiment drives the same nonlinear oscillator. The objective of this
Chapter is to show that, even though each experiment has different inputs,
they can lead to the same response. Section 1.2 shows that the open-loop
experiment has a folded response surface. However, control-based methods
allow to define experiments with unfolded response surfaces.

Two facts about nonlinear oscillators are exploited to define unfolded
experiments. Firstly, different responses rarely share the same amplitude
at constant frequency. In Section 1.3, the response amplitude is indi-
rectly imposed through a feedback loop during control-based continuation
(CBC) [31, 32, 57]. The input parameter space is composed of the am-
plitude and frequency of a reference signal. Secondly, responses around a
resonance rarely share the same phase lag at constant excitation ampli-
tude. In Section 1.4, the phase lag is directly imposed through feedback
control during phase-locked loop (PLL) testing [58]. The parameter space
is composed of the excitation amplitude and a phase lag target.
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1.2 Open-loop experiment

Let us consider a general single-degree-of-freedom nonlinear oscillator gov-
erned by the equation of motion

mẍ+ cẋ+ kx+ fnl(x, ẋ) = f(t). (1.1)

In this work, we will focus on the responses of the system to a harmonic
excitation f(t) = p sin(Ωt). The oscillator’s linear parameters are its mass
m, damping c and stiffness k. The internal nonlinear force fnl(x, ẋ) can be
any continuous nonlinear fonction involving the displacement x(t) (nonlin-
ear stiffness) or velocity ẋ(t) (nonlinear damping) or both (Van der Pol-type
nonlinearity). The right-hand side of the equation defines the excitation. As
it comprises a single harmonic, it is called monoharmonic or fundamental.

The response x(t) can follow any number of trajectories depending on
the excitation, internal parameters, nonlinear force, and initial state (x, ẋ)
of the oscillator. In this work, we will restrict ourselves to the steady-state
case where x(t) is periodic with frequency Ω, i.e. x(t+2π/Ω) = x(t). In the
rest of this work, we will refer to Ω as the frequency in rad/s, sometimes
called pulsation to distinguish it from the frequency in Hz. In general, the
presence of a nonlinear force causes x(t) to be multiharmonic. Although
the response possesses an infinite number of harmonics in reality, only a
limited number is considered in practice: The Fourier series is truncated to
N terms

x(t) = bx,0 +
N∑
n=1

ax,n sin(nΩt) + bx,n cos(nΩt). (1.2)

The amplitude and phase of the nth harmonic are expressed as

Xn =
√
a2
x,n + b2

x,n (1.3)

φn = atan2 (bx,n, ax,n) (1.4)

respectively, such that

ax,n sin(nΩt) + bx,n cos(nΩt) = Xn sin(nΩt+ φn). (1.5)

The parameters m, c, and k are internal. The nonlinear force fnl(x, ẋ)
is an unknown relationship that does not vary through time and thus can
be grouped with the internal parameters. The response trajectory x(t) is
measured by the experimenter and can be described by the amplitude X1

or phase φ1 of its first harmonic; they are measured parameters. The driver
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Table 1.1: Set of parameters and laws for single-degree-of-freedom nonlinear
systems used as examples in this Chapter

Set m c k fnl(x, ẋ)
1 1 0.1 1 x3

2 20 0.5 20 10x2 + 2x3

of the open-loop experiment is the excitation that is freely chosen by the
experimenter. The input parameters are the excitation amplitude p and
frequency Ω.

The response surface of a hardening nonlinear oscillator is shown in
Fig. 1.1. Different responses can correspond to the same input parame-
ters, i.e., to the same excitation signal. This so-called folding phenomenon
emanates from the nonlinearity, in this case a strongly nonlinear stiffness.
Fig. 1.1c shows that for some (Ω, p), there exist up to three different re-
sponses. Such an instance is shown in Fig. 1.1d. This is far from the worst
case scenario. The response surface of a softening-hardening oscillator is
shown in Fig. 1.2 where Figs. 1.2c and Fig. 1.2d demonstrate that one set
of input parameters can respond to up to five different responses.

Usually, an experimental campaign does not seek to identify the full
response surface but only a portion of it. The experimenter keeps one input
parameter constant and seeks to characterize the response of the system
when varying the other. In most cases, the excitation amplitude p is kept
constant and the frequency Ω is changed, leading to a so-called frequency
response curve (FRC). They are often sought because they parallel the
frequency response function, an essential tool of linear modal analysis [4].
Examples of FRCs are shown in Figs. 1.3a and 1.4a. When keeping Ω
constant and varying p, the experimenter identifies a so-called S-curve [57].
Some examples are shown in Figs. 1.3b and 1.4b.

Regardless of the curve that the experimenter aims to identify, Figs. 1.3
and 1.4 evidence that Ω and p are not ideal parameters to conduct the exper-
iment. When increasing (or decreasing) one input parameter continuously,
a point at which the curve goes vertical and makes a “half-turn”, called a
fold or saddle-node bifurcation [61, 62], is encountered. If the experiment
continues to increase (or decrease) the input parameter, the system will
make a so-called jump toward another co-existing response, a phenomenon
that can leave some responses unidentified [10].
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Figure 1.1: (a,b) Response surface of Eq. (1.1) with parameter set 1 from
Table 1.1 computed using the harmonic balance method [59] with 1 har-
monic; (c) number of different responses in the response surface; (d) every
response for Ω = 3 and p = 5 computed using the shooting method [60]
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Figure 1.2: (a,b) Response surface of Eq. (1.1) with parameter set 2 from
Table 1.1 computed using the harmonic balance method [59] with 1 har-
monic; (c) number of different responses in the response surface; (d) every
response for Ω = 0.885 and p = 2 computed using the shooting method [60]
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Figure 1.3: (a) FRC at p = 1 and (b) S-curve at Ω = 2 of Eq. (1.1)
with parameter set 1 from Table 1.1 computed using the harmonic balance
method[59] with 1 harmonic
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Figure 1.4: (a) FRC at p = 1.5 and (b) S-curve at Ω = 0.87 of Eq. (1.1)
with parameter set 2 from Table 1.1 computed using the harmonic balance
method[59] with 1 harmonic
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1.3 Control-based continuation

Under control-based continuation (CBC), a controller excites the nonlinear
oscillator through its action y. CBC is a general method that can define
the action y in many ways. We will consider an implementation of CBC
from [57] that exploits the fact that different responses rarely share the same
first harmonic amplitude X1 at constant frequency. Imposing X1 would
lead to one and only one response, to the condition that fundamental S-
curves are monotonous (see Figs. 1.3b and 1.4b), i.e., none of the system’s
fundamental FRCs intersect. Unfortunately, one cannot directly impose X1

because it is a measured parameter and not an input parameter. CBC uses
a feedback loop to impose X1 indirectly through the definition of a new
input parameter, the amplitude of a reference signal x∗.

The controller provides the excitation through its action signal y(x∗ −
x) [57]:

mẍ+ cẋ+ kx+ fnl(x, ẋ) = y(x∗ − x). (1.6)

The reference signal x∗(t), chosen by the user, can be decomposed in its
Fourier coefficients

x∗(t) = bx∗,0 +
N∑
n=1

ax∗,n sin(nΩt) + bx∗,n cos(nΩt). (1.7)

We assume that the reference signal has the same number of harmonics
N than the truncated Fourier series of x(t). In Section 2.3.1, we explore
the effect of a general LTI controller on the dynamics of the oscillator. In
the meantime and for the sake of simplicity, we consider here a differential
controller (whose performance is also discussed in Section 2.3.1) of gain kd:

y(x∗ − x) = kd(ẋ∗ − ẋ). (1.8)

The gain is user-defined but determines the dynamics of the CBC experi-
ment; it is therefore a system parameter.

The CBC experiment in Eq. (1.6) is only useful when it allows to identify
the same responses as the open-loop experiment in Eq. (1.1). For the same
response to verify both equations of motion, we need to ensure that their
right-hand sides—the excitations—are equal: y(x∗−x) = p sin(Ωt). In other
words, the controller must excite the oscillator with a single harmonic. This
condition is verified for the reference signal

x∗ = x− p

Ωkd

cos(Ωt) + const. (1.9)
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The constant term is filtered out by the differential controller and will be
omitted from now on.

A necessary condition to Eq. (1.9) is that the non-fundamental Fourier
coefficients are identical:{

ax∗,n = ax,n

bx∗,n = bx,n
∀n ∈ {2, . . . , N}. (1.10)

When this condition is respected, the control is sometimes called non-
invasive because the response corresponds to an open-loop experiment [35].
We will see how to achieve this in practice in Chapters 3 and 4. This step
is represented in Fig. 0.1c by the block “Non-fundamental harmonics”.

For now, we can consider that Eq. (1.10) is always verified because x∗

is chosen freely by the experimenter. The coefficients of the fundamental
harmonic verify {

ax∗,1 = ax,1

bx∗,1 = bx,1 − p
Ωkd

(1.11)

for the excitation to be a sine wave of amplitude p and frequency Ω. We
deduce that there is one and only one reference signal corresponding to a
specific response.

We can note that the fundamental phase of the reference has no effect on
the response. Indeed, the oscillator being time-invariant, a phase difference
can always be removed by some time shift. Hence, the controlled experiment
in Eq. (1.6) has only two input parameters: the reference frequency Ω

and amplitude X∗1 =
√
a2
x∗,1 + b2

x∗,1. Effectively, the parameter p has been

replaced by X∗1 with the relation in Eq. (1.11). The control gain kd is a
system parameter, considered constant during the experiment.

Let us consider an open-loop experiment such that each response at
constant Ω has a different fundamental amplitude X1 (see the S-curves
in Figs 1.3b or 1.4b). This fact stays true for the corresponding CBC
experiment. Eq. (1.11) shows that increasing the control gain kd makes
X1 and X∗1 converge. The (X1, X

∗
1 ) relation approaches linearity for high

enough kd, as shown in Fig. 1.5. Although the open-loop S-curve is folded
because multiple responses correspond to the same p, the CBC S-curve is
not folded for high enough kd because each response corresponds to one and
only one X∗1 .
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Figure 1.5: S-curves of Eq. (1.6) with (a) parameter set 1 from Table 1.1,
kd = 0.5 (blue), 1 (orange), and 2 (yellow); (b) parameter set 2 from Ta-
ble 1.1, kd = 2 (blue), 4 (orange), and 8 (yellow)

Fig. 1.6 shows the response surface of a CBC experiment performed on
an oscillator with cubic stiffness. As kd increases, the surface approaches
X1 = X∗1 independently from Ω. For high enough kd, each response cor-
responds to one and only one pair of user-parameters (Ω, X∗1 ), i.e., there
is no folding in the experiment. The same can be said when considering a
softening-hardening oscillator, as shown in Fig. 1.7.

The observations made for a differential controller in this Chapter can
be generalized easily. Let us consider a general LTI controller C such that,
in the Laplace domain,

Y (s) = C(s)(X∗(s)−X(s)). (1.12)

To ensure that y(t) = p sin(Ωt), Eq. (1.9) becomes

X∗(s) = X(s) +
1

C(s)

pΩ

s2 + Ω2
. (1.13)

DevelopingX∗ andX into their Fourier coefficients leads directly to Eq. (1.10).
Increasing the modulus of C(s) makes X1 converge towards X∗1 . From there,
we reach the same conclusions as with a differential controller.
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Figure 1.6: (a,c,e) Response surface of Eq. (1.6) with parameter set 1 from
Table 1.1 computed using the harmonic balance method[59] with 1 har-
monic and (b,d,f) number of responses corresponding to a couple (Ω, X∗1 )
for varying gains (a,b) kd = 0.5, (c,d) kd = 1, (e,f) kd = 2
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Figure 1.7: (a,c,e) Response surface of Eq. (1.6) with parameter set 2 from
Table 1.1 computed using the harmonic balance method[59] with 1 har-
monic and (b,d,f) number of responses corresponding to a couple (Ω, X∗1 )
for varying gains (a,b) kd = 2, (c,d) kd = 4, (e,f) kd = 8
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1.4 Phase-locked loop testing

Phase-locked loop (PLL) testing aims to define an experiment without fold-
ing. It exploits the fact that different responses rarely share the same fun-
damental phase lag φ1 at constant excitation amplitude p (see phase lag
FRCs in Figs. 1.8a and 1.8b). Unfortunately, φ1 is a measured parameter
and cannot be imposed directly. During PLL testing, classical feedback
control makes φ1 converge towards a target by acting on the excitation
frequency Ω. The target therefore replaces Ω as a input parameter.

For the phase lag φ1 of the response to be controlled, it must be measured
continuously through time. In this work, the phase lag is derived by con-
tinuously estimating the Fourier coefficients of the response and excitation.
Methods to make this estimation in practice are presented in Chapters 3
and 4.

During PLL testing, the excitation frequency Ω varies through time:

mẍ+ cẋ+ kx+ fnl(x, ẋ) = p sin

(∫ t

0

Ω(t) dτ

)
. (1.14)

Although p is a input parameter, Ω is not. It is the control function of a

0 1 2 3 4

-

-3 /4

- /2

- /4

0

1

(a)

0.7 0.8 0.9 1 1.1

-

-3 /4

- /2

- /4

0

1

(b)

Figure 1.8: FRCs parametrized by the first harmonic phase lag of Eq. (1.1)
with (a) parameter set 1 from Table 1.1 at p = 1 and (b) parameter set
2 from Table 1.1 at p = 1.5; both computed using the harmonic balance
method [59] with 1 harmonic



22 CHAPTER 1. FOLDING IN RESPONSE SURFACES

(a) (b)

Figure 1.9: Response surface of experiment (1.14) with parameter set (a) 1
and (b) 2 from Table 1.1 computed with the harmonic balance method[59]
with 1 harmonic; along with the FRCs from Figs. 1.3a and 1.4a respectively
(black curve)

PI controller targeting a input phase lag φ∗:

Ω(t) = ω0 + kp(φ1 − φ∗) + ki

∫ t

0

(φ1 − φ∗) dτ. (1.15)

This makes (φ∗, p) the only two input parameters of the experiment de-
fined in Eq. (1.14). The control gains kp and ki are user-defined system
parameters considered constant during the experiment.

It is important to note that the slopes dφ1/dΩ in Fig. 1.8 do not always
have the same sign. When the slope is positive and the phase lag φ1 is
larger than targeted, one must decrease Ω to reach the phase lag target.
However, if the slope is negative, one must increase Ω to apply the same
correction. With this, it is apparent that a PLL is more complicated than
a linear feedback control loop. In general, the same control gains cannot
identify every response because they would need to change sign depending
on the slope dφ1/dΩ. We will see in Chapter 2 that it is possible for a
PLL experiment to identify every response with constant control gains if
they have specific values such that the controller dynamics interact with
the oscillator.

Fig. 1.9 shows the response surfaces of PLL testing experiments. Each
response corresponds to one and only one pair (φ∗, p). Thanks to the in-
tegral part of the controller ki > 0, the experiment is only at equilibrium



1.4. PHASE-LOCKED LOOP TESTING 23

0 1 2 3

-

-3 /4

- /2

- /4

0

1

(a)

0 1 2 3

-

-3 /4

- /2

- /4

0

1

(b)

Figure 1.10: FRC of experiment (1.16) parameterized by the fundamen-
tal phase lag of the first degree-of-freedom with (a) parameter set 3 from
Table 1.2 at p = [0.1 0]T and (b) parameter set 4 from Table 1.2 at
p = [0.1 0]T

when φ1 = φ∗. Contrarily to CBC in the previous section, the control gains
only modify the transient response of the experiment and not the steady-
state. Thus, the geometry of the response surface is independent from kp

and ki. This can be understood with Fig. 0.1d showing that the open-loop
experiment is fully comprised into the PLL experiment.

At frequencies far below (resp. above) a fundamental resonance, the
phase lag approaches zero (resp. −π) with a very steep slope dΩ/dφ1,
as shown for instance in Figs. 1.8a and 1.8b: a small phase lag difference
implies a large frequency difference. This renders the control loop very
sensitive to an error in phase lag estimation far away from a resonance. In
practice, PLL testing can only be applied near a resonance.

To highlight some more limitations of PLL testing, let us briefly consider
a ndof degrees of freedom (DOF) oscillator governed by the equation of
motion

Mẍ + Cẋ + Kx + fnl(x, ẋ) = p sin(Ωt) (1.16)

with M, C, K ndof ×ndof matrices and x, p, fnl ndof × 1 vectors. Fig. 1.10a
shows that across different modes of vibration, multiple responses can have
the same phase lag. As a result, the response surface of a PLL experiment
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Table 1.2: Set of parameters for multiple-degree-of-freedom nonlinear sys-
tems used as examples in this Chapter

Set M C K fnl(x, ẋ)

3

[
1 0
0 1

] [
.01 0
0 .01

] [
2 −1
−1 2

] [
x3

1

0

]

4

[
1 0
0 1

] [
.01 0
0 .01

] [
1.05 −0.05
−0.05 1.05

] [
x3

1

0

]

with multiple DOF always exhibits folding across its multiple modes. This
issue is exacerbated for multiple DOF oscillators whose resonant modes are
not well separated. Fig. 1.10b shows that every phase lag value between −π
and 0 does not exist for all modes. This can lead to jumps in frequency e.g.
during phase lag sweeps. A method capable of handling multiple-degrees-
of-freedom systems is presented in Chapter 6.

1.5 Conclusion

In this Chapter, we considered experiments possessing different types of
parameters. Internal parameters do not vary during the experiment and
are unknown to the experimenter. Measured parameters characterize the
response of the experiment. They are known but cannot be defined by the
experimenter. User-defined parameters drive the experiment and can be
defined arbitrarily by the experimenter. A response surface is the collection
of every response in relation with the corresponding input parameters. The
folding phenomenon arises when the same set of input parameters corre-
sponds to multiple responses.

The open-loop experiment in which a nonlinear oscillator is excited by a
harmonic excitation possesses two input parameters: the frequency and am-
plitude of the excitation. An FRC (resp. S-curve) is a subset of the response
surface at constant excitation amplitude (resp. frequency). In general, the
open-loop experiment exhibits folding, i.e. it can follow different responses
to the same input parameters.

During a CBC experiment, the oscillator is excited by a controller. Its
input parameters are the frequency and amplitude of a reference signal. For
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high enough controller gains, each response corresponds to one and only one
reference amplitude and the folding disappears. The limiting requirement
is that each response must correspond to one and only one fundamental
amplitude at constant frequency, i.e., the fundamental S-curves must be
monotonous in fundamental response amplitude, or equivalently, different
fundamental FRCs must not cross each other.

During PLL testing, the excitation frequency is driven by a controller
until the fundamental phase lag reaches a target. Thus, the input parame-
ters are the excitation amplitude and the phase lag target. Thanks to the
integral part of the controller, the system is only at equilibrium when the
target has been reached. Unlike CBC, the controller gains do not modify
the geometry of the response surface. PLL testing is limited to the vicinity
of resonances otherwise the controller becomes very sensitive to phase esti-
mation errors. PLL testing experiments with multiple degrees of freedom
are always folded across multiple resonant modes.





Chapter 2

Stability of control-based
methods

Abstract

The second problem encountered during experimental charac-
terization of nonlinear oscillators in open-loop is the stability of the
responses: some are unstable and cannot be observed. Control-based
methods exploit feedback loops that allow to modify the experiment’s
dynamics. In this Chapter, a class of nonlinear oscillators weakly
excited and possessing weak nonlinearity and damping are studied
analytically. Their advantage resides in the separation of their slow-
flow and fast-flow dynamics. Two transformations are proposed to
study their slow-flow stability: one is easily applicable to control-
based continuation experiments and the other to phase-locked loop
testing. On the one hand, we conclude that a control-based continu-
ation experiment behaves like an oscillator with its own stiffness and
damping influenced by its controller. A PD controller allows to mod-
ify its stiffness and damping regardless of the excitation frequency.
Increasing the damping has an unconditional stabilizing effect, i.e.,
every response can theoretically be stabilized using a differential con-
troller. On the other hand, the stability of a phase-locked loop exper-
iment resides in the interaction between the oscillator’s and the con-
troller’s dynamics. The experiment’s stability is conditional: there
exist optimal controller gains beyond which the performance cannot
be improved. The speed of the phase lag estimation is critical in the
sense that a slow estimator is detrimental to stability.

27
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2.1 Introduction

In the introductory Chapter, we have defined a series of experiments illus-
trated in Fig. 0.1. Although each experiment has a different input parameter
set, we have shown in Chapter 1 that they could all share the same steady-
state responses. However, each experiment follows its own dynamics: the
transient before reaching the steady-state response differs, and more im-
portantly, so does the stability of the response. Depending on the control
gains, unstable responses of the open-loop experiment can be stable in the
control-based experiments.

In this Chapter, we will derive simplified dynamic systems for each of
the three experiments: open-loop, control-based continuation (CBC) and
phase-locked loop (PLL) testing. We will consider assumptions uncoupling
the dynamics of the oscillations from the evolution of the oscillation enve-
lope. This will allow us to study the working limitations of the control-based
methods and the influence of the control gains. We will show that, although
the limit points of the dynamic systems are identical, their Jacobians are
influenced by the control gains.

The dynamics and stability of the open-loop experiment are developed
in Section 2.2. Under the same set of assumptions, Sections 2.2.1 and
2.2.2 propose two equivalent transformations to separate the fast- and slow-
flow dynamics of weakly nonlinear oscillators. One of the transformations
separates the slow-flow dynamics in sine and cosine components and is called
the Van der Pol (VdP) transformation applied, e.g., in [63]. The other
in an adaptation of the VdP transformation, parametrizing the slowflow
dynamics with a sine component and its phase lag, called the phase VdP
transformation.

For the first time, the effects of CBC on the experiment’s stability are
analyzed in Section 2.3, first including a general LTI controller in Sec-
tion 2.3.1, then including a simpler PD controller in Section 2.3.2. The
derivation of the PLL experiment dynamics in Section 2.4 expand to gen-
eral nonlinearities the analyses proposed in [49, 64, 65], focused on specific
systems. Perfect and flawed phase lag estimations are considered in Sec-
tions 2.4.1 and 2.4.2 respectively.
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ω0 δ fnl(x, ẋ)
100 0.01 x3

Table 2.1: Set of parameters for a nonlinear oscillator used as an example
in this Chapter

2.2 Open-loop experiment

During the open-loop experiment, a general nonlinear oscillator is excited
by a harmonic force of amplitude p and frequency Ω. Its response x follows
the equation of motion

ẍ+ δẋ+ ω2
0x+ fnl(x, ẋ) = p sin(Ωt), (2.1)

with ω0 the natural frequency, δ the damping ratio, and fnl the nonlinear
restoring force of the oscillator.

The closed and repeating trajectories followed by the experiment in the
phase space (x, ẋ) are called periodic orbits. The stability of periodic orbits
is difficult to study. By making the right assumptions, the response in phase
space (x, ẋ) can be transformed, changing the periodic orbits into limit
points. This will help us describe the stability of the open-loop experiment.
An oscillator whose parameters are given in Table 2.1 is used to illustrate
this Chapter.

In the rest of the Chapter, we will assume that

• the nonlinear internal force fnl(x, ẋ),

• the damping δ,

• the excitation amplitude p, and

• the difference between excitation and natural frequency Ω− ω0

are an order of magnitude smaller than any other parameter. The assump-
tions allow us to separate two time scales, namely the fast-flow dynamics
which drive the oscillations and the slow-flow dynamics which govern the
time evolution of the envelope of the oscillations.
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2.2.1 Van der Pol transformation

The VdP transformation [63] redefines the phase space (x, ẋ) by coefficients
(u, v): {

x = u cos(Ωt)− v sin(Ωt)

ẋ = −Ω[u sin(Ωt) + v cos(Ωt)].
(2.2)

It is shown in Appendix A.1.1 that, under the assumptions, the open-loop
experiment in Eq. (2.1) is transformed into the slow-flow dynamic system{

u̇ = 1
2Ω

(ψv − Ωδu+ gs(u, v)− p)
v̇ = 1

2Ω
(−ψu− Ωδv + gc(u, v))

(2.3)

with ψ = Ω2 − ω2
0, the reparametrized nonlinear force

g(u, v,Ωt) = fnl(u cos(Ωt)− v sin(Ωt),−Ω[u sin(Ωt) + v cos(Ωt)]), (2.4)

and its projections onto harmonic signals

gs(u, v) =
Ω

π

∫ t+ 2π
Ω

t

g(u, v,Ωτ) sin(Ωτ) dτ, (2.5)

gc(u, v) =
Ω

π

∫ t+ 2π
Ω

t

g(u, v,Ωτ) cos(Ωτ) dτ. (2.6)

The limit points (û, v̂) of system (2.3) are constant through time, i.e.
they are defined by u̇(û, v̂) = v̇(û, v̂) = 0. They solve{

ψv̂ − δΩû+ gs(û, v̂)− p = 0

−ψû− δΩv̂ + gc(û, v̂) = 0.
(2.7)

It is in general difficult if not impossible to obtain the solutions to such a
nonlinear system of equations in closed form. Rather, numerical methods
must be used.

The stability of a limit point is determined by the eigenvalues λ of its
Jacobian

J(û, v̂) =

∂u̇∂u ∂u̇
∂v

∂v̇
∂u

∂v̇
∂v


(û,v̂)

. (2.8)

=
1

2Ω

−Ωδ + ∂gs

∂u
ψ + ∂gs

∂v

−ψ + ∂gc

∂u
−Ωδ + ∂gc

∂v


(û,v̂)

(2.9)
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When each of its eigenvalues has a negative real part, the limit point is
stable, i.e., the system goes back to the limit point when slightly perturbed.
The Routh-Hurwitz stability criterion on the characteristic polynomial of J
is

2Ωδ >
∂gs

∂u
+
∂gc

∂v
, (2.10)(

∂gs

∂u
− Ωδ

)(
∂gc

∂v
− Ωδ

)
>

(
∂gs

∂v
+ ψ

)(
∂gc

∂u
− ψ

)
(2.11)

at the limit point (û, v̂); it allows to determine which limit points are un-
stable depending on the parameters ω0, δ, and nonlinearity g of the system.

Let us take a Duffing oscillator as an example:

ẍ+ δẋ+ ω2
0x+ x3 = p sin(Ωt). (2.12)

In this case, fnl(x, ẋ) = x3, therefore

g(u, v,Ωt) = (u cos(Ωt)− v sin(Ωt))3, (2.13)

gs(u, v) = −3

4
v(u2 + v2), (2.14)

gc(u, v) =
3

4
u(u2 + v2), (2.15)

∂gs

∂u
= −3

2
uv,

∂gs

∂v
= −3

4
(u2 + 3v2), (2.16)

∂gc

∂u
=

3

4
(3u2 + v2), and

∂gc

∂v
=

3

2
uv. (2.17)

Fig. 2.1 shows the (u, v) coordinates of the open-loop experiment diverging
from an unstable limit point (û, v̂).

2.2.2 Phase Van der Pol transformation

An alternative to the VdP transformation is to transform the phase space
(x, ẋ) into the instantaneous amplitude r and phase φ of the response. This
leads to the phase VdP transformation:{

x = r sin(Ωt+ φ)

ẋ = rΩ cos(Ωt+ φ).
(2.18)
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Figure 2.1: Evolution of system (2.3) with initial state (u0, v0) =
(−2.50, 4.33) and with parameter set from Table 2.1, p = 10, Ω = 100.102;
unstable limit point (û, v̂) = (−2.50, 4.33) in dashed lines

It is shown in Appendix A.2.1 that, under the assumptions, the open-loop
experiment in Eq. (2.1) is transformed into the slow-flow dynamic system{

ṙ = −1
2

(
δr + 1

Ω
(hc(r) + p sinφ)

)
φ̇ = −1

2

(
ψ
Ω
− 1

Ωr
(hs(r)− p cosφ)

)
,

(2.19)

with once again ψ = Ω2 − ω2
0, the reparametrized nonlinear force

h(r,Ωt+ φ) = fnl(r sin(Ωt+ φ), rΩ cos(Ωt+ φ)), (2.20)

and its projections onto harmonic signals

hs(r) =
Ω

π

∫ t+ 2π
Ω

t

h(r,Ωτ + φ) sin(Ωτ + φ) dτ (2.21)

hc(r) =
Ω

π

∫ t+ 2π
Ω

t

h(r,Ωτ + φ) cos(Ωτ + φ) dτ, (2.22)

independent of φ because fnl is assumed periodic with frequency Ω. The
term hs corresponds to the component of the nonlinear force with the same
phase as the displacement, i.e. to a nonlinear stiffness, and the term hc

corresponds to the component of the nonlinear force with the same phase
as the velocity, i.e. to a nonlinear damping.

The limit points (r̂, φ̂) of system (2.19) are defined for ṙ(r̂, φ̂) = φ̇(r̂, φ̂) =
0. They correspond to periodic orbits of system (2.1). The limit points are
the solutions to {

δΩr̂ + hc(r̂) + p sin φ̂ = 0

ψr̂ − hs(r̂) + p cos φ̂ = 0.
(2.23)
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If we consider the phase lag φ as a known parameter and the excitation
frequency Ω̂ as an unknown, system (2.23) can be rewritten

hc(r̂) + δ
√
r̂(hs(r̂)− p cosφ+ ω2

0 r̂) + p sinφ = 0. (2.24)

Using phase VdP, it is only required to solve a single nonlinear equation in
r̂. The frequency

Ω̂ =

√
1

r̂
(hs(r̂)− p cosφ) + ω2

0 (2.25)

is derived directly. Under the assumptions made in Section 2.2, Eq. (2.24)
is further simplified

hc(r̂) + δω0r̂ + p sinφ ≈ 0. (2.26)

The stability of a limit point (r̂, φ̂) is determined by the eigenvalues of
its Jacobian

J(r̂, φ̂) =

J11 J12

J21 J22

 =

 ∂ṙ
∂r

∂ṙ
∂φ

∂φ̇
∂r

∂φ̇
∂φ


(r̂,φ̂)

(2.27)

=
1

2

 −δ − 1
Ω

dhc

dr
(r̂) − p

Ω
cos φ̂

1
r̂Ω

(
−1
r̂
hs(r̂) + dhs

dr
(r̂) + p

r̂
cos φ̂

)
p
r̂Ω

sin φ̂

 . (2.28)

Its characteristic polynomial is

P (λ) = λ2 − (J11 + J22)λ+ J11J22 − J12J21. (2.29)

The Routh-Hurwitz stability criterion states that the Jacobian has stable
eigenvalues if

δΩ +
dhc

dr
(r̂) >

p

r̂
sin φ̂, (2.30)

δΩ +
dhc

dr
(r̂) >

(
−1

r̂
hs(r̂) +

dhs

dr
(r̂) +

p

r̂
cos φ̂

)
cot φ̂. (2.31)

Let us once again take the Duffing oscillator as an example. The non-
linear force is f(x, ẋ) = x3, therefore

h(r,Ωt+ φ) = r3 sin3(Ωt+ φ), (2.32)

hs(r) =
3

4
r3, hc(r) = 0, (2.33)

∂hs

∂r
(r) =

9

4
r2,

∂hc

∂r
(r) = 0. (2.34)
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Figure 2.2: Evolution of system (2.19) with initial state (r0, φ0, y0) =
(5,−2.62, 0.102) and with parameter set from Table 2.1, p = 10, Ω =
100.102, φ∗ = −2.62, ki = 0, kp = 0; unstable limit point (r̂, φ̂, ŷ) =
(5,−2.62, 0.102) in dashed lines

Fig. 2.2 shows the evolution of the system with an initial state very close to
the limit point (r̂, φ̂) corresponding to the one in Fig. 2.1. After some time,
the system diverges towards another limit point at the same frequency but
lower amplitude.

2.3 Control-based continuation

Control-based continuation (CBC) was introduced as a control-based ex-
periment controlling indirectly the response amplitude by a feedback loop.
During the CBC experiment, the response x(t) follows the equation of mo-
tion

ẍ+ δẋ+ ω2
0x+ fnl(x, ẋ) = y(x∗ − x). (2.35)

The control action y(x∗ − x) excites the same nonlinear oscillator as in
the open-loop experiment. It is the output of a controller that takes the
difference x∗ − x as an input. The experimenter can define the reference
signal x∗ freely; its fundamental frequency Ω and fundamental amplitude
X∗1 are the input parameters of the CBC experiment (see Chapter 1).

Although the feedback loop contained inside the experiment modifies
the dynamics governing the response x(t), we showed in Chapter 1 that
each steady-state response of the open-loop experiment could be reached,
rendering the CBC experiment useful the characterize the nonlinear oscilla-
tor. In this Section, we will show that the CBC experiment responds itself
like a nonlinear oscillator with its own modal parameters influenced by the
controller. A judicious choice of controller can make every response of the
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CBC experiment stable, including responses identical to unstable responses
of the open-loop experiment.

2.3.1 General controller

At first, let us consider that the excitation y is the output of a general LTI
controller C. In the Laplace domain,

Y (s) = C(s)(X∗(s)−X(s)), (2.36)

with C(iΩ) = c(Ω) + id(Ω). Under the VdP transformation (Eq. (2.2)) and
the assumptions from Section 2.2, Appendix A.1.2 shows that the excitation
is expressed

y = [c(Ω)(u∗ − u)− d(Ω)(v∗ − v)] cos(Ωt)

− [d(Ω)(u∗ − u) + c(Ω)(v∗ − v)] sin(Ωt), (2.37)

with the reference target x∗ = u∗ cos(Ωt) − v∗ sin(Ωt). The slow-flow dy-
namics of a CBC experiment is{

u̇ = 1
2Ω

((ψ − c)v − (Ωδ + d)u+ gs(u, v) + du∗ + cv∗)

v̇ = 1
2Ω

(−(ψ − c)u− (Ωδ + d)v + gc(u, v)− cu∗ + dv∗).
(2.38)

Substituting y = p sin(Ωt) into Eq. (2.37) and defining the complex
coefficients w(t) = (u+ iv)/2 and w∗ = (u∗ + iv∗)/2, we obtain

p = 2iC(iΩ)(w∗ − w). (2.39)

When targeting a known response w, there is only one reference w∗ leading
to y = p sin(Ωt):

w∗ = w − i

2
C−1(iΩ)p. (2.40)

In practice, the response w is not known in advance. To target a specific
excitation amplitude p, the experimenter must find the appropriate w∗, a
procedure developed in Chapters 3 and 4. Substituting Eq. (2.40) into
Eq. (2.38) and computing the limit points (u̇ = v̇ = 0) lead to Eq. (2.7),
i.e., the CBC experiment with an adequate reference signal has a response
identical to the open-loop experiment consistently with the conclusions of
Chapter 1.

An interpretation of the effects of the controller C(s) is now apparent. In
steady-state, the CBC experiment (Eq. (2.38)) responds itself as a nonlinear
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oscillator whose restoring nonlinear force is fnl(x, ẋ), and whose natural
frequency and damping are

ω∗0(Ω) =
√
ω2

0 + c(Ω) and δ∗(Ω) = δ +
d(Ω)

Ω
, (2.41)

excited by the signal y∗ obtained when applying C(s) to x∗(t), i.e.,

y∗(t) = −(c(Ω)u∗ − d(Ω)v∗) cos(Ωt) + (d(Ω)u∗ + c(Ω)v∗) sin(Ωt). (2.42)

The Jacobian of the CBC experiment is expressed in relation to J, the
Jacobian of the open-loop experiment (Eq. (2.9)):

J∗(û, v̂) = J(û, v̂) +
1

2Ω

(
c

[
0 −1
1 0

]
− d

[
1 0
0 1

])
. (2.43)

Although the CBC experiment’s responses are identical to the open-loop
experiment, the controller components c and d modify the Jacobian. As
d(Ω) increases, so does the damping δ∗ (Eq. (2.41)). The result is a shift
of the eigenvalues of J∗ towards negative real values, i.e., towards stability.
Here lies the crucial strength of a CBC experiment: any response of the
nonlinear oscillator can be stabilized by ensuring that the CBC experiment
has a large enough damping δ∗.

An example of a proper controller leading to an increased damping
around the natural frequency ω0 is

C(s) =
−ω2

0δCkC
s2 + δCs+ ω2

0

. (2.44)

The parameter δC determines how broad the stabilization is, while the gain
kC determines the strength of the stabilization, specifically the value of an
equivalent differential gain at frequency ω0. Fig. 2.3 shows how this kind of
controller locally increases the damping and modifies the natural frequency.
The transfer function of controller C(s) is shown in Fig. 2.4. Its phase lag
bounded between 0 and π rad ensures an unconditionally stable closed loop
with an oscillator whose phase lag is bounded between −π and 0 rad.

The plain curve in Fig 2.5 shows the (u, v) coordinates of a CBC ex-
periment using the controller in Eq. (2.44) converging towards the unstable
limit point from Fig. 2.1, showing that the CBC experiment is able to iden-
tify an unstable response of the open-loop experiment by ensuring a high
enough damping δ∗.



2.3. CONTROL-BASED CONTINUATION 37

99.98

100

100.02

0*

50 100 150

0

0.05

0.1

*

Figure 2.3: Natural frequency and damping of the CBC experiment (2.35)
with parameter set from Table 1.1, controller from Eq. (2.44), kC = 0.1 and
δC = 10; internal modal parameters ω0 and δ in dashed lines
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Figure 2.4: Transfer function of the proper controller from Eq. (2.44) with
ω0 = 100, kC = 0.1 and δC = 10 in plain curve and differential controller
with kd = 0.1 in dashed-dotted curve
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Figure 2.5: Evolution of system (2.38) with initial state (u0, v0) = (−2, 4)
and with parameter set from Table 2.1, p = 10, Ω = 100.102; driven by the
proper controller from Eq. (2.44) with kC = 0.1 and δC = 10 in plain curve;
driven by a differential controller with kd = 0.1 in dashed-dotted curve;
unstable limit point (û, v̂) = (−2.50, 4.33) in dashed lines

2.3.2 Proportional-differential controller

A proportional-differential (PD) controller is the special case where C(s) =
kp+kds with a proportional gain kp and a differential gain kd. The excitation
signal becomes

y = kp(x∗ − x) + kd
d

dt
(x∗ − x), (2.45)

the modal parameters from Eq. (2.41) become

ω∗0 =
√
ω2

0 + kp and δ∗ = δ + kd. (2.46)

A PD controller therefore allows to set the stiffness and damping of the
CBC experiment independently from the excitation frequency.

Increasing the differential gain in theory always has a stabilizing effect.
Increasing (resp. decreasing) the proportional gain increases (resp. de-
creases) the stiffness of the CBC experiment, making the resonance peak
shift to a higher (resp. lower) frequency. Usually, fold bifurcations and
unstable branches are present around the resonance peak. By shifting the
peak, the CBC experiment can exhibit stable branches away from the peak.
In this way, a proportional controller can stabilize a CBC experiment, in a
more indirect way than the differential controller. These conclusions are in
good agreement with what is studied experimentally [34].

Despite the simplicity of a PD controller, it has one main drawback: its
transfer function is improper as the degree of its numerator is larger than
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the one of its denominator. Hence, high frequency noise is amplified and a
discontinuous signal x∗ − x results in an unbounded excitation, as shown
by its transfer function in Fig. 2.4.

The dashed curve in Fig 2.5 shows the (u, v) coordinates of a CBC exper-
iment using a differential controller. The proper controller from Eq. (2.44)
and the differential controller have comparable performance, but the effect
of the proper controller is localized to the targeted frequency ω0.

2.4 Phase-locked loop testing

Let us consider a PLL experiment whose response x(t) follows the equation
of motion

ẍ+ δẋ+ ω2
0x+ fnl(x, ẋ) = p sin θ. (2.47)

The instantaneous excitation phase θ(t) indicates that the excitation fre-
quency θ̇(t) varies through time. In the PLL, a PI controller compares the
estimation of the instantaneous phase lag φ̃ to a phase lag target φ∗:

θ̇ = ω0 + z + kp(φ̃− φ∗), (2.48)

ż = ki(φ̃− φ∗). (2.49)

The internal parameter z of the integral controller modifies the excitation
frequency along with the proportional controller.

2.4.1 Perfect phase estimation

At first and for simplicity, let us assume that the estimation of the phase
lag is immediate and without error, i.e., φ̃ = φ. Under the phase VdP
transformation and the assumptions made in Section 2.2, Appendix A.2.2
shows that the slow-flow dynamics of a PLL experiment is

ṙ = −1
2

(
δr + 1

Ω
(hc(r) + p sinφ)

)
φ̇ = −1

2

(
ω0(1− ω0

Ω
) + z + kp(φ− φ∗)− 1

rΩ
(hs(r)− p cosφ)

)
ż = ki(φ− φ∗).

(2.50)

The PLL experiment is therefore completely described by the parameters
r, φ, and z.

The limit points (r̂, φ̂, ẑ) of system (2.50) are defined for ṙ = φ̇ = ż = 0.
They correspond to orbits of system (2.47). From Eq. (2.48), we deduce
that θ̈ = 0 at the limit point, i.e., the excitation frequency is constant.



40 CHAPTER 2. STABILITY OF CONTROL-BASED METHODS

We therefore can define the constant parameter Ω = θ̇(r̂, φ̂, ẑ). We deduce
from Eq. (2.50) that ki 6= 0 ⇒ φ̂ = φ∗. Eq. (2.48) therefore implies that
Ω = ω0 + ẑ. As per the assumptions made, Ω − ω0 has a small order of
magnitude. We conclude that ẑ2 is negligible. The limit points are finally
derived 

r̂ = − 1
δΩ

(hc(r̂) + p sinφ∗)

φ̂ = φ∗

ẑ = 1
2r̂ω0

(hs(r̂)− p cosφ∗).

(2.51)

The system is equivalent to Eq. (2.23) because ψ = Ω2 − ω2
0 ≈ 2ω0ẑ ne-

glecting ẑ2, i.e., the PLL experiment has always a response identical to the
open-loop experiment consistently with the conclusions of Chapter 1.

The stability of a limit point is determined by the eigenvalues of its
Jacobian

J∗(r̂, φ̂, ẑ) =


∂ṙ
∂r

∂ṙ
∂φ

∂ṙ
∂z

∂φ̇
∂r

∂φ̇
∂φ

∂φ̇
∂z

∂ż
∂r

∂ż
∂φ

∂ż
∂z


(r̂,φ̂,ẑ)

(2.52)

=

J11 J12 0
J21 J22 − kp −1
0 ki 0

 . (2.53)

The upper-left 2 × 2 matrix contains the Jacobian of the open-loop ex-
periment from Eq. (2.28). Although the PLL experiment’s responses are
identical to the open-loop experiment, the control gains kp and ki modify
the Jacobian. The characteristic polynomial of J∗ is

P ∗(λ) = (λkp + ki)(λ− J11) + λP (λ). (2.54)

The control gains ki and kp have a direct influence on the eigenvalues of the
PLL experiment. For illustration, Fig. 2.6 shows the response’s longest time
constant when targeting the unstable response of the open-loop experiment
in Fig. 2.2.

Low gains At low gains, the term (λkp + ki)(λ− J11) is neglegible com-
pared to λP (λ) in Eq. (2.54). The eigenvalues of the PLL experiment are
therefore close to the one of the open-loop experiment with an additional
root λy ≈ 0 corresponding to a state parameter y that varies very little
when ki is small. An unstable response of the open-loop experiment would
therefore remain unstable in the PLL experiment, as shown in the lower
left corner of Fig. 2.6.
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Figure 2.6: Highest time constant for the unstable limit point (r̂, φ̂, ẑ) =
(5,−2.62, 0.102) of system (2.50) depending on the PI controller gains, with
parameter set from Table 2.1, p = 10, Ω = 100.102; a white area signifies
an unstable response

High gains At very high gains ki and kp, the eigenvalues can be approx-
imated

λ1 ≈ −
ki

kp

, (2.55)

λ2 ≈ −
1

2

(
δ +

1

Ω

dhc

dr

)
, (2.56)

λ3 ≈ −kp. (2.57)

The response is always stable if the damping is positive. Under this con-
dition, a PLL experiment with high gains and perfect phase estimation is
always capable of identifying an unstable response of the open-loop exper-
iment. However, Eq. (2.56) does not depend on the control gains, showing
that the performance will always be constrained by the oscillator’s damping.
This is visible in Fig. 2.6: the upper right corner shows a stable response,
but increasing the control gains further does not reduce the response’s time
constant.

To show how a PLL experiment can identify an unstable response of
the open-loop experiment, Fig. 2.7 shows the evolution of state (r, φ, z) of
a PLL experiment with optimal control gains converging towards the same
unstable response as in Fig. 2.2.
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Figure 2.7: Evolution of system (2.50) with initial state (r0, φ0, z0) =
(1, 0, 0) and with parameter set from Table 2.1, p = 10, Ω = 100,
φ∗ = −2.62, ki = 0.0115, kp = 0.115; unstable limit point (r̂, φ̂, ẑ) =
(5,−2.62, 0.102) in dashed lines

2.4.2 Flawed phase estimation

In practice, the estimation of the phase lag φ̃ is not immediate. It can be
performed in different ways, discussed in Chapter 4. To simplify the analyt-
ical expressions, we consider that a low-pass filter with cut-off frequency ωlp

is applied to the actual phase lag φ directly following the analysis proposed
in [49]:

˙̃φ = ωlp(φ− φ̃). (2.58)

Under the assumptions made in Section 2.2, following the development in
Appendix A.2.2 leads to the slow-flow dynamic system

ṙ = −1
2

(
δr + 1

Ω
(hc(r) + p sinφ)

)
φ̇ = −1

2

(
ω0(1− ω0

Ω
) + z + kp(φ̃− φ∗)− 1

rΩ
(hs(r)− p cosφ)

)
˙̃φ = ωlp(φ− φ̃)

ż = ki(φ̃− φ∗).

(2.59)

with an additionnal state variable φ̃ describing the dynamics of the phase
lag estimation.
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The limit points are now (r̂, φ̂, ˆ̃φ, ẑ). We deduce from Eq. (2.59) that

ż = 0⇒ ˆ̃φ = φ∗, (2.60)

˙̃φ = 0⇒ φ̂ = φ∗. (2.61)

The limit points solve the nonlinear system of equations
r̂ = − 1

δΩ
(hc(r̂) + p sinφ∗)

φ̂ = φ∗

ˆ̃φ = φ∗

ẑ = 1
2r̂ω0

(hs(r̂)− p cosφ∗).

(2.62)

The system is identical to Eq. (2.51) and therefore Eq. (2.23), i.e. the phase
lag estimation does not modify the limit points that stay identical to those
of the open-loop system. The Jacobian is at the limit point

J∗(r̂, φ̂, ˆ̃φ, ẑ) =


∂ṙ
∂r

∂ṙ
∂φ

∂ṙ
∂φ̃

∂ṙ
∂z

∂φ̇
∂r

∂φ̇
∂φ

∂φ̇

∂φ̃

∂φ̇
∂z

∂
˙̃
φ
∂r

∂
˙̃
φ
∂φ

∂
˙̃
φ

∂φ̃

∂
˙̃
φ
∂z

∂ż
∂r

∂ż
∂φ

∂ż
∂φ̃

∂ż
∂z


(r̂,φ̂,

ˆ̃
φ,ẑ)

(2.63)

=


J11 J12 0 0
J21 J22 −kp −1
0 ωlp −ωlp 0
0 0 ki 0

 . (2.64)

The upper-left 2× 2 matrix is the open-loop Jacobian (2.28).

The characteristic polynomial of J∗ is

P ∗(λ) = ωlp(kpλ+ ki)(λ− J11) + λ(λ+ ωlp)P (λ). (2.65)

Once again, let us discuss the influence of the control gains ki and kp on
the stability of the PLL experiment. For illustration, Fig. 2.8 shows the
response’s longest time constant when targeting an unstable response.

Low gains At low gains, the term ωlp(kpλ + ki)(λ − J11) is negligible
compared to λ(λ + ωlp)P (λ) in Eq. (2.65). The eigenvalues of the PLL
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Figure 2.8: Highest time constant for the unstable limit point (r̂, φ̂, ẑ) =
(5,−2.62, 0.102) of system (2.59) depending on the PI controller gains, with
(a) ωlp = 0.1, (b) ωlp = 1, (c) ωlp = 10, parameter set from Table 2.1,
p = 10, Ω = 100.102; a white area indicates that the response is unstable
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experiment are therefore close to the one of the open-loop experiment with
two additional roots:

λz ≈ 0, (2.66)

λφ̃ ≈ −ωlp. (2.67)

The former corresponds to the state parameter z varying very little when
ki is small, and the latter to the dynamics of the low-pass filter when it
is uncoupled from the oscillators’s dynamics. An unstable response of the
open-loop experiment would therefore remain unstable in the PLL experi-
ment, as shown in the lower left corner of Fig. 2.8.

High gains At very high gains ki and kp, the eigenvalues can be approx-
imated by

λ1 ≈ −
ki

kp

, (2.68)

λ2 ≈ −
1

2

(
δ +

1

Ω

dhc

dr

)
, (2.69)

λ3,4 ≈
1

2

(
ki

kp

− ωlp

)
± i
√
ωlpkp. (2.70)

Unlike the instantaneous phase estimation, increasing both control gains
does not necessarily stabilize the system, i.e., the stability is conditioned
by the real part of λ3,4. Increasing ki has a destabilizing effect that can be
compensated by increasing kp. The phase estimation must be sufficiently
fast, i.e., ωlp must be sufficiently high for responses to be stable, a conclusion
shared with [49]. Fig. 2.8 indeed shows that the system is unstable when
ki � kp (in the upper left corner), and that decreasing ωlp shrinks the
region in which the response is stable. Similarly to Section 2.4.1, Eq. (2.69)
is independent from the control gains, showing that the performance will
always be constrained by the damping of the oscillator.

2.5 Conclusion

In this Chapter, we have analyzed the stability of experiments during which
a nonlinear oscillator is excited. A series of assumptions were made about
the experiments: the oscillator is lightly damped and weakly nonlinear, and
it is excited at low amplitude close to its natural frequency. The stability
analysis of limit points being far easier than for periodic orbits, we have
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introduced two transformations allowing to express orbits of the forced os-
cillator as limit points of a nonlinear dynamic system.

The stability of the open-loop experiment was established by deriving
the Jacobian of its slow-flow dynamics. This lead to stability conditions de-
pending on the nonlinearity. The same was achieved for the CBC and PLL
experiments. We have shown that, although the responses are identical to
the open-loop experiment, the controller gains are included in the Jacobian
of the corresponding slow-flow dynamics, modifying the experiments’ sta-
bility conditions. It was shown that an unstable response in the open-loop
experiment could always be stable during ideal CBC or PLL experiments.

The CBC experiment responds itself as a nonlinear oscillator whose
stiffness and damping depend on the controller, changing the stability con-
ditions of its responses. In particular, when the controller used during
the CBC experiment is a PD controller, the proportional and differential
gains modify the experiment’s stiffness and damping respectively, indepen-
dently from the excitation frequency. Specifically, the differential gain al-
ways shifts the experiment’s eigenvalues towards stability. A differential
controller alone is therefore capable of stabilizing any orbit under the Chap-
ter’s assumptions. However, a differential term in the controller renders the
experiment’s transfer function improper, amplifying high-frequency noise
and giving an unbounded output if its input is discontinuous.

A PLL experiment with instantaneous phase lag estimation can stabilize
any orbit if the oscillator’s damping is positive. When the estimation of the
phase lag is not instantaneous, increasing the control gains asymptotically
does not necessarily lead to stability. Specifically, a high integral gain or
a slow phase estimation have a destabilizing effect. Whatever the phase
estimation, there exists an optimal set of gains above which the performance
of the PLL cannot be improved: one of the experiment’s time constants is
always constrained by the damping of the oscillator independently from the
control gains.



Chapter 3

Experimental demonstration of
control-based continuation and
phase-locked loop testing

This Chapter is mainly adapted from the article A consistency analysis of
phase-locked-loop testing and control-based continuation for a geometrically
nonlinear frictional system published in Mechanical Systems and Signal
Processing Vol. 170, 108820 (2022)

Authors: G. Abeloos, F. Müller, E. Ferhatoglu, M. Scheel, C. Collette,
G. Kerschen, M.R.W. Brake, P. Tiso, L. Renson, M. Krack

Abstract

Two of the most popular vibration testing methods for nonlin-
ear structures are control-based continuation and phase-locked-loop
testing. In this Chapter, a detailed implementation is proposed to
identify periodic responses at steady-state constituting the phase-
resonant backbone curve and nonlinear frequency response curves.
The methods are directly compared on the same benchmark sys-
tem, for the first time, to demonstrate their general capabilities and
to discuss practical implementation aspects. The considered system,
which is specifically designed for this study, is a slightly arched beam
clamped at both ends via bolted joints. It exhibits a pronounced
softening-hardening behavior as well as an increasing damping char-
acteristic due to the frictional clamping. To ensure coherent results,
the repetition variability is thoroughly assessed via an uncertainty
analysis. It is concluded that the results provided by the methods
are in excellent agreement.
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3.1 Introduction

Chapters 1 and 2 were focused on conceptual formulations of control-based
experiments. Mathematical models were developed, describing how the
experiments would respond in an ideal case. It was assumed that everything
was known about the nonlinear oscillator and that we were able to reach
any desired state. In actuality, control-based experiments are meant to
characterize oscillators of which we know very little. For instance, we do
not know in advance what parameters to input or what control gains to
choose.

In this Chapter, we define control-based experiments in fine detail. In
Section 3.2.1, we present an implementation of the phase-locked loop (PLL)
experiment proposed in [47, 58], including the phase lag estimation per-
formed using synchronous demodulation [58]. In Section 3.2.2, we discuss an
implementation of the control-based continuation (CBC) experiment pro-
posed in [57], including the necessary operations to ensure that the CBC
experiment identifies responses of the open-loop experiment.

The proposed characterization of some nonlinear oscillator is the identi-
fication of its backbone curve and frequency response curves (FRCs). The
detailed continuation algorithms used to choose adequate input parame-
ters for the identification of backbone curves and FRCs are presented in
Sections 3.2.3 and 3.2.4, respectively.

Until now, we assumed that the experimenter was able to apply any
force on the oscillator. This is in fact different in practice, i.e., the force
is applied by actuators. The experimenter can only choose the signals sent
to the actuators. In this Chapter, an electrodynamical shaker applies a
force on the oscillator of interest by inputting a voltage signal chosen by
the experimenter. Difficulties emanating from this fact are then discussed
and practical solutions are proposed. Specifically, the issue of imposing the
force amplitude is approached in Section 3.2.4, and some aspects of the
shaker-structure interaction (SSI) in Section 3.2.5.

The experimental characterization of a real-life nonlinear structure is
presented in Section 3.3. The backbone curve is identified with both meth-
ods and compared. The repeatability of the experiments is discussed for
each result. FRCs are identified and then compared to FRCs synthesized
from the backbone curve data.

After an in-depth conceptual and practical comparison between CBC
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Figure 3.1: (a) Phase-locked loop and (b) synchronous demodulation [66]

and PLL testing is provided in Section 3.2.6, the choice of adequate control
gains without knowledge about the nonlinearity is discussed in Section 3.3.2.
Finally, concluding remarks are provided in Section 3.4.

The goal of this Chapter is not to discuss the performance and speed of
the methods. To do so would require searching and finding optimal param-
eters for both methods, something that is out of the scope of this thesis.
However, some discussion about performance can be found in Chapter 4.

3.2 Methods

3.2.1 Phase-locked loop testing

The detailed implementation of PLL testing is illustrated in Fig. 3.1. An
electrodynamic shaker excites a nonlinear oscillator through the excitation
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force f(t). To generate f(t), a voltage signal is sent to the shaker:

u(t) = U sin(θ(t)) = U sin

(∫ t

0

Ω(τ) dτ

)
, (3.1)

with instantaneous phase θ(t) and time-varying excitation frequency Ω(t).
The excitation frequency Ω is calculated by a PID control law,

Ω(t) = ω0 + kp(φ∗ − φ1(t)) + ki

∫ t

0

(φ∗ − φ1(τ)) dτ − kd
dφ1

dt
(t). (3.2)

The aim is for the phase lag φ1 between the fundamental harmonic of the
excitation f and response x to reach a phase lag target φ∗ [67]. When the
controller has settled, i.e. when the excitation frequency remains constant,
the voltage signal is monoharmonic by construction.

A key task within PLL testing is to evaluate the phase lag φ1 online,
i.e. at each time sample of the experiment. One method to perform this
is the synchronous demodulation shown in Fig. 3.1b that consists in an
online Fourier decomposition using linear low-pass (LP) filters. It has been
successfully applied in other PLL tests [48, 50, 68, 49] and is used in this
work. A promising alternative is the use of adaptive filters to perform the
online Fourier decomposition (see [69] and Chapter 4).

PLL is capable of stabilizing unstable orbits depending on the gains of
its controller (see [49] and Chapter 2). The tuning of the gains is discussed
in Section 3.3.2.

3.2.2 Control-based continuation

The general formulation of CBC, as presented in [29], separates the exci-
tation from the control signal that can be applied along the excitation by
the same actuator or by a separate actuator. The present Chapter exploits
a simplified implementation of CBC [57] shown in Fig. 3.2, in which the
excitation is provided by the controller.

The voltage signal u(t) is generated by a PD controller whose input is
the difference between a reference signal x∗ and the response x measured
on the oscillator:

u(t) = kp(x∗(t)− x(t)) + kd
d

dt
(x∗(t)− x(t)). (3.3)

The PD controller modifies how the system responds to perturbation and
can stabilize unstable orbits (see [34] and Chapter 2). The tuning of the
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control gains are discussed in Section 3.3.2. Note that CBC does not require
a specific type of controller, i.e., another control law could have been used.

The multi-harmonic response of the system generally leads to a multi-
harmonic control signal. At steady state, the response x (see Eq. (1.2))
and the input voltage signal u can be approximated with truncated Fourier
series of N harmonics:

u(t) =
N∑
n=1

au,n sin(nΩt) + bu,n cos(nΩt). (3.4)

There exist multiple methods to perform the Fourier decomposition. They
are discussed in Chapter 4. In this Chapter, the decomposition is performed
offline using the discrete Fourier transform, i.e., by integrating one period
of the signal following Fig. 3.2b. The reference signal is constructed to be
multi-harmonic with its fundamental component

x∗f (t) = ax∗,1 sin(Ωt) + bx∗,1 cos(Ωt) (3.5)

and non-fundamental component

x∗nf(t) =
N∑
n=2

ax∗,n sin(nΩt) + bx∗,v cos(nΩt). (3.6)

To compare CBC with PLL testing or even standard open-loop testing
methods such as stepped sines, it is necessary to recover a monoharmonic
input voltage signal, i.e. (au,n, bu,n)Nn=2 = 0. This can be achieved by
adequately choosing the higher-harmonics of the reference signal. Eq. (3.3)
shows directly that u is monoharmonic when

(ax∗,n, bx∗,n)Nn=2 = (ax,n, bx,n)Nn=2. (3.7)

Eq (3.7) is a zero problem that can be solved using standard root-finding
methods while the physical experiment is running. The solver can oper-
ate at a frequency that is different or identical to the real-time controller,
making iterations offline or online respectively [69]. In this Chapter, the
algorithm runs offline and consists in derivative-free Picard-iterations [57].
It is presented in Algorithm 3.1. For the rest of the Chapter, the left arrow
operator (←) signifies a value assignment.

The phase of the reference signal can be constrained by setting bx∗,1 = 0.
The only two adjustable parameters of the experiment are the frequency of
excitation Ω and the fundamental reference amplitude X∗ = ax∗,1. The ex-
citation amplitude p is not defined by the user but depends on the response
x and reference amplitude X∗.
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Algorithm 3.1 Algorithm to make the voltage monoharmonic during CBC

1: X∗ defined by user
2: (ax∗,1, bx∗,1)← (X∗, 0)
3: repeat
4: Wait a duration twait for steady state
5: Record time series u and x during one period
6: Perform Fourier decomposition on u and x
7: (ax∗,n, bx∗,n)Nn=2 ← (ax,n, bx,n)Nn=2

8: until max
n

(
(|au,n|, |bu,n|)Nn=2

)
< tol

Algorithm 3.2 Algorithm to identify backbone curves during PLL testing

1: φref ← 0
2: U ← Uinit

3: loop
4: Wait for convergence of Ω
5: Save response
6: U ← U + ∆U
7: end loop

3.2.3 Identification of backbone curves

Phase quadrature is directly imposed by the PLL to identify responses of
the backbone curve. A sequential continuation (i.e. a parameter stepping)
shown in Algorithm 3.2 is followed to step through different amplitude lev-
els. For the rest of the Chapter, simple loops are used in algorithms to
signify that the interruption is decided by the user. For the identification of
backbones, it is practical to start at low amplitude and use the correspond-
ing natural frequency ω0 of the underlying linear system as initial condition
for the excitation frequency Ω [23].

Keeping the reference amplitude X∗ constant during CBC and varying
the excitation frequency Ω allows the continuation of periodic responses
with an indirect constraint on the response amplitude under which a single
periodic response is in phase resonance (similar to constant-response FRFs
identified by the RCT method [53]). CBC therefore enables the identifica-
tion of backbone curves by performing a sequential continuation on X∗ and
solving φ1(Ω) = 0 at every step using the bisection method, as was done
in [38]. Both are implemented in Algorithm 3.3.

In summary, the same phase quadrature can be attained by different
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Algorithm 3.3 Algorithm to identify backbone curves during CBC

1: X∗ ← X∗init

2: Ω← ω0

3: loop
4: ∆Ω← ∆Ωinit

5: Make voltage monoharmonic following Algorithm 3.1
6: Evaluate φ1

7: while |φ1| > tolφ and |∆Ω| > tolΩ do
8: if sign(φ1 ∆Ω) < 0 then
9: ∆Ω← −∆Ω/2

10: end if
11: Ω← Ω + ∆Ω
12: Make voltage monoharmonic following Algorithm 3.1
13: Evaluate φ1

14: end while
15: Save response
16: X∗ ← X∗ + ∆X∗

17: end loop

means during PLL testing and CBC. On the one hand, PLL testing is an
online method in that the phase lag converges continuously towards quadra-
ture thanks to the PID controller acting on the excitation frequency. On
the other hand, CBC has been implemented as an offline method, i.e. suc-
cessive periodic responses are identified and an algorithm is used to iterate
automatically the excitation frequency until quadrature is found up to tol-
erance. More operations are made online during PLL testing (numerical
integration, synchronous demodulation) while CBC’s offline continuation
algorithm possesses more steps. The amplitude of the periodic responses is
determined by the voltage signal U , defined directly during PLL testing or
indirectly through the reference amplitude X∗ during CBC.

Limitations of the algorithms presented in this section arise when con-
fronted to internal resonance. In such a case, the excitation amplitude could
locally decrease along the backbone curve [70]. Given that Algorithm 3.2
increases the excitation amplitude sequentially, such drop would result in
a jump in the backbone curve. A solution to this problem is proposed in
Chapter 7.
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Algorithm 3.4 Algorithm to identify FRCs during PLL testing

1: p∗ defined by user
2: φ∗ ← φ∗init

3: loop
4: Wait for convergence of U and Ω
5: Save response
6: φ∗ ← φ∗ + ∆φ∗

7: end loop

3.2.4 Identification of frequency response curves

The identification of FRCs requires a constant-amplitude, single-harmonic
excitation. To reach a constant excitation amplitude p at the fundamental
excitation frequency, the feedback loop shown in Fig. 3.3 is introduced
on top of the controlled experiment. This loop contains a synchronous
demodulation to measure p online and a PID controller that adjusts the
amplitude U of the voltage signal to reach the forcing amplitude p∗. The
force applied to a nonlinear structure also contains higher harmonics, which
typically result from shaker-structure interactions and the lack of linearity
between the voltage sent to the shaker’s amplifier and the force applied
by the shaker. A method to compensate for these higher harmonics and
cancel them is presented in Section 3.2.5. The algorithm to identify FRCs
using PLL testing is shown in Algorithm 3.4. It performs a sequential
continuation on the phase lag in the vicinity of the resonance [68].
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Algorithm 3.5 Algorithm to identify a collection of S-curves during CBC
in order to approximate FRCs from the dynamic response surface

1: X∗ ← X∗init

2: Ω← Ωinit

3: loop
4: loop
5: Make voltage monoharmonic following Algorithm 3.1
6: Save response
7: X∗ ← X∗ + ∆X∗

8: end loop
9: X∗ ← X∗init

10: Ω← Ω + ∆Ω
11: end loop

Although CBC can be used for the direct identification of FRCs, more
complicated continuation procedures are required to go around fold bifur-
cations (see [32, 41, 71] and Chapter 6). It is usually easier to identify
S-curves and extract FRCs through post-processing as in [38]. Keeping the
excitation frequency Ω constant and varying X∗ enables the continuation
of S-curves following Algorithm 3.5. In the absence of internal resonance,
S-curves vary monotonically with X∗ and a sequential continuation pro-
cedure is applicable (otherwise, see Chapter 5). Identifying a collection of
S-curves at different frequencies and defining a suitable interpolation allows
to identify the full (continuous) response surface. Regression techniques can
then be exploited to approximate FRCs at constant excitation amplitude
p. This indirect identification removes therefore the need for the feedback
loop applied to the fundamental excitation amplitude shown in Fig. 3.3 and
used during PLL testing.

In summary, the same periodic responses can be identified during PLL
testing and CBC. In the former, a continuation on the phase lag can be made
thanks to the PLL. However, it is necessary to add an additional control
loop during PLL testing in order to impose the desired FRC’s excitation
amplitude p. CBC can identify FRCs directly and would, in that case,
also require additional effort to impose p (e.g. a control loop or iterations).
Alternatively, S-curves can be identified sequentially and interpolated into a
continuous response surface in post-processing, providing an approximation
of the FRCs of interest. As discussed in Section 3.2.5, the two methods can
use an additional control loop to cancel higher harmonics present in the
applied excitation.
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3.2.5 Compensation of the shaker-structure
interaction

Shaker-structure interaction (SSI) can result in multiple phenomena in-
cluding resonance force drop, jumps, internal resonance, or subharmonic
resonance [72]. Although these phenomena were not observed in the exper-
iments of this Chapter, higher harmonics in the applied force were. As the
excitation is directly measured at the application point by an impedance
head, it can be directly validated, i.e., if the force signal is close to a sine
wave at the desired amplitude, the system’s response is accepted.

Without additional control, a monoharmonic voltage u can lead to a
multiharmonic excitation f [23]. The excitation f can be approximated by
a truncated Fourier series of N harmonics:

f(t) =
N∑
n=1

af,n sin(nΩt) + bf,n cos(nΩt). (3.8)

The amplitude and phase of harmonic n are expressed as Fn =
√
a2
f,n + b2

f,n

and φf,n = atan2(bf,n, af,n), respectively. Once the voltage u is mono-
harmonic during CBC or PLL testing, a correction is computed from its
instantaneous voltage phase θ by a proportional controller:

unf,n = −kpFn cos (nθ(t)− φf,n) (3.9)

shown in Fig. 3.4. In this paper, this correction was done for only n = 2
and 3 as the higher harmonics were not significant in the experiments. The
controller gain is discussed in Section 3.3.2.

This method makes the assumption that the shaker is phase-neutral,
i.e. the phase-lag between the voltage and the force is zero. At high am-
plitudes, when the SSI is most significant, the shaker indeed approaches
phase-neutrality and the higher harmonics are reduced by the feedback
loop. At low amplitudes, the phase-lag added by the shaker approaches
90◦ between the voltage and the force. The violation of the assumption is
considered acceptable due to the low amplitude of higher harmonics in this
case. The discussion of the limitations of the method are beyond the scope
of this Chapter. Until more analytical work is done, the method is to be
considered ad-hoc and not generally applicable.
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3.2.6 Comparison of the methods

To summarize the previous sections, a general comparison of the working
principles behind phase-locked loop (PLL) testing and control-based con-
tinuation (CBC) is summarized below.

Control PLL testing includes a controller designed to reach a
phase lag target. It is usually a PI controller [48], the pro-
portional gain providing stability and the integral gain
leading to a zero set point error (see Chapter 2). The
control and excitation are applied via the same actuator.
CBC includes a controller designed to stabilize the sys-
tem’s response by comparing it to a reference signal. The
actuator used to apply the control can be identical or
different to the one used to apply the system excita-
tion. With the simplified CBC method, the controller
is not required to reach the reference signal. Examples
of controllers include PD controllers [29] and controllers
designed by pole-placement techniques [40].
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Identified
features

PLL testing controls the phase lag. It is naturally
suited to identify backbone curves [48] and FRCs [67, 68].
CBC controls the response signal. It can identify
FRCs [32, 57, 41] and backbone curves [38] but can also
reach a broader range of responses that might not be well
parametrized by the phase [39].

Harmonic
excitation

PLL testing is designed to send a monoharmonic volt-
age to the exciter once the PLL has converged, such
that measured responses are directly comparable with
responses obtained with open-loop methods such as
stepped sines.
With CBC, the voltage provided to the exciter is a priori
multi-harmonic such that a specific reference signal must
be found to recover results comparable with open-loop
tests.
Both methods require additional precautions to cancel
higher harmonics present in the applied force, due to e.g.
shaker-structure interaction.

Online/offline
variants

PLL testing is an online method, i.e. the method runs
in real time. The Fourier decomposition must be online
as the phase lag is fed to the controller.
CBC comprises in general an offline algorithm running
in parallel to the experiment and performing the contin-
uation procedure. Online variants are possible [69].

Additionally, here is a comparison of more practical aspects focusing
on the continuation algorithms to identify FRCs and backbone curves, the
features of interest in this Chapter.

Identification
of backbone
curves

With PLL testing, backbone curves are identified by
keeping the phase lag constantly at quadrature and per-
forming a sequential continuation on the voltage ampli-
tude.
With CBC, backbone curves are identified by perform-
ing a sequential continuation on the voltage amplitude
and finding phase quadrature at each step by iterating
on the excitation frequency.
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Identification
of FRCs

With PLL testing, FRCs are identified by keeping the
force amplitude constant via an additional control loop
and performing a sequential continuation on the phase
lag.
With CBC, FRCs can be identified by implementing
a pseudo-arclength continuation [32]. In this Chapter,
FRCs are extracted from a collection of S-curves identi-
fied by keeping the frequency constant and performing a
sequential continuation on the voltage amplitude [57].

3.3 Experiments

In this Section, the PLL and CBC experiments as described in this Chapter
are applied to characterize a physical structure with nonlinear behavior. It
consists of a thin beam slightly curved bolted to a frame to form a doubly
clamped beam presented in Section 3.3.1.

The system is subjected to a series of experiments to characterize the
first bending mode of the beam. Specifically, a harmonic force f = p sin(Ωt)
is applied vertically to the frame. Its acceleration ẍ is measured by an
impedance head while the velocity ẋ of the beam is measured by a laser
vibrometer. When periodic, these signals define closed orbits characterizing
the system’s response to the excitation.

PLL testing and CBC are independently used to identify the periodic re-
sponses of the beam at and around the resonance of the first bending mode.
The excitation frequency at resonance ω depends on the amplitude of the
response and is obtained through the identification of backbone curves in
Section 3.3.3 following the method presented in Section 3.2.3. The back-
bone is used for estimating the modal properties of the NNM, presented
in Section 3.3.4. These properties define a reduced order model [73] which
enables to synthesize FRCs in the vicinity of the mode, presented in Sec-
tion 3.3.5. Additionally, FRCs are directly identified during experiments in
Section 3.3.6 following the method presented in Section 3.2.4.

3.3.1 Experimental setup

The main structure of the experimental campaign is presented in [51, 74]
and consists of a thin arched beam whose both ends are clamped via bolted
joints to a frame. The slightly curved beam was specifically designed in [75]
to observe a softening-hardening behavior in the experiments. The beam’s
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Figure 3.5: Test rig consisting in a thin arched beam with both ends
clamped to a frame which is connected to an electrodynamic shaker

shape is defined as a circular arc with radius of curvature R and constant
thickness h, see Fig. 3.5. The detailed properties of the material, screws
and mounting procedure to ensure a proper clamped-clamped boundary
condition is available in [51, 74].

The frame supporting the curved beam is connected to an electrody-
namic shaker (B&K type 4809 driven by amplifier type 2718). An impedance
head (PCB 288D01) is placed between the shaker’s armature and the frame
to measure both excitation force and acceleration of the frame at the drive
point. The beam’s response is measured by a laser Doppler vibrometer
(Polytec OFV-5000 with OFV-552-2 laser head) 20 mm away from the left
clamping. The measurement location was chosen close to clamping to avoid
instabilities in feedback loops emanating from the measurement and driving
points being non-collocated.

The velocity ẋ measured by the laser vibrometer is transformed into the
displacement x that constitutes the beam’s response. The force f measured
by the impedance head constitutes the excitation. When a harmonic volt-
age of the form u(t) = U sin(Ωt) is sent to the electrodynamic shaker, it
generates the force f(t) as illustrated in Figs. 3.1 and 3.2.

At low forcing amplitudes, the beam is assumed to behave linearly.
Therefore, the modal properties corresponding to the lowest frequency bend-
ing mode of the underlying linear system were determined using a hardware
platform for linear modal analysis (m+p VibRunner). A random voltage
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Table 3.1: Parameters for Algorithm 3.1

twait in s tol in V
1 0.05

Table 3.2: Parameters for Algorithm 3.2

Uinit in V ∆U in V
0.006 0.006

Table 3.3: Parameters for Algorithm 3.3

X∗init in m/s ∆X∗ in m/s ∆Ωinit in rad/s tolφ in rad tolΩ in rad/s
0.01 0.02 1 0.05 0.01

signal was sent to the shaker’s amplifier with an amplitude of 0.03 V and a
frequency range between 10 and 3200 Hz. The natural frequency was mea-
sured to be ω0 = 1988 rad/s, and the damping ratio δ0 = 0.026%. To real-
ize the control loops of PLL testing and CBC (see Sect. 3.2.1 and 3.2.2 for
details), the sensors and the amplifier are connected to a rapid control pro-
totyping system (dSPACE MicroLabBox, sampling frequency: 10,000 Hz).

3.3.2 Parameters and gains

This Section presents the value chosen for each parameter introduced in
this Chapter. They heavily depend on the application and almost certainly
will not be adequate for other experiments. Each parameter was chosen by
trial and error, and there could exist parameters leading to a faster or more
accurate characterization. Chapter 4 provides some discussion about speed
and performance.

The parameters used in Algorithm 3.1 are shown in Tables 3.1. On
the one hand, a shorter waiting time twait might introduce error in the
Fourier decomposition because of transients that are not fully damped out.
On the other hand, waiting time longer than the settling time increases
the duration of the experiment without benefit. A higher tolerance might
reduce the duration of the experiment, but enhances higher harmonics in
the voltage signal. A potential consequence is for the CBC experiment to
exhibit responses different from the open-loop experiment.

The parameters used in Algorithms 3.2 and 3.3 are shown in Table 3.2
and 3.3 respectively. The initial amplitudes Uinit and X∗init determine the
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Figure 3.6: Proposed time profile of φ∗ for Algorithm 3.4

Table 3.4: Parameters for Algorithm 3.5

X∗init in m/s Ωinit in rad/s ∆X∗ in m/s ∆Ω in rad/s
0.01 1967 0.01 3.14

lowest excitation level of the backbone curve. Small step sizes ∆U and ∆X∗

increase the duration of the experiment but lead to a finer identified curve.
The initial frequency step size ∆Ωinit influences the time taken to converge
to the resonance frequency ω during a CBC experiment. A large phase
tolerance tolφ diminishes the accuracy of the identified backbone curve dur-
ing the CBC experiment, while the frequency tolerance tolΩ determines the
acceptable accuracy limit.

The parameters in Algorithm 3.4 consist only in the evolution of the
phase lag target. For lightly damped structures, the ratio ∂Ω/∂φ is small
at resonance but large away from it. To avoid divergence of the controller
after a phase step (e.g. towards another mode) and to obtain reasonably
spaced data points in the amplitude frequency plane, smaller steps of the
reference phase are chosen away from resonance, shown in Fig. 3.6.

The parameters used during Algorithm 3.5 are shown in Table 3.4. The
initial amplitude X∗init and frequency Ωinit determine the starting point of
the sought response surface. The amplitude step ∆X∗ determines how fine
the identified S-curves are going to be. Finer S-curves take longer to identify,
but a large ∆X∗ might lead to jumps in the unstable branches, leaving an S-
curve only partially identified. The frequency step ∆Ω determines how close
to each other the S-curves will be. Certain regions of the response surface
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Table 3.5: Gains of the controllers used in PLL testing and in CBC (∗

backbone identification, † FRC identification)

PLL Ampl. control (PLL) CBC SSI control
kp 150 s−1 120† 20 Ns/m 12∗,40†

ki 50 s−2 40† s−1 – –
kd 40∗, 10† 0.04† s 0.4 Ns2/m –

such as the resonance peak of a lightly damped structure might need a fine
frequency resolution to be accurately interpolated or approximated.

There is currently no general method to construct a control law for
control-based methods to reach their control objectives—e.g. the stabiliza-
tion of unstable responses—without knowing some characteristics of the
system. However, control-based methods are meant to be applicable with-
out the need to identify a model beforehand. There is some promising but
very early proposals for such tuning methods, for instance using control
Lyapunov-Razumikhin functions [76] or adaptive control design [77, 78]. In
the meantime, control gains are tuned heuristically, i.e., by trial and error.
The formal derivation of the influence and effect of each control gain on the
dynamics of general systems is developed in Chapter 2.

The controller used during PLL testing has a conventional purpose:
the phase lag φ1 between the beam’s velocity and the force must converge
towards the reference phase lag φ∗. One can therefore use manual tuning
for PID controllers, as proposed for instance in [79]. The PID gains found in
this way are shown in the first column in Table 3.5. A similar methodology
is followed for tuning the PID controller used to impose a constant force
amplitude.

During the CBC experiment, a PD controller is chosen to stabilize the
responses, following the conclusions of Chapter 2. To tune the gains in
practice, a frequency at which the structure exhibits unstable responses at
the force levels of interest is chosen. Successive S-curves are identified fol-
lowing Algorithm 3.5. The proportional and differential gains are increased
progressively until all of the S-curve are stabilized.

3.3.3 Backbone curves

Figure 3.7a shows backbone curves identified during PLL testing and CBC
following Algorithms 3.2 and 3.3. The experiment was repeated six times



3.3. EXPERIMENTS 65

0 0.05 0.1 0.15 0.2 0.25

X
1
 /  h

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

 /
 

0

(a)

1 2 3 4

n

0

0.25

0.5

0.75

1

X
n
 /

 X
1

(b)

1 2 3 4

n

0

0.25

0.5

0.75

1

X
n
 /

 X
1

(c)

Figure 3.7: (a) Backbone curves identified with PLL testing (blue curve)
and CBC (orange curve) from six successive experimental identifications
(warm-up in dashed curve); frequency content of periodic responses at res-
onance and at amplitudes (b) X1/h ≈ 0.1 and (c) X1/h ≈ 0.25 identified
during PLL testing (blue) and CBC (orange)
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in a row to assess repeatability. The first experiment of the series applied
CBC and resulted in a qualitatively different identification (dashed curve).
It is suspected that the temperature of the beam increased during the ex-
periment, resulting in a change of modal properties. The curve is therefore
discarded while the five subsequent CBC experiments and six PLL testing
experiments constitute the results. The frequency content of two periodic
responses—one at low amplitude in the softening regime and the other at
high amplitude in the hardening regime—is shown in Figs. 3.7b and 3.7c.
The low amplitude of higher harmonics relative to the fundamental supports
the assumption that a single mode is excited without modal interaction.

The minimum amplitude reachable during the experiments depends on
the signal-to-noise ratio. PLL testing requires an online Fourier decompo-
sition for the phase lag to be fed into the PLL controller at each sample
time. Low signal-to-noise ratio prevents the PLL from converging and low-
amplitude responses are left unidentified. In contrast, the offline Fourier
decomposition used during CBC can gather as much data as needed before
proceeding with the continuation algorithm. This allows averaging of the
signals and better performance at low signal-to-noise ratios.

The nonlinear natural frequency ω approaches the linear natural fre-
quency ω0 at low amplitudes. The beam exhibits a softening behavior until
an amplitude X1/h ≈ 0.15 above which ω increases. This turning point
corresponds to a displacement amplitude of 0.67h at the beam’s center
(estimated using the linear mode shape of the FE model). A softening-
hardening transition at this amplitude is expected from a slightly curved
beam, as demonstrated in [80] showing excellent agreement between the
results and theory.

Let the successive backbone curves be described by the functions ωk(X1)
for the kth curve. For every value X1, the standard deviation σ(ω) is com-
puted and shown in Fig. 3.8a. The standard deviation increases suddenly
when reaching amplitude X1/h = 0.15, corresponding to the softening-
hardening transition, and stays large at higher amplitudes. The maximum
standard deviations

max
X1

σ(ωk(X1)) = 0.00145ω0 for PLL testing and

= 0.00137ω0 for CBC,

are comparable between the methods. These values are small in absolute
value but relatively significant in the light of the amplitude-dependent fre-
quency change of about −0.5 % and +2 % attributed to the softening and
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Figure 3.8: (a) Standard deviation of the successive backbone experiments
using PLL testing (blue area) and CBC (orange area), (b) measured phase
lag error and (c) frequency error in the identified backbone responses during
PLL testing (blue curve) and CBC (orange line and squares) estimated from
the (d) local response phase surface around the backbone
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hardening behavior, respectively. To adequately represent the repeatability
variations, the standard deviation is included as colored areas next to the
results in the rest of the Chapter.

Fig. 3.8b shows the error in phase lag compared to the quadrature target
φ1 = −π/2 rad. PLL testing is able to reach a phase error almost two
orders of magnitude lower than CBC. This is not surprising as CBC can
only approach quadrature using prescribed finite steps, presently following
Algorithm 3.3. Despite the higher precision achieved by PLL testing, the
standard deviation shown in Fig. 3.8a is not reduced compared to CBC. It
can be concluded that high phase precision is not needed in this particular
application due to high inherent variability.

A frequency error shown in Fig. 3.8c is estimated as the distance from
the local response surface shown in Fig. 3.8d. The surface is an interpo-
lation of S-curves identified using CBC and presented later in the Chap-
ter (Fig. 3.12). Fig. 3.8b shows that most periodic responses identified
during CBC at high amplitudes (X1/h > 0.15) lie within the phase toler-
ance, while Fig. 3.8c shows that most periodic responses at low amplitudes
(X1/h < 0.15) lie within the frequency tolerance. This can be linked to
later results showing that damping increases with amplitude (Fig. 3.9b).
Lower damping implies a sharper resonance peak; the phase-lag is sensitive
to small variations in frequency. As damping increases, the sensitivity to
changes in frequency diminishes while the sensitivity to changes in phase lag
increases. The change in damping can be seen visually in Fig. 3.8d as the
response surface is flatter on its left-hand boundary (lower amplitude and
damping) and more curved on its right-hand boundary (higher amplitude
and damping).

3.3.4 Nonlinear modal analysis

As established in [23], the amplitude-dependent modal properties can be
extracted from the phase-resonant backbone curve, provided that strong
modal interactions (e.g. due to closely-spaced or internally resonant nat-
ural frequencies) remain absent and damping is light. Here, the definition
of a nonlinear mode in accordance with the extended periodic motion con-
cept [81] is used. The modal frequency (or natural frequency) ω corresponds
to the excitation frequency at phase resonance and is a direct output of the
experiments. The nonlinear modal damping ratio δ is determined by fol-
lowing the idea that the power supplied by the excitation has to cancel the
power dissipated by the system-inherent damping (see [23] for details). The
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(a) (b)

Figure 3.9: (a) average nonlinear natural frequency and (b) nonlinear modal
damping depending on the response level, identified with PLL testing (blue
curve) and CBC (orange curve); compared to linear parameters identified
during the linear modal analysis (∗)

average modal frequency and modal damping ratio are shown in Fig. 3.9a
and Fig. 3.9b, respectively. As expected, the values of the parameters at
low amplitude are consistent with the linear modal parameters.

Increasing damping ratio with amplitude is typical for micro-slip fric-
tion, which may also cause the increase in variability with amplitude shown
in Fig. 3.8a. Although the damping has a standard deviation so small that
it is barely visible in Fig. 3.9b, it exhibits an interesting hysteresis behavior.
It is important to note that it is not a dynamical hysteresis, i.e. each point
on the curve corresponds to a steady state periodic response identified dur-
ing PLL testing or CBC. Rather, the behavior of the structure is different
whether the amplitude is sequentially increased or decreased. We do not
know the cause of this behavior, but a possible explanation could be linked
to thermal effects analogous to the observations in [82].
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Figure 3.10: FRCs at varying excitation amplitudes synthesized from the
average backbone curve identified with PLL testing (blue curve) and CBC
(orange curve), and compared to the standard deviation from PLL testing
(blue area) and CBC (orange area) data

3.3.5 Frequency response curve synthesis

FRCs can be synthesized from the nonlinear modal parameters presented in
Section 3.3.4. It can be advantageous to do this as fewer periodic responses
need to be measured compared to a direct FRC identification. Identifying
FRCs both through synthesis and directly is done here as a cross-validation.

The synthesis relies on the single-nonlinear-mode theory. The frequency
Ω of the FRC at a specific response amplitude is computed following [83].
The FRCs synthesized from the backbone curves (Fig. 3.7a) are shown in
Fig. 3.10. They are parametrized by their phase lag such that there is a
one-to-one correspondence between each point of the different curves. The
successive FRCs are described by the functions ωk(φ1) and X1(φ1) for the
kth curve. The standard deviation is computed for each phase lag value both
in amplitude and frequency, and is shown as colored areas in Fig. 3.10.

The softening-hardening behavior is apparent in the FRCs. Under a
forcing amplitude of 3 N, the FRCs are in the softening regime and are
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Figure 3.11: FRCs at excitation amplitudes (a) F = 1 N, (b) 3 N, and
(c) 5 N identified experimentally with PLL testing (blue curve) and CBC
(orange curve), compared to the S-curves identified with CBC (◦) and to the
standard deviation of the FRCs synthesized from backbone curves identified
with PLL testing (blue area) and CBC (orange area)

skewed toward lower frequencies. They include two saddle-node bifurca-
tions. This indicates the existence of a branch of unstable orbits. Increasing
the forcing amplitude above 3 N creates two more saddle-node bifurcations
as the FRCs begin to be skewed towards higher frequencies. This harden-
ing regime therefore includes two branches of unstable orbits, one due to
softening and the other due to hardening. Recall that this leads to as much
as four turning point bifurcations and and a stable high-level branch which
can be unreachable by a conventional frequency response test (stepping or
slowly sweeping the frequency and controlling only the excitation level).

3.3.6 Frequency response curve identification

FRCs are identified experimentally using PLL testing by following Algo-
rithm 3.4. They are shown in blue in Fig. 3.11. The identification of FRCs
is limited around the resonance peak. Further from resonance, a small
phase lag variation implies a large frequency variation. Consequently, even
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Figure 3.12: (a) Amplitude and (b) phase lag of S-curves identified exper-
imentally during CBC for varying excitation frequencies; with highlighted
resonance points at phase quadrature (◦)

low phase lag uncertainty prevents the accurate identification of periodic
responses. Additionally, periodic responses further from resonance have a
low amplitude, leading to low signal-to-noise ratio in the measurement and
high phase lag uncertainty, as explained in Section 3.2.3. Such a limitation
is nuanced by the fact that interesting behavior is rarely expected far from
resonance.

The S-curves identified during CBC by following Algorithm 3.5 are
shown in Fig. 3.12. Far away from resonance, the force level increases
quickly, constituting a potential limitation of the method when applied to
structures or equipment sensitive to high forcing. The phase lag along the
S-curves is shown in Fig. 3.12b. The presence of two resonance points
where φv = 0 rad and the double-S shape of some S-curves results from the
softening-hardening behavior of the system.

Combining the data of multiple S-curves allows to identify a region of
the response surface. FRCs can then be extracted in post-processing. For
repeatable experiments, an accurate response surface can be obtained by
interpolating the points of the S-curves using kriging [84] or other basis
functions [85]. In the present work, the experiments are not perfectly re-
peatable due to the inherent variability of the structure. An approximation
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Figure 3.13: Response surface representing the response amplitudes of the
system for varying excitation signals, approximated from the S-curves and
the backbone identified experimentally with CBC (data points shown in
orange and approximated FRC at F = 3 N in white)

of the S-curve data is therefore preferred to an interpolation. The response
surface is approximated by a cubic spline surface with 10 equally spaced
control points along the frequency dimension and 12 points along the re-
sponse amplitude dimension. The location of the control points along the
fundamental excitation force dimension is determined by minimizing the
average distance between the surface and the data points. The data con-
sists in the S-curves and the average backbone, useful to accurately capture
the resonance region. The surface and data points are shown in Fig. 3.13.

The FRCs are finally extracted from the response surface as collections
of periodic responses at constant excitation amplitudes. They are shown in
orange in Fig. 3.11. To highlight the fact that the FRCs are not interpo-
lations but approximations, the intersection of the S-curves with the plane
embedding the FRC are shown as orange circles. The resulting FRCs stay
close to these intersections, showing an accurate approximation.

Although the identified FRCs—either directly using PLL testing or in-
directly using CBC—show a slight difference in frequency, they lie within
or very close to the standard deviation of FRCs synthesized from the back-
bones. In other words, such a difference in frequency is expected from the
inherent variability of the system. This gives strong confidence in both
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the FRCs and the backbone curves identified using PLL testing and CBC.
Finally, both methods successfully stabilize the unstable orbits in the FRCs.

3.4 Conclusion

The aim of this Chapter was to present a detailed implementation and to
compare two recently-developed methods capable of nonlinear modal char-
acterization on the same structure. Both methods use feedback to control
different experimental parameters. During phase-locked loop (PLL) test-
ing, the phase lag between response and excitation signals is imposed by a
controller. During control-based continuation (CBC), a controller generates
an excitation signal from the difference between a reference signal and the
response of the structure.

Both PLL testing and CBC were capable to successfully characterize
the amplitude-dependent modal properties of the lowest-frequency bend-
ing mode of a thin beam possessing an intrinsic curvature. The struc-
ture exhibits complex nonlinear softening-hardening dynamics and nonlin-
ear micro-slip in the bolted joints, accurately characterized by both meth-
ods. The backbone identification—and subsequent nonlinear modal param-
eters and synthesized FRCs—and the FRC identification lead to consistent
results obtained by PLL testing or CBC.

It is difficult to compare quantitatively experimental duration using both
methods. The tuning of the controllers plays a critical role in the dynamics
of the system, e.g., the time needed to reach steady state. The param-
eters chosen in the continuation algorithms affect greatly the duration of
experiments. An in-depth parameter study might be done to assess accu-
rately performance of CBC and PLL testing but it is deemed outside the
scope of this Chapter. With these considerations, no significant difference
in performance was observed in this study.

This Chapter focused on bringing PLL testing and CBC together and
presenting their different approaches in performing the same characteriza-
tion. An equally relevant approach would set the methods apart by studying
special cases where PLL testing or CBC might fail. Such cases are men-
tioned in this Chapter and result from a difference in parametrization of
the response surface exploited by both methods. On the one hand, super-
harmonic resonance might prevent a parametrization by a single response
harmonic [86] and a characterization by CBC might be incomplete. Chap-
ter 5 looks into such a particular situation. On the other hand, modal
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interaction might render a parametrization by phase lag challenging [70]
and a characterization by PLL testing incomplete. Chapters 6 and 7 look
into these issues.

General methods are still lacking regarding the determination of control
laws for control-based methods. Unless knowing in advance the nonlin-
earities of a system—i.e. building a model, defeating the purpose of the
methods—controller gains are currently tuned heuristically. Further work
looking into robust and general methods for building control laws is needed,
possibly building upon the early work done on the subject in [76, 78].





Chapter 4

Online Fourier decomposition
for control-based methods

This Chapter contains excerpts of the article Stepped and swept control-
based continuation using adaptive filtering published in Nonlinear Dynamics
104, pages 3793–3808 (2021)

Authors: G. Abeloos, L. Renson, C. Collette, G. Kerschen

Abstract

Both control-based continuation and phase-locked loop testing
require that Fourier coefficients are estimated during the experiment.
The former has to cancel non-fundamental harmonics in the excita-
tion, and the latter needs to estimate the phase lag. Two existing
Fourier decomposition methods are discussed. First, the discrete
Fourier transform is applied to recorded time histories. Experiments
must therefore be put on hold while it is performed, which makes
it offline. Second, synchronous demodulation acts by extracting
Fourier coefficients continuously using a low-pass filter. A compro-
mise must be made between accuracy and speed, as an oscillatory er-
ror is always present in the output. An alternative method based on
adaptive notch filters that output Fourier coefficients as by-product
is proposed in this Chapter. Adaptive filtering features accuracy and
speed similar to discrete Fourier transform while having an online ar-
chitecture like synchronous demodulation. It is shown to improve
performance of both control-based continuation and phase-locked
loop testing during virtual and physical experiments. Specifically,
a faster, more accurate phase lag estimation improves the stability
of phase-locked loop experiments and a novel online control-based
continuation experiment allows for fast characterization.

77
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4.1 Introduction

The control-based methods studied in this work require the estimation of
some parameters during the experiment to function properly. On the one
hand, the non-fundamental harmonics of the response must be identified
during the control-based continuation (CBC) experiment to ensure that
the force is monoharmonic. On the other hand, the phase lag between the
fundamental harmonic of the response and the excitation must be identified
during the phase-locked loop (PLL) experiment.

A method to estimate the non-fundamental harmonics of the response
during CBC has already been described in Chapter 3 using the offline
Fourier decomposition in Fig. 3.2b. Similarly, a method to estimate the
phase lag during PLL using synchronous demodulation is illustrated in
Fig. 3.1b. This Chapter aims to present the drawbacks of these methods
and introduce a new one based on adaptive filtering [87, 88].

In Section 4.2, we will discuss three methods to perform a Fourier de-
composition during an experiment, namely the discrete Fourier transform
(DFT) in Section 4.2.1, the synchronous demodulation in Section 4.2.2,
and the adaptive notch filter in Section 4.2.3. We will then compare the
performance of the different methods during PLL and CBC experiments in
Sections 4.3 and 4.4, respectively. A conclusion is provided in Section 4.5.

4.2 Fourier decomposition methods

4.2.1 Discrete Fourier transform

The DFT is used to compute Fourier coefficients of time signals that have
already been recorded. Using the coefficients during the experiment requires
applying DFTs at regular intervals in parallel to the experiment, a type of
method that we will call “offline”. A computer must first record a time series
into a buffer memory, then apply the DFT, and finally use the resulting
coefficients to drive the experiment. Fig. 4.1a shows the time series of
a measured signal. The signal is stored in memory over one period, as
symbolized by the arrows. Once the period is fully recorded, the DFT is
applied at times marked by dashed lines. The sampling time of the Fourier
coefficients (dashed lines) is usually longer than the one of the measurement
(dots).

The time series on which the DFT is applied must be periodic for the
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(a)

(b)

(c)

Figure 4.1: Different buffer sizes when applying a DFT during an experi-
ment with (a) one period buffer every period, (b) two periods buffer every
period, and (c) one period buffer every sample; an arrow symbolizes the
data used for the DFT and a dashed line represents the time steps at which
the DFT data is available

estimated Fourier coefficients to be accurate. Fig. 4.2 shows a periodic
signal sampled 39 times every two periods. One period therefore lasts 19.5
samples. A naive approach is to round the number of samples per period to
constitute the buffer. Consequently, the stored discrete signal is not periodic
and the estimation of the Fourier coefficients is erroneous, as shown for the
worst case scenario in Fig. 4.3. Increasing the sampling frequency decreases
this misalignment error but increases the resources needed by the computer
and the measurement hardware. For instance, to ensure that the error is
less than 5%, the sampling frequency must be 40 times the frequency of
the signal’s highest harmonic of interest. A more complex solution is to
resample the measured data, ensuring that there are a whole number of
samples during a period. The sampling frequency therefore depends on the
measured signal’s frequency.
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Figure 4.2: Misalignment between the sampling time and the signal’s period
at 39 samples every two periods; with dashed lines marking the number of
samples per period rounded to the nearest integer
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Figure 4.3: Relative error between the Fourier coefficient of a sine wave
discretized by 2Ns + 1 samples every two periods and the DFT output of a
time series whose length is (2Ns + 1)/2 rounded to the nearest integer

Storing multiple periods in the buffer is useful to average out potential
noise in the measurement or to compensate for a misalignment between the
sampling time and the period. However, the sampling time of the Fourier
coefficients is multiplied by the same amount, i.e., the Fourier coefficients
are updated less frequently. A solution is to record buffers in parallel.
Fig. 4.1b shows an example in which each buffer contains two periods but
a new buffer is started every period.

It is possible to update the estimation of the Fourier coefficients at
every measurement sample, as shown in Fig. 4.1c. A new buffer is started
at every sample and the time series is recorded during a whole number of
periods. This method is expensive in operation counts because a DFT must
be applied at every measurement sample, and expensive in memory usage
because a large number of buffers run in parallel.

An additional challenge to using DFT during experiments are applica-
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Figure 4.4: Implementation of the DFT for frequency-varying applications
(shown: identification of the fundamental sine Fourier coefficient)

tions during which the frequency of the signal changes, e.g., during a PLL
experiment. An implementation is proposed in Fig. 4.4. The instantaneous
phase θ of the DFT basis is computed by integrating the frequency through
time. Its value mod 2π will increase until reaching 2π, at which point it
will drop to zero. The end of one period coincides with this drop. In par-
allel to this, the signal is multiplied by the harmonic basis and integrated
through time as per the DFT method. The integrator is a cumulative sum
multiplied by the time step. When reaching the end of the period, the in-
tegrator value multiplied by twice the frequency is the Fourier coefficient
and is stored into memory. The integrator is reset one step after storing
the coefficient into memory.

4.2.2 Synchronous demodulation

The principle behind a Fourier transform is the orthogonality of sine waves,
i.e., the product of two sine waves at identical frequencies has a constant
term proportional to the Fourier coefficient. Integrating over one period
cancels every periodic term and allows to extract the Fourier coefficient.
Synchronous demodulation uses the same principle; the product’s constant
term is not extracted through integration but by applying a low-pass fil-
ter [58].

Contrarily to DFT that consists in performing operations in parallel to
the experiment, synchronous demodulation consists in performing opera-
tions on the signals directly and continuously through time. We will thus
refer to as “online” method. Online methods are interesting because the



82
CHAPTER 4. ONLINE FOURIER DECOMPOSITION FOR

CONTROL-BASED METHODS

10
-3

10
-2

10
-1

10
0

lp
 / 

10
0

10
1

10
2

N
lp

(0
.0

1
)

10
-4

10
-3

10
-2

10
-1

10
0

e

Figure 4.5: Number of periods taken to settle within 1% of the steady-state,
and amplitude of the oscillatory error versus the cut-off frequency of the
low-pass filter

estimation of the Fourier coefficients is updated continuously or at each
measurement sample. The coefficients can then be used in feedback loops
directly using measurement data.

The performance of synchronous demodulation using a linear low-pass
filter is derived in Appendix B.1. When estimating the Fourier coefficients of
a signal at frequency Ω using a low-pass cut-off frequency ωlp, an oscillation
is present at the output. The amplitude of the oscillation relative to the
actual Fourier coefficient is

e ≈ ωlp

2Ω
. (4.1)

The number of periods needed for the estimated Fourier coefficient to settle
within a relative margin ε is

Nlp(ε) ≈ − Ω

2πωlp

log(2ε). (4.2)

Therefore, a compromise must be made between a precise estimation of the
Fourier coefficients (low e) or a fast estimation (low Nlp(ε)). This trade-
off is shown in Fig. 4.5. Furthermore, a low-frequency application requires
necessarily a slow filter.

Fig. 4.5 shows that a cut-off frequency ωlp = Ω/50 for the phase demod-
ulation corresponds to an oscillatory error ratio e = 1%, in which case the
estimation will take 16 periods to converge within 1% of the actual Fourier
coefficient value. Similarly, ωlp = Ω/10 and Ω/5 correspond to oscillatory
error ratios of e = 5% and 10%, taking 3 periods and 1.5 periods to converge
within 1% of the coefficient value respectively.
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4.2.3 Adaptive notch filter

The method proposed to perform a high-performance online Fourier de-
composition uses the adaptive notch filter introduced in [87]. The primary
objective of adaptive notch filters is to isolate or remove a component from
the input signal at a specific frequency. However, we will not use the usual
outputs of the filter. Rather, the Fourier coefficients of the targeted compo-
nent, which are internal parameters of the filter, are directly accessed and
constitute the output in our application.

An adaptive filter synthesizes the signal x̂ by performing a time-varying
linear combination of a basis q such that it approximates the input signal
x [88]:

x̂(t) = wT (t)q(t) ≈ x(t). (4.3)

In an adaptive notch filter, the basis q is composed of harmonic signals

q(t) =



q0(t)
q1s(t)
q1c(t)
q2s(t)

...
qNHc(t)


=



1
sin(Ωt)
cos(Ωt)
sin(2Ωt)

...
cos(NHΩt)


(4.4)

and the weights leading to an accurate synthesis

w(t) =



w0(t)
w1s(t)
w1c(t)
w2s(t)

...
wNHc(t)


(4.5)

are determined by an algorithm. One of the simplest and least expensive is
the least mean squares (LMS) algorithm [88], which updates w discretely
through time. At time step i, the synthesis error is estimated, e(ti) =
x(ti)−wT (ti)q(ti), and the weights are updated following

w(ti+1) = w(ti) + µq(ti)e(ti), (4.6)

where µ is the step size factor, which is an internal parameter of the LMS
algorithm
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The performance of an adaptive filter is studied in Appendix B.2. The
optimal coefficient µ to estimate the Fourier coefficients of a signal at fre-
quency Ω is the critical

µc = 2 sin(Ωts)
1− sin(Ωts)

cos2(Ωts)
, (4.7)

the number of periods necessary for the estimated Fourier coefficient to
settle within a relative margin ε is

Naf(ε) ≈ −
1

2π
W−1(−ε). (4.8)

If multiple harmonics are decomposed using an adaptive filter, a single value
of µ is only optimal for one of the harmonics. Higher or lower harmonics will
be under or over damped, respectively. An alternative would be to define
critical values of µ for each harmonic. This case has not been studied in
this work.

When the synthesis error e is close to zero and the weights w are close
to constant, Eq. (4.3) is similar to a Fourier decomposition of x and the
elements of w approximate its Fourier coefficients (see Eq. (1.2)):

w0 ≈ bx,0

wks ≈ ax,k

wkc ≈ bx,k
∀k ∈ {1, . . . , NH}.

(4.9)

4.2.4 Comparison

The settling time of the adaptive filter is compared to the synchronous
demodulation in Fig. 4.6. The estimation by adaptive filtering converges
within 1% of the Fourier coefficient value in approximately one period of
the input signal. It is faster than synchronous demodulation even when the
oscillatory error amplitude is allowed to reach 20% the Fourier coefficient
value. Using adaptive filtering is therefore faster and more accurate than
synchronous demodulation.

The three methods are used to identify the amplitude and phase of a
harmonic signal in Fig. 4.7. The sampling frequency was chosen to maximize
the error of the DFT identification due to period misalignment (see Fig. 4.2).
The DFT is applied once every period and reaches an acceptable identified
amplitude and phase at the first estimation. Due to misalignment between
the signal and sampling frequencies, the relative error alternates between
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Figure 4.6: Number of periods necessary for the estimation of the Fourier
coefficient to converge within an amplitude ratio ε of the actual Fourier
coefficient value using synchronous demodulation with ωlp = Ω/25 (blue
curve), Ω/5 (orange curve), Ω/2.5 (yellow curve) corresponding to oscilla-
tory error ratios of e = 2%, 10% and 20% respectively; or adaptive filtering
(dashed curve)
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Figure 4.7: Identified amplitude X1 and phase φ1 of input signal x =
sin(Ωt+ π/2) with frequency Ω = 1 rad/s, sampling frequency fs = 16 Hz,
using one DFT every period (blue), synchronous demodulation with cut-off
frequency ωlp = Ω/5 (orange), or adaptive filtering with LMS factor µ = µc
(yellow)
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1% and 3%, which is consistent with the predicted 2% value from Fig. 4.3.
The misalignment causes however no error in the estimated phase.

Using synchronous demodulation, the low-pass frequency was chosen
ωlp = Ω/5, leading to a 10% error in the identified amplitude and 0.2 rad
error in the identified phase, consistently with predicted values in Fig. 4.5.
The predicted 3 periods necessary for the estimated coefficients to converge
within 1% also seem consistent with Fig. 4.7a.

Using adaptive filtering, the coefficients were predicted to converge within
1% of their final value in one period, which is consistent with Fig. 4.7. The
amplitude and phase converge quickly to the exact values and the error
converges to zero.

4.3 Phase-locked loop

If the fundamental harmonic of the response x(t) and excitation f(t) are
expressed as

ax sin(Ωt) + bx cos(Ωt) = X sin(Ωt+ φx) and (4.10)

af sin(Ωt) + bf cos(Ωt) = F sin(Ωt+ φf ) (4.11)

respectively, the phase lag is simply φ = φx − φf . The phase of each signal
can be derived from the Fourier coefficients of the fundamental harmonic:

φx = atan2(bx, ax), (4.12)

φf = atan2(bf , af ) (4.13)

and used during a PLL experiment.

The particularity of the PLL experiment is that the Fourier estimation
is part of a control loop that acts on the excitation frequency Ω. Chap-
ter 2 showed that the responses of an experiment with continuous feedback
control could all be stable, including the ones that were unstable in the
open-loop experiment.

The Fourier coefficients of the response and excitation can be estimated
using DFT. At one extreme, the estimation can be performed at every mea-
surement sample, ensuring stability at a large cost in computation power
and memory usage. At the other extreme, the Fourier coefficients can take
one or more periods to be updated. While the estimated phase lag is kept
constant between updates, the experiment can be considered in open loop,
preventing any stabilization.
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Table 4.1: Set of parameters and laws for the virtual PLL experiment

m c k fnl p ki kp ω0 in rad/s fs in Hz
0.05 0.2 57 2× 108x3 0.01 1 3 30 104

Chapter 3 implemented a PLL experiment using synchronous demod-
ulation. The low-pass filter takes a certain time to estimate the Fourier
coefficients. In Chapter 2, we showed the importance of a fast phase lag
estimation to ensure the stability of the experiment’s responses. Therefore,
there is a minimal value for the cut-off frequency ωlp under which some
responses may not be stable for the chosen control gains. Additionally,
there is an oscillatory error in the estimated Fourier coefficients that will
propagate into the estimated phase lag, reducing the accuracy of the PLL.

With adaptive filtering, these problems are alleviated. The phase lag
estimation is online and fast, improving the stability of the experiment’s
responses. In addition, the estimation error converges to zero, making the
PLL accurate when targeting a certain phase lag.

4.3.1 Virtual experiment

A PLL experiment is simulated numerically to characterize the Duffing os-
cillator in Eqs. (1.14) and (1.15). The experiment is integrated in discrete
time with sampling frequency fs. The internal and user-defined system
parameters are shown in Table 4.1, and the corresponding theoretical fre-
quency response curve (FRC) is shown in Fig. 4.8. An unstable response
corresponding to a phase lag φ1 = −2.4 rad is taken as an example.

Fig. 4.9 shows cases in which the Fourier decomposition method prevents
the PLL to stabilize on the targeted response. Applying the DFT every two
periods is not fast enough to stabilize the response. After one period, the
Fourier coefficients are evaluated and the frequency is suddenly modified
by the PI controller. At this new frequency, the response is significantly
different and so are the new Fourier coefficients. The phase lag target is
overshot. A new evaluation of the Fourier coefficients leads to frequency
correction and the phase lag target is overshot in the other direction. This
process repeats and the system never converges. A similar problem happens
in Fig. 4.9 with synchronous demodulation when the filter is too slow, i.e.,
when the cut-off frequency of the low-pass filter ωlp is too small. The phase
lag target is overshot, then the PI controller over-corrects due to inertia
in the phase lag evaluation. The system oscillates around the targeted
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Figure 4.8: FRC of the system whose parameters are in Table 4.1 computed
with the HB method and pseudo-arclength continuation [59]; example of
unstable response with φx = −2.4 rad highlighted with a circle

-0.5

0

0.5

1

1.5

 -
 

*

0 5 10 15 20

40

50

60

Time

Figure 4.9: Time series of the phase lag error and frequency when stabilizing
the system in Table 4.1 at φ∗ = −2.4 rad using synchronous demodulation
with a slow low-pass filter ωlp = ω0/15 (orange) and DFT every two periods
(yellow)
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Figure 4.10: Time series of the phase lag error and frequency when sta-
bilizing the system in Table 4.1 at φ∗ = −2.4 rad using adaptive filtering
with µ = 0.002 (blue), synchronous demodulation with a fast low-pass filter
ωlp = ω0/7.5 (orange), and DFT every period (yellow)

response.

Fig. 4.10 shows cases in which the PLL successfully converges to the tar-
geted response. A DFT applied at every period is fast enough for the PLL
to converge. However, early oscillations show the equilibrium’s fragility.
Although there is a misalignment between the sampling frequency and the
DFT, the frequency error is 0.08% of the targeted Ω, an excellent precision.
Synchronous demodulation with a fast low-pass filter allows the experiment
to converge, but an oscillatory error remains during steady-state. As a re-
sult, the phase lag oscillates within 0.05 rad of the target, and the frequency
oscillates within 4% of the targeted value. When adaptive filtering is used
to estimate the Fourier coefficients, the phase lag converges precisely to-
wards the target. Regardless of the speed of the Fourier decomposition,
the PLL converges at a similar rate towards the targeted response. The
performance of a PLL experiment is always constrained by the oscillator’s
damping, as shown in Chapter 2.

The virtual PLL experiment is used to identify the FRC of the system
in Table 4.1 by sweeping the phase lag target φ∗, following the method de-
scribed in Section 3.2.4. The target is swept from φ∗ = −0.1 to −π+0.1 rad
for a duration of 100 time units following a cosine profile, slowing the contin-
uation far away from the resonance peak. The FRC identified using phase
demodulation is shown in Fig. 4.11a. The oscillation error is proportional
to the response amplitude and causes a thick region of uncertainty. On the
one hand, the oscillation in X1 is an estimation artifact. Averaging over one



90
CHAPTER 4. ONLINE FOURIER DECOMPOSITION FOR

CONTROL-BASED METHODS

(a)

35 40 45 50 55 60

 in rad/s

0

0.2

0.4

0.6

0.8

1

X
1

10
-3

(b)

Figure 4.11: FRCs identified during virtual PLL experiments of system
whose parameters are in Table 4.1 using (a) phase demodulation with ωlp =
ω0/7.5 and (b) adaptive filtering with µ = 0.002; theoretical FRC as a gray
dashed curve

or more periods could remove this factor. On the other hand, Ω oscillates
when the phase lag error is fed into the PLL controller. The oscillation
increases with the control gains. Although it can also be averaged in post-
processing, it is the actual excitation frequency applied to the oscillator.
It therefore affects the accuracy of the identification. Fig. 4.11b shows the
FRC identified using adaptive filtering. Its accuracy is excellent.

Section B.2.3 in the Appendix shows that an adaptive filter put in a
feedback loop with an oscillator is not always stable. The stability of an
adaptive filter put in a PLL has not been derived analytically. However,
the conclusions are similar: the loop can lose stability due to the adaptive
filter for high values of the parameter µ, as shown in blue in Fig. 4.12.
Decreasing µ has a stabilizing effect on the adaptive filter but slows down
the phase lag estimation. The purple curve in Fig. 4.12 shows again that a
too slow phase lage estimation prevents stability of the PLL. The choice of
µ is therefore a compromise between the stability of the adaptive filter and
the PLL.
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Figure 4.12: Time series of the phase lag when stabilizing the system in
Table 4.1 at φ∗ = −2.4 rad using adaptive filtering with µ = 0.009 (blue),
0.008 (orange), 0.002 (yellow), and 0.0001 (purple)

Figure 4.13: Experimental set-up comprising a clamped-clamped thin beam
(45.5 cm long, 0.75 mm thick, 20 mm wide) excited near one clamp with
mid-length acceleration measurement

4.3.2 Physical experiment

A PLL experiment is designed to characterize the first bending mode of
a clamped-clamped thin beam shown in Fig. 4.13. The beam is 45.5 cm
long, 0.75 mm thick, 20 mm wide and is made of structural steel S235. The
beam is excited by an electrodynamic shaker (TIRA TV 51075) attached
at 4.5 cm of the beam’s clamping. An impedance head (DYTRAN 5860B)
is fastened to the shaker’s stinger and glued to the beam’s side. It measures
the force applied to the beam. An accelerometer (DYTRAN 3035BG) is
fixed by wax at the middle of the beam. The continuation method is applied



92
CHAPTER 4. ONLINE FOURIER DECOMPOSITION FOR

CONTROL-BASED METHODS

Table 4.2: Set of parameters for the physical PLL experiment

ki in rad−1 kp in (rad s)−1 ki in V(N s)−1

(PLL) (PLL) (amplitude)
5 3 1

ω0 in Hz fs in kHz µ
12 10 0.01

Figure 4.14: Backbone curve of the clamped-clamped thin beam illustrating
the presence of an isolated branch of responses

by a digital real-time controller (dSPACE MicroLabBox) and the excitation
signal is sent to a power amplifier (TIRA BAA 120) in voltage mode. The
displacement amplitude X is deduced from the acceleration measurement.

In addition to the PLL illustrated in Fig. 3.1a, the force amplitude is
imposed through amplitude control as illustrated in Fig. 3.3, implemented
with an integral controller. The method to evaluate the force amplitude
p is identical to the one used to evaluate the phase lag, i.e., either using
DFT, synchronous demodulation, or adaptive filtering. The parameters are
shown in Table 4.2.

Fig. 4.14 shows the backbone of the clamped-clamped beam’s first bend-
ing mode, identified in a PLL experiment using the method developed in
Section 3.2.3. The mode is slightly softening-hardening at low force ampli-
tude p, i.e., the nonlinear resonance frequency ω decreases then increases
when the forcing amplitude increases. The force amplitude reaches a maxi-
mum p ≈ 0.25 N before decreasing. This is typical of an isolated frequency
response curve, or isola [89]. A portion of the backbone is left unidentified
(dashed line) by a PLL alone, for reasons explained in Chapter 7. The back-
bone on the isola shows that the structure is hardening, i.e., its resonance
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Figure 4.15: Complete FRC of the thin beam setup identified using CBC
following the method described in Chapter 6 at p = 0.2 N; branch used as
an example in this Chapter shown as a red curve

frequency increases with amplitude.

An FRC of the thin beam possessing an isola is shown in black in
Fig. 4.15, identified during a CBC experiment following the method de-
veloped in Chapter 6. A PLL alone cannot identify the full FRC of an
isola, for reasons explained in Chapter 6. The portion of the isola identifi-
able during the PLL experiment is shown in red, following the method in
Section 3.2.4.

The unstable part of the branch shown in red in Fig. 4.15 is identified
using a PLL experiment following the method in Section 3.2.4. First, the
beam is stabilized at resonance by fixing φ∗ = −π/2 rad. Then, φ∗ is swept
from −π/2 rad to −2.7 rad. If stability is lost during the experiment, ob-
serving the divergence at constant input parameter can be useful to identify
the cause of instability. In such a case, the sweep is manually interrupted.

Using adaptive filtering leads to no issue in the identification, as shown in
Fig. 4.16a. Each response of the PLL experiment is stable and the accuracy
is high. Using synchronous demodulation with a fast low-pass filter leads
to stable responses, as shown in Fig. 4.16b. However, the oscillations in the
Fourier decomposition leads to a very broad uncertainty region. Decreasing
this oscillation error implies slowing down the phase estimation. Fig. 4.16c
shows that slow synchronous demodulation is not capable of stabilizing
every response. Fig. 4.16d shows that DFT leads to an accurate estimation
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Figure 4.16: Portion of the isolated frequency response’s unstable branch at
p = 0.2 N identified by a PLL experiment with different Fourier decompo-
sition methods: (a) adaptive filtering, (b) synchronous demodulation with
low-pass cut-off frequency ωlp = 2 rad/s, (c) same with ωlp = 1 rad/s, (d)
DFT at every period; loss of stability highlighted by a red square
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of the Fourier coefficients, but can be too slow for the PLL experiment
to be stable. Even though some unstable responses of the oscillator are
successfully identified, over-correction by the PI controller after each DFT
ultimately leads to divergence.

The duration of each experiment whose result is shown in Fig. 4.16 was
independent from the Fourier decomposition method used. It took around
5 min to identify the unstable branch at p = 0.2 N from Ω = 25 to 20 Hz.
The speed of the Fourier decomposition is not the limiting factor in the
system’s transients that depend on the damping of the beam and the PLL
gains. The performance of a PLL experiment is limited by the uncontrolled
dynamics of the studied oscillator, as shown in Chapter 2.

4.4 Control-based continuation

The CBC experiment includes estimating the non-fundamental harmonics
of the response x to build the reference signal x∗ to ensure that the excita-
tion is monoharmonic. In Chapter 3, we proposed an implementation of the
CBC experiment relying on the DFT. We will refer to this implementation
as the offline CBC experiment. Algorithm 3.1 requires iterations each time
the buffer memory is filled. In this Section, we will see how including adap-
tive filtering in the CBC experiment removes the need for such iterations,
simplifying and accelerating the process.

4.4.1 Online control-based continuation experiment

Including adaptive filtering in the CBC experiment allows to perform the
Fourier decomposition continuously through time or at each measurement
sample. For the input parameters (Ω, X∗), the adaptive filter estimates
the Fourier coefficients ax,n and bx,n for n ∈ [1, N ] (see Eq. (1.2)) and
the reference signal can be directly defined x∗(t) = x∗f (t) + x∗nf(t) with a
fundamental component

x∗f (t) = X∗ sin(Ωt) (4.14)

and a non-fundamental component

x∗nf =
N∑
n=2

ax,n sin(nΩt) + bx,n cos(nΩt). (4.15)

The excitation is therefore necessarily monoharmonic once reaching steady-
state.
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Figure 4.17: (a) Stepped CBC experiment with the stepped continuation
depending on measured parameters, and (b) Swept CBC experiment with
the swept continuation independent of measurement; the gray box repre-
sents an offline process

We propose two simple continuation procedures for the input parameter
X∗ to identify an S-curve at constant Ω. In the first procedure, X∗ is
sequentially increased by a step h once steady-state is reached: X∗ :=
X∗+h. The steady-state must detected, e.g., by detecting when the Fourier
coefficients (ax,n, bx,n)Nn=1 settle. The experiment is called stepped CBC and
is illustrated in Fig. 4.17a. In the second procedure, X∗ is increased at a
constant rate, X∗(t) = ηt. The experiment is called swept CBC and is
illustrated in Fig. 4.17b.
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Table 4.3: Dimensions of the cantilever steel beam in cm

Length Width Height
100 0.6 2

The advantage of swept CBC is that it requires no offline operation. The
identification of an S-curve can therefore be significantly sped up. However,
a large sweep rate η introduces transients in the response than can alter the
accuracy of the characterization, similarly to a swept sine excitation.

Section B.2.3 shows that an adaptive filter put in feedback with an
oscillator can be unstable for large values of µ. Stability issues with the
adaptive filter can be solved easily in the case of CBC by decreasing µ.
However, that slows the filter down and the Fourier decomposition takes
more time to converge. In consequence, the non-fundamental harmonics
take longer to be canceled.

4.4.2 Experimental set-up

The experimental set-up in Fig. 4.18 comprises a cantilever steel beam
excited by an electrodynamic shaker. Its displacement is measured by a
laser vibrometer to form a single-input single-output (SISO) system.

The beam and its base in Fig. 4.18b are made from a single block of
metal in order to avoid micro-slips in the beam-base connection. The ab-
sence of micro-slips renders the physical structure as linear as possible so
that nonlinear behavior comes predominantly from the artificial nonlinear-
ity. Furthermore, the absence of bolts between the beam and the base is
expected to improve repeatability. The base is bolted to the ground. The
dimensions of the beam are listed in Table 4.3. The electrodynamic shaker
(TIRA TV 51075) is connected perpendicularly to the beam at 30 cm from
the base through a stinger and an impedance head (DYTRAN 5860B) glued
to the surface, see Fig. 4.18c.

The different nonlinearities are realized using the real-time controller
(RTC) dSPACE MicroLabBox. The force applied by the shaker to the
structure is fshaker(t) = f(t)− fnl(x, ẋ) where f(t) is the external force and
fnl is the artificial nonlinearity. The RTC sends the excitation signal as a
voltage, transformed in current by the power amplifier (TIRA BAA 120).
The current then runs through the shaker’s coils, generating a force on the
magnetic core attached to the casing by a membrane. For the generation
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Figure 4.18: Experimental setup composed of: (1) fixed base, (2) cantilever
beam, (3) impedance head, (4) stinger, (5) shaker’s casing, (6) shaker’s
magnetic core, (7) shaker’s electrical coils, (8) shaker’s membrane, (9) laser
vibrometer.
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Table 4.4: Natural frequencies ω0,n and damping ratios ξ of the physical
system’s first 6 modes

Mode ω0,n in Hz ξ in %
1 6.2 0.82
2 31.8 0.66
3 78.3 0.35
4 170.9 0.13
5 254.6 1.24
6 303.5 0.56

of the artificial nonlinearities, it is important that the force applied to the
physical system corresponds to the signal sent by the RTC. It is non-trivial
to impose an exact force signal at the impedance head, whereas the force
inside the shaker is proportional to the current running through its coil. For
this reason, the physical system includes the impedance head, the stinger,
the magnetic core, and the shaker’s membrane in addition to the beam. The
excitation point is therefore the shaker’s magnetic core. The proportionality
constant between the force applied to the core and the RTC’s output was
measured to be 160 N/V for frequencies larger than 20 Hz.

The laser vibrometer (Polytec NLV-2500-5) measures the displacement
and velocity of the magnetic core so that the excitation and measurement
points are collocated. The displacement and velocity signals are then sent
to the RTC for the calculation of the artificial nonlinearities.

A linear model of the beam is created. The beam is excited by sine
sweeps at a low amplitude of 0.3 N without artificial nonlinearity in or-
der to obtain its linear frequency response function (FRF). The PolyMAX
method [90] identifies the modal parameters of the first six modes, shown
in Table 4.4. The FRF was then expressed as a linear combination of six
single-pole transfer functions, each corresponding to a mode. The single-
pole transfer functions gains were computed such that the amplitude of
their sum at resonance corresponds to the measurement. A linear mass-
spring-damper model of the beam was also established. The measured and
synthesized FRFs are compared in Fig. 4.19.

4.4.3 Parameters and procedure

The system is made nonlinear by defining a non-zero nonlinear function
fnl(x, ẋ). CBC is used to characterize the system and a differential controller
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Figure 4.19: FRFs of the linear beam: measured (orange) and synthesized
from the mass-spring-damper model (blue)

is used (see Section 2.3.2). Its gain kd is chosen by trial and error: it is
increased until there are no more jumps during the different continuation
runs. A gain kd = 400 Ns/m was found to be adequate for stabilizing the
different nonlinear systems considered in this Section.

The user-defined parameters are listed in Table 4.5. Five harmonics
are considered for all CBC strategies and a 10 kHz sampling frequency
is sufficient for measuring them properly. The step size h for the offline
and stepped methods is chosen to obtain approximately 50 measurement
points on the S-curves, a good compromise between short testing time and
sufficient refinement of the S-curves for interpolating the response surface.
The sweep rate η for the swept continuation is such that the testing time
is significantly shorter than with the other strategies.

The steady-state detection algorithm illustrated in Fig. 4.20 is imple-
mented for the offline and stepped methods. The Fourier coefficients of
the displacement signal are estimated after each period. A buffer collects
the evolution of the coefficients over 5 periods and computes their standard
deviations. The greatest standard deviation among the Fourier coefficients
(“max std(X)”) defines the convergence indicator that is compared to an
absolute tolerance tolconv,a. Because of transients, this indicator is evaluated
after each interval of 10 periods. Similarly, the greatest non-fundamental
Fourier coefficient of the force signal (“max |Fnf|”) defines an invasiveness
indicator that is used for the offline method. Because the amplitude of
the force varies greatly along an S-curve, this indicator is compared to an
absolute tolerance tolinv,a and its ratio to the fundamental amplitude is com-
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Table 4.5: Parameters of the different CBC strategies: (a) offline, (b)
stepped, (c) swept

(a)

h in m interval in #per buffer in #per
1× 10−5 10 5

tolinv,a in N tolinv,r in % tolconv,a in m
0.01 1 2× 10−7

(b)

h in m interval in #per buffer in #per
1× 10−5 10 5

tolconv,a in m µ
2× 10−7 10/fs

(c)

η in m/s µ
4× 10−5 10/fs

pared to a relative tolerance tolinv,r. For the stepped and swept methods,
the internal parameter µ of the LMS algorithm depends strongly on the
sampling frequency. Its normalized value is listed in Table 4.5.

By collecting S-curves measured at different frequencies, the response
surface can be constructed and interpolated by kriging [84], a relatively
inexpensive method capable of addressing noise in the data (kriging was
used online in [41]).

4.4.4 Results

The first artificial nonlinearity considered to demonstrate the CBC algo-
rithms is a cubic stiffness:

fnl,1(x) = k3 x
3, (4.16)

where k3 = 3 × 1011 N/m3. The offline, stepped and swept strategies are
applied to this oscillator. To have a more precise view of the invasiveness
of the different schemes, the invasiveness indicator max|Fnf| is shown in
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(a)

(b)

Figure 4.20: Steady-state detection algorithm: (a) time series of the dis-
placement with evaluation of steady-state every 10 periods (dashed line)
and with continuation steps (plain line) when the indicator is below the
tolerance and (b) convergence indicator computed every period over buffers
of 5 periods (gray area) with the tolerance tolconv,a (green area)

Fig. 4.21. Without invasiveness cancellation, i.e. if xnf = 0, max|Fnf|
rises above 1 N. The offline method is able to reduce max|Fnf| down to
two orders of magnitude by performing corrective iterations. The stepped
method cannot reduce max|Fnf| below twice what is achieved with the offline
method highlighting that there is a limit to the performance of adaptive
filtering depending on the parameter µ. Due to transient effects, the swept
method reaches values of max|Fnf| up to twice what is obtained by the
stepped method.

After identifying a collection of S-curves, the response surface can be
interpolated and sliced at constant excitation amplitudes to extract the
FRCs in Fig. 4.22 (see Section 3.2.4 for details). For comparison, this figure
also includes the FRCs measured using classical sine sweeps up and down.
The FRCs identified using offline and stepped CBC are indistinguishable
whereas the FRC identified using swept CBC exhibits a slight discrepancy
near the resonance peak. They all correlate very well with the displacement
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Figure 4.21: Invasiveness indicator at 82 Hz: no corrections (purple), offline
(blue), stepped (orange) and swept (yellow); correction and continuation
steps marked with (×) and (◦) respectively; phase lag ∆φ between Xf and
Ff indicating the progression along the S-curve

Figure 4.22: Cubic stiffness, FRC at 1N forcing: open-loop sweep up (blue)
and down (orange), offline CBC (green), stepped CBC (yellow) and swept
CBC (cyan)
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Table 4.6: Time in [mm:ss] to identify the S-curve at 82 Hz and manifold
of the Duffing oscillator

Algorithm S-curve Manifold
Swept 00:13 07:09
No cancellation 00.17 —
Stepped 00:18 10:14
Offline 00:32 14:29

amplitude obtained under open-loop sine sweeps. However, as the sweep
up approaches the fold bifurcation near resonance, the system jumps pre-
maturely without identifying the periodic orbits close to resonance. This
result nicely evidences the practical relevance of stabilizing responses using
control-based methods.

The testing time required for the identification of the S-curve and of
the manifold is listed in Table 4.6. It heavily depends on the duration of
transients in the system’s response, themselves depending on the CBC con-
troller. Because transients last for a certain number of periods, they are
expected to be shorter when identifying a mode around 80 Hz than modes
at lower frequencies. Consequently, the absolute duration of the experi-
ments should not be directly compared to performance in the literature.
Rather, the relative performance of the online CBC and swept CBC can
be compared herein to the state-of-the-art offline CBC. As per design, the
swept CBC method is the fastest. Interestingly, the stepped method is al-
most as fast as the algorithm with no corrective action. It stems from the
fact that both methods must wait for steady-state before performing the
continuation. The offline method is the slowest and requires roughly twice
the time needed for the swept method.

The identification of a system with hardening-softening-hardening stiff-
ness

fnl,2(x) = k2 x
2 sgn(x) + k3 x

3 + k4 x
4 sgn(x) (4.17)

with k2 = 108 N/m2, k3 = −2 × 1011 N/m3, and k4 = 1014 N/m4 is shown
in Fig. 4.23. The hardening at low and high displacement amplitudes is
implemented to avoid negative stiffness. One can notice the existence of
four bifurcation points in the FRC, rendering the open-loop identification
much more challenging.

The capability of CBC to characterize a system with non-smooth non-
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Figure 4.23: Hardening-softening-hardening stiffness, FRC at F = 0.6 N,
open-loop sweep up (blue) and down (orange), offline CBC (green), stepped
CBC (yellow) and swept CBC (cyan)

linearity is demonstrated by introducing a piece-wise linear stiffness

fnl,3(x) =


kpwl(x+ xlim) for x ≤ −xlim,

0 for − xlim < x < xlim,

kpwl(x− xlim) for x ≥ xlim,

(4.18)

with xlim = 3× 10−4 m and kpwl = 3× 104 N/m. The response surface (and
thus the FRC) in Fig. 4.24 changes suddenly when reaching the displace-
ment amplitude xlim.

Fig. 4.25 presents the CBC results when quadratic damping is added to
a cubic stiffness:

fnl,4(x, ẋ) = k3 x
3 + kqd ẋ

2 sgn(ẋ) (4.19)

with k3 = 3 × 1011 N/m3 and kqd = 20 Ns2/m2. The FRCs for a lower
excitation level are included to illustrate the change in damping with am-
plitude.

Finally, friction is added to a cubic stiffness

fnl,5(x, ẋ) = k3 x
3 +


−kfrict for ẋ < 0

0 for ẋ = 0

kfrict for ẋ > 0

(4.20)
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Figure 4.24: Piece-wise linear stiffness, FRC at F = 0.6 N, open-loop sweep
up (blue) and down (orange), offline CBC (green), stepped CBC (yellow)
and swept CBC (cyan)

Figure 4.25: Quadratic damping and cubic stiffness, FRC at F = 2 N, open-
loop sweep up (blue) and down (orange), offline CBC (green), stepped CBC
(yellow) and swept CBC (cyan); FRC at F = 0.7 N (dashed curve) obtained
by CBC
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Figure 4.26: Friction and cubic stiffness, FRC at F = 2 N, open-loop sweep
up (blue) and down (orange), offline CBC (green), stepped CBC (yellow)
and swept CBC (cyan); FRC at F = 0.7 N (dashed curve) obtained by
CBC

Table 4.7: Time in [mm:ss] for the identification of the manifold with cubic
stiffness (1), hardening-softening-hardening stiffness (2), piece-wise linear
stiffness (3), quadratic damping and cubic stiffness (4), and friction and
cubic stiffness (5)

System
Algorithm 1 2 3 4 5
Swept 07:09 04:22 06:51 05:18 04:38
Stepped 10:14 08:40 10:23 06:19 06:04
Offline 14:29 10:09 11:55 09:18 09:06

with k3 = 3 × 1011 n/m3 and kfrict = 0.5 N. The CBC results are given in
Fig. 4.26. The lower amplitude FRCs show that, unlike quadratic damping,
the effect of friction is independent of the excitation amplitude.

The testing time to identify the different response surfaces is shown in
Table 4.7. Consistent results are observed, namely the swept CBC is the
fastest algorithm followed by stepped CBC and then by the offline CBC. It
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is also seen that the gain in time depends on the type of nonlinearity. For
instance, the softening and piece-wise nonlinearities might increase the du-
ration of the transients, which could explain the greater difference between
swept and stepped CBC for those nonlinearities.

4.5 Conclusion

In this Chapter, we discussed three methods to perform the Fourier de-
composition of a periodic signal during an experiment. An estimation of
the phase lag between the response and the force is needed during a PLL
experiment, while a monoharmonic excitation is ensured by copying the
non-fundamental harmonics of the response into the reference signal during
a CBC experiment.

The DFT is the most straightforward method but requires the recording
of a whole number of periods. The transformation is done by a real-time
controller in parallel to the experiment, making it an offline method. Us-
ing multiple buffer memories storing data in parallel allows to update the
Fourier coefficients at a rate faster than the signal’s frequency, but requires
a lot of storage and computing power. Although DFT can be implemented
in a CBC experiment, it is incompatible with PLL testing because control
would be lost between each coefficient update.

Synchronous demodulation is an online method, i.e., the Fourier coeffi-
cients are estimated continuously or at every measurement sample, making
it compatible with PLL testing. The drawback of the method is linked
to the low-pass filter that is used to isolate constant terms from oscilla-
tions. There is a compromise to be made between the filter’s speed and
the amount of oscillation left in its output. Speed and accuracy are desired
for both CBC and PLL experiments. Furthermore, the stability of PLL
experiments is directly linked to the speed of the phase lag estimation, as
shown in Chapter 2.

Adaptive notch filters, which are usually used to isolate or remove a
component at a specific frequency from a signal, perform a very efficient
and accurate online Fourier decomposition as an internal process. The
Fourier coefficients can be accessed and used directly. We have shown in
this Chapter that adaptive filtering provides better performance compared
to synchronous demodulation. The speed of the Fourier decomposition is
increased by an order of magnitude, improving the stability of PLL exper-
iments. Using an online decomposition during a CBC experiment allows
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to simplify and accelerate continuation runs. Fully transient continuation
procedures are now possible, without using discrete iterations. However,
putting a very fast (high µ) adaptive filter in a feedback loop with an oscil-
lator exposes the system to instabilities. Slowing the filter down to prevent
this instability creates a trade-off during PLL experiments because fast
phase lag estimation is required to ensure stable responses.





Chapter 5

Identification of superharmonic
resonances

Abstract

Superharmonic resonances happen when a nonlinear oscillator
resonates at a frequency that is a multiple of the excitation fre-
quency. If fundamental resonances can be defined by a response in
phase quadrature with the excitation, this Chapter shows analyti-
cally that the phase lag of the dominant harmonic of a superhar-
monic resonance may be influenced by other harmonics. As a result,
it is a combination of phase lags which reaches a specific value at a
superharmonic resonance. Phase-locked loops are then exploited to
estimate the different phase lags in order to characterize (for the first
time) superharmonic resonances using control-based methods. After
a numerical demonstration, 3:1 and 5:1 superharmonic resonances of
an experiment with an artificial cubic nonlinearity are characterized,
with one of them interacting with a fundamental resonance.

5.1 Introduction

The previous Chapters focused on the characterization of fundamental reso-
nances of nonlinear oscillators, but nonlinear systems may also exhibit other
types of resonance. This Chapter focuses on superharmonic resonances that
can be defined as responses with one harmonic reaching a maximum am-
plitude, whose frequency is a whole multiple of the excitation frequency
Ω [10]. The superharmonic resonances of a Duffing oscillator were also
characterized through their resonant phase lags in [86, 91].

111
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A new result of this Chapter is that superharmonic resonances may not
necessarily happen at a specific phase lag between the higher harmonic
and the excitation. Instead, they happen when a combination of different
harmonic phase lags reaches a specific value. The value of this phase lag
combination can be imposed by a phase locked loop (PLL). In practice,
the influence of lower harmonics is often negligible, in which case a su-
perharmonic resonance can be identified by imposing the phase lag of the
harmonic alone. However, when multiple resonances happen at the same
excitation frequency, a phenomenon called modal interaction [10, 92, 93],
the influence of lower harmonics must be taken into account.

The relation between superharmonic resonances and the harmonic phase
lags is discussed in Section 5.2. Section 5.3 illustrates how control-based
continuation (CBC) can be ineffective in characterizing superharmonic res-
onances. In Section 5.4, a PLL testing procedure is proposed to character-
ize superharmonic resonances. In Section 5.5, the procedure is applied to
an experiment with a virtual cubic nonlinearity to characterize one of the
fundamental resonances together with third and fifth superharmonic reso-
nances. The fundamental and fifth superharmonic resonances interact and
the consequences on phase lag are developed in Section 5.6. Concluding
remarks are provided in Section 5.7.

5.2 Resonant phase lags

Periodic responses of a nonlinear oscillator following Eq. (1.1) excited by
the force f(t) = p sin(Ωt) have multiple harmonics, as stated in Chapter 1:

x(t) = x0 +
N∑
n=1

xn(t) = r0 +
N∑
n=1

rn sin(nΩt+ φn). (5.1)

This work focuses on applications in which subharmonic components of
the response, i.e., whose frequencies are rational multiples of the excitation
frequency, can be disregarded. The phase lag between the nth harmonic
and the excitation is φn.

A fundamental resonance can be defined as a response whose amplitude
reaches a local maximum. By extension, the nth superharmonic resonance
is a response whose nth harmonic reaches a maximum [10]. Alternatively, a
fundamental resonance can be the response whose phase lag is in quadrature
with the excitation. Similarly, the nth superharmonic resonance can be a
response whose nth harmonic has a well-defined phase lag compared to the
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fundamental excitation [86, 91]. This particular phase lag depends on the
parity of the harmonic. We will refer to these definitions of resonance as
“amplitude resonance” and “phase resonance”, respectively.

In what follows, we propose an improvement of the definition of phase
resonance. To this end, we study the phase lag of higher harmonics of the
response x of a weakly nonlinear oscillator:

ẍ+ δẋ+ ω2
0x+ εfnl(x, ẋ) = p sin(Ωt). (5.2)

The coefficient ε is one order of magnitude smaller than unity. A pertur-
bation series x = x0 + εx1 + ε2x2 is assumed. In essence, this perturbation
analysis is the harmonic balance method [94] without correcting the natu-
ral frequency of the oscillator [10]. This omission allows for simpler devel-
opments focused exclusively on the harmonic phase lags. The results are
therefore only valid for small amplitudes. Specifically, the hardening or soft-
ening effect of the nonlinearity cannot be studied in this manner [95]. The
analytical results will eventually be compared to those given by harmonic
balance to assess the validity of the simplification.

5.2.1 Derivation

The nonlinear force can be decomposed in a perturbation series as well,
using the Taylor series expansion of the function fnl(x, ẋ):

fnl(x, ẋ) = fnl(x0, ẋ0) + ε

(
∂fnl

∂x
(x0, ẋ0)x1 +

∂fnl

∂ẋ
(x0, ẋ0)ẋ1

)
+O(ε2) (5.3)

= fnl(x0, ẋ0) + εf ′nl(x0, ẋ0, x1, ẋ1) +O(ε2). (5.4)

Substituting the perturbations series of the response and nonlinear force
into the equation of motion and separating the different orders of magnitude
yields a system of linear oscillators:

ẍ0 + δẋ0 + ω2
0x0 = p sin(Ωt)

ẍ1 + δẋ1 + ω2
0x1 = −fnl(x0, ẋ0)

ẍ2 + δẋ2 + ω2
0x2 = −f ′nl(x0, ẋ0, x1, ẋ1).

(5.5)

Each of these equations is easy to solve and relies on the solutions at lower
orders. The response at order zero is x0 = r0,1 sin(Ωt+ φ0,1) with{

r0,1 = p√
δ2Ω2+ψ2

1

φ0,1 = atan2(−δΩ,−ψ1)
(5.6)

and ψ1 = Ω2 − ω2
0.
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First-order response

The first-order response x1 corresponds to the response of a linear oscillator
excited by the signal −fnl(x0, ẋ0) known from order zero. This excitation
is a multiharmonic signal that can be decomposed into N harmonics

fnl(x0, ẋ0) = fnl(r0,1 sin(Ωt+ φ0,1), r0,1Ω cos(Ωt+ φ0,1))

= h0(r0,1) +
N∑
n=1

gn(r0,1) sin(n(Ωt+ φ0,1)) + hn(r0,1) cos(n(Ωt+ φ0,1)).

(5.7)

Let express the N harmonics of the first-order response

x1 = x1,0 +
N∑
ν=1

x1,ν = r1,0 +
N∑
ν=1

r1,ν sin(νΩt+ φ1,ν) (5.8)

with amplitudes r1,ν and phase lag φ1,ν . The subscript ν refers to harmonics
related to the first-order response. The components of fnl(x0, ẋ0) in the basis
(sin(νΩt+ φ1,ν), cos(νΩt+ φ1,ν)) are

Ω

π

∫ t+ 2π
Ω

t

fnl(x0, ẋ0) sin(νΩτ + φ1,ν) dτ = gν(r0,1) cos ∆ν + hν(r0,1) sin ∆ν ,

(5.9)
and

Ω

π

∫ t+ 2π
Ω

t

fnl(x0, ẋ0) cos(νΩτ + φ1,ν) dτ = −gν(r0,1) sin ∆ν + hν(r0,1) cos ∆ν

(5.10)
with ∆ν = φ1,ν − νφ0,1.

Each side of the second equation in (5.5) is multiplied by either sin(νΩt+
φ1,ν) or cos(νΩt + φ1,ν) and averaged over one period. For each harmonic
ν, we have a system of two equations:{

νΩδr1,ν − gν(r0,1) sin ∆ν + hν(r0,1) cos ∆ν = 0

ψνr1,ν − gν(r0,1) cos ∆ν − hν(r0,1) sin ∆ν = 0
(5.11)

with ψν = ν2Ω2 − ω2
0. The solution is{

∆ν = atan2(δνΩgν(r0,1) + ψνhν(r0,1), ψνgν(r0,1)− δνΩhν(r0,1))

r1,ν = 1
δνΩ

(gν(r0,1) sin ∆ν − hν(r0,1) cos ∆ν).

(5.12)
x1 is thus fully determined.
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Second-order response

The second-order excitation can be decomposed as a sum in which each
term corresponds to one harmonic of x1:

f ′nl(x0, ẋ0, x1, ẋ1) =
∂fnl

∂x
(x0, ẋ0)x1 +

∂fnl

∂ẋ
(x0, ẋ0)ẋ1 (5.13)

=
N∑
ν=1

(
∂fnl

∂x
(x0, ẋ0)x1,ν +

∂fnl

∂ẋ
(x0, ẋ0)ẋ1,ν

)
(5.14)

=
N∑
ν=1

f ′nl,ν(x0, ẋ0, x1,ν , ẋ1,ν). (5.15)

The subscript ν refers again to harmonics related to the first-order response.
Each term is a multiharmonic signal with the Fourier decomposition:

f ′nl,ν(x0, ẋ0, x1,ν , ẋ1,ν) = h′ν,0(r0,1, r1,ν)

+
N∑
n=1

g′ν,n(r0,1, r1,ν) sin(nΩt+ φ1,ν + (n− ν)φ0,1)

+ h′ν,n(r0,1, r1,ν) cos(nΩt+ φ1,ν + (n− ν)φ0,1). (5.16)

The second-order response can be written as

x2 = x2,0 +
N∑
µ=1

x2,µ = r2,0 +
N∑
µ=1

r2,µ sin(µΩt+ φ2,µ). (5.17)

The subscript µ refers to harmonics related to the second-order response.
The Fourier coefficients of the second-order excitation f ′nl,ν(x0, ẋ0, x1,ν , ẋ1,ν)
in the basis (sin(µΩt+ φ2,µ), cos(µΩt+ φ2,µ)) are

Ω

π

∫ t+ 2π
Ω

t

f ′nl,ν(x0, ẋ0, x1,ν , ẋ1,ν) sin(µΩτ + φµ) dτ

= g′ν,µ(r0,1, r1,ν) cos ∆ν,µ + h′ν,µ(r0,1, r1,ν) sin ∆ν,µ (5.18)

and

Ω

π

∫ t+ 2π
Ω

t

f ′nl,ν(x0, ẋ0, x1,ν , ẋ1,ν) cos(µΩτ + φµ) dτ

= −g′ν,µ(r0,1, r1,ν) sin ∆ν,µ + h′ν,µ(r0,1, r1,ν) cos ∆ν,µ (5.19)
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with ∆ν,µ = φ2,µ − φ1,ν − (µ− ν)φ0,1.

Both sides of the third equation in (5.5) are multiplied by either sin(µΩt+
φ2,µ) or cos(µΩt + φ2,µ) and averaged over one period. For each harmonic
µ, we have a system of two equations:

νΩδr2,µ −
N∑
ν=1

(
g′ν,µ(r0,1, r1,ν) sin ∆νµ − h′ν,µ(r0,1, r1,ν) cos ∆ν,µ

)
= 0

ψνr2,µ −
N∑
ν=1

(
g′ν,µ(r0,1, r1,ν) cos ∆ν,µ + h′ν,µ(r0,1, r1,ν) sin ∆ν,µ

)
= 0

(5.20)
This system is very difficult to solve because there is a different ∆ν,µ for
each harmonic ν of the first-order solution x1. In the particular case where
the harmonic µ of x2 is generated by a single harmonic ν of x1, i.e.,

g′k,µ(r0,1, r1,k) = h′k,µ(r0,1, r1,k) = 0 ∀k 6= ν, (5.21)

the solution is directly{
∆ν,µ = atan2(δµΩg′ν,µ + ψµh

′
ν,µ, ψµg

′
ν,µ − δµΩh′ν,µ)

r2,µ = 1
δµΩ

(g′ν,µ sin ∆ν,µ − h′ν,µ cos ∆ν,µ)
(5.22)

with ψµ = µ2Ω2 − ω2
0. In this case, the harmonic x2,µ is fully determined.

5.2.2 Examples

To illustrate the previous developments, the first and second-order responses
of two nonlinear oscillators are derived. The first (resp. second) example
has a cubic (resp. quadratic) stiffness, illustrating an odd (resp. even)
nonlinearity.

Cubic stiffness

A nonlinear oscillator whose equation of motion is Eq. (5.2) with fnl(x, ẋ) =
x3 is considered. The nonlinear force applied to the response at order zero
x0 = r0,1 sin(Ωt+ φ0,1) is

fnl(x0, ẋ0) =
3

4
r3

0,1 sin(Ωt+ φ0,1)− 1

4
r3

0,1 sin(3(Ωt+ φ0,1)). (5.23)

There are therefore two non-zero harmonics with Fourier coefficients

g1(r0,1) =
3

4
r3

0,1, h1(r0,1) = 0, (5.24)

g3(r0,1) = −1

4
r3

0,1, h3(r0,1) = 0. (5.25)
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The first-order excitation is decomposed into the basis of the first-order
response:

fnl(x0, ẋ0) =
3

4
r3

0,1 (cos ∆1 sin(Ωt+ φ1,1)− sin ∆1 cos(Ωt+ φ1,1))

− 1

4
r3

0,1 (cos ∆3 sin(3Ωt+ φ1,3)− sin ∆3 cos(3Ωt+ φ1,3)) (5.26)

with ∆1 = φ1,1 − φ0,1 and ∆3 = φ1,3 − 3φ0,1.

The first-order response is derived from Eq. (5.12), and its frequency
response is shown in Fig. 5.1. The analytical results agree with those of
harmonic balance. Two peaks can be observed in r1,3 in Fig. 5.1a. The peak
at Ω = ω0 corresponds to the fundamental resonance, i.e., an extremum
of r0,1, leading to an extremum of g3(r0,1). There is, however, a second
resonance peak at Ω = ω0/3 which does not correspond to an extremum of
g3(r0,1). It can only correspond to an extremum of sin ∆3, i.e., ∆3 = −π/2,
which is confirmed in Fig. 5.1b. The phase lag φ1,3 drops by π rad at the
third superharmonic resonance and 3π rad at the fundamental resonance,
shown in Fig. 5.1c.

The second-order excitation generated by harmonic ν = 1 is

f ′nl,1(x0, ẋ0, x1,1, ẋ1,1) =
3

4
r2

0,1r1,1(2 sin(Ωt+ φ1,1)

+ sin(Ωt+ 2φ0,1 − φ1,1)− sin(3Ωt+ 2φ1 + φ1,1)) (5.27)

and the one generated by harmonic ν = 3 is

f ′nl,3(x0, ẋ0, x1,3, ẋ1,3) = −3

4
r2

0,1r1,3(sin(Ωt+ φ1,3 − 2φ0,1)

− 2 sin(3Ωt+ φ3) + sin(5Ωt+ φ1,3 + 2φ0,1)). (5.28)

For harmonic ν = 3 of the first-order response, only three Fourier coeffi-
cients are non-zero:

g′3,1(r0,1, r1,3) = −3

4
r2

0,1r1,3, h′3,1(r0,1, r1,3) = 0, (5.29)

g′3,3(r0,1, r1,3) =
3

2
r2

0,1r1,3, h′3,3(r0,1, r1,3) = 0, (5.30)

g′3,5(r0,1, r1,3) = −3

4
r2

0,1r1,3, h′3,5(r0,1, r1,3) = 0. (5.31)
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Figure 5.1: Third harmonic parameters of the first-order response; oscilla-
tor (5.2) with cubic stiffness, ω0 = 100, δ = 0.1, p = 10; analytical solution
(black) and harmonic balance with pseudo-arclength continuation and three
harmonics [59] (dashed gray).
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The second-order excitation generated by harmonic ν = 3 of the first-order
response is then decomposed into the basis of the second-order response:

f ′nl,3 = −3

4
r2

0,1r1,3 (cos ∆3,1 sin(Ωt+ φ2,1)− sin ∆3,1 cos(Ωt+ φ2,1))

+
3

2
r2

0,1r1,3 (cos ∆3,3 sin(3Ωt+ φ2,3)− sin ∆3,3 cos(3Ωt+ φ2,3))

− 3

4
r2

0,1r1,3 (cos ∆3,5 sin(5Ωt+ φ2,5)− sin ∆3,5 cos(5Ωt+ φ2,5)) (5.32)

with ∆3,1 = φ2,1−φ1,3+2φ0,1, ∆3,3 = φ2,3−φ1,3, and ∆3,5 = φ2,5−φ1,3−2φ0,1.

Harmonics µ = 1 and 3 of the second-order response are both generated
from harmonics ν = 1 and 3 of the first-order response. However, harmonic
µ = 5 is only generated by harmonic ν = 3. This means that the second-
order term x2,5 is easily derived from Eq. (5.22) and its frequency response
function is shown in Fig. 5.2. The forcing amplitude was increased for
the harmonic balance method to be above machine precision, due to the
very low amplitude of the fifth harmonic. Although the hardening of the
fundamental peak is not modeled in the analysis, the analytical results are
still consistent with harmonic balance. There are three peaks observed in
r2,5 in Fig. 5.2a. The peak at Ω = ω0 is again the fundamental resonance
due to an extremum of r0,1 and g′3,5(r0,1, r1,3). The peak at Ω = ω0/3
is the third superharmonic resonance corresponding to an extremum of
r1,3 and g′3,5(r0,1, r1,3). However, there is a peak at Ω = ω0/5 that does
not correspond to an extremum of g′3,5(r0,1, r1,3) but rather of sin ∆3,5, i.e.,
∆3,5 = −π/2, which is confirmed in Fig. 5.2b. The phase lag φ2,5 drops by
π rad at the fifth and third superharmonic resonance and by 5π rad at the
fundamental resonance, shown in Fig. 5.2c.

In conclusion, the phase lag of the fundamental harmonic has an influ-
ence on the third superharmonic resonance. The resonance peak happens
at the quadrature of both ∆3 and φ1,3, consistently with [86]. The phase
lags of the fundamental and third harmonics both influence the fifth su-
perharmonic resonance. The resonance peak happens at the quadrature
of both ∆3,5 and φ2,5, consistently with [86]. In the particular case of a
single-degree-of-freedom system, it is not useful to consider the influence of
the fundamental harmonic.
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Figure 5.2: Fifth harmonic parameters of the second-order response; oscil-
lator (5.2) with cubic stiffness, ω0 = 100, δ = 0.1, p = 103; analytic solution
(black) and harmonic balance with pseudo-arclength continuation and five
harmonics [59] (dashed gray).
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Quadratic stiffness

For fnl(x, ẋ) = x2, the nonlinear force at order zero is

fnl(x0, ẋ0) =
1

2
r2

0,1 −
1

2
r2

0,1 cos(2(Ωt+ φ0,1)). (5.33)

There are therefore two non-zero harmonics with Fourier coefficients

h0(r0,1) =
1

2
r2

0,1, (5.34)

g2(r0,1) = 0, h2(r0,1) = −1

2
r2

0,1. (5.35)

It follows that:

fnl(x0, ẋ0) =
1

2
r2

0,1 −
1

2
r2

0,1 (cos ∆2 sin(2Ωt+ φ1,2)− sin ∆2 cos(2Ωt+ φ1,2))

(5.36)
with ∆2 = φ1,2 − 2φ0,1.

The first-order response derived from Eq. (5.12) is shown in Fig. 5.3. The
analytical results agree with those of the harmonic balance. Two peaks can
be observed in r1,2 in Fig. 5.3a. The peak at Ω = ω0 corresponds to the
fundamental resonance, i.e., an extremum of r0,1, leading to an extremum
of h2(r0,1). There is a second resonance peak at Ω = ω0/2 corresponding to
an extremum of cos ∆2, i.e., ∆2 = 0, which is confirmed in Fig. 5.3b. The
phase lag φ1,2 drops by π rad at the second superharmonic resonance and
2π rad at the fundamental resonance, as shown in Fig. 5.3c.

The second-order excitation generated by the constant term (ν = 0) of
the first-order response is

f ′nl,0(x0, ẋ0, x1,0) = 2r0,1r1,0 sin(Ωt+ φ0,1) (5.37)

and the one generated by harmonic ν = 2 is

f ′nl,2(x0, ẋ0, x1,2, ẋ1,2) = r0,1r1,2(cos(Ωt+φ1,2−φ0,1)−cos(3Ωt+φ1,2+φ0,1)).

(5.38)

For harmonic ν = 2, only two Fourier coefficients are non-zero:

g′2,1(r0,1, r1,2) = 0, h′2,1(r0,1, r1,2) = r0,1r1,2, (5.39)

g′2,3(r0,1, r1,2) = 0, h′2,3(r0,1, r1,2) = −r0,1r1,2. (5.40)
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Figure 5.3: Second harmonic parameters of the first-order response; oscil-
lator (5.2) with quadratic stiffness, ω0 = 100, δ = 0.1, p = 10; analytic
solution (black) and harmonic balance with pseudo-arclength continuation
and five harmonics [59] (dashed gray).
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Then,

f ′nl,2 = r0,1r1,2 (cos ∆2,1 sin(Ωt+ φ2,1)− sin ∆2,1 cos(Ωt+ φ2,1))

+ r0,1r1,2 (cos ∆2,3 sin(3Ωt+ φ2,3)− sin ∆2,3 cos(3Ωt+ φ2,3)) (5.41)

with ∆2,1 = φ2,1 − φ1,2 + φ0,1 and ∆2,3 = φ2,3 − φ1,3 − φ0,1.

Harmonic µ = 1 of the second-order response is generated both from
the constant term (ν = 0) and harmonic ν = 2 of the first-order response.
However, harmonic µ = 3 is only generated by harmonic ν = 2. The
second-order term x2,3 is thus easily derived from Eq. (5.22) and shown in
Fig. 5.4. There are three peaks observed in r2,3 in Fig. 5.4a. The peak at
Ω = ω0 is once again the fundamental resonance due to an extremum of r0,1

and of h′2,3(r0,1, r1,2). The peak at Ω = ω0/2 is the second superharmonic
resonance corresponding to an extremum of r1,2 and h′2,3(r0,1, r1,2). The
peak at Ω = ω0/3 corresponds to an extremum of cos ∆2,3, i.e. ∆2,3 = 0, as
seen in Fig. 5.4b. The phase lag φ2,3 drops by π rad at the third and second
superharmonic resonance and by 3π rad at the fundamental resonance, as
shown in Fig. 5.4.

Conjectures for general odd and even nonlinearities

It is conjectured that an odd (resp. even) nonlinearity fnl necessarily leads
to hν(r0,1) = 0 (gν(r0,1) = 0). The reasoning is that a sine wave—an odd
signal—put to an odd (even) function must result in an even (odd) signal.
Therefore, we conclude from Eq. (5.12) that first-order superharmonic res-
onances always happen at ∆ν = −π/2 rad (∆ν = 0 rad) for odd (even)
nonlinearities. This is consistent with Eqs. (5.24) and (5.25) (Eqs. (5.34)
and (5.35)).

The same reasoning applies to second-order superharmonic resonances.
If fnl is odd (resp. even), then ∂fnl/∂x and ∂fnl/∂ẋ must be even (odd) and
therefore f ′nl must be odd (even). Finally, h′ν,µ(r0,1, r1,ν) = 0 (g′ν,µ(r0,1, r1,ν) =
0), which is consistent with Eqs. (5.29) to (5.31) (Eqs. (5.39) and (5.40)).
We conclude from Eq. (5.22) that resonance happens at ∆ν,µ = −π/2 rad
(∆ν,µ = 0 rad) for harmonics µ that are generated by a single harmonic ν.

5.2.3 Discussion

Let us consider a Fourier decomposition of the response:

x(t) = r0 +
N∑
n=1

rn sin(nΩt+ φn). (5.42)
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Figure 5.4: Third harmonic parameters of the second-order response; os-
cillator (5.2) with quadratic stiffness, ω0 = 100, δ = 0.1, p = 10; analytic
solution (black) and harmonic balance with pseudo-arclength continuation
and five harmonics [59] (dashed gray).
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We have shown that the fundamental harmonic of the response is

r1 sin(Ωt+ φ1) = r0,1 sin(Ωt+ φ0,1) + εr1,1 sin(Ωt+ φ1,1)

+ ε2r2,1 sin(Ωt+ φ2,1) +O(ε3). (5.43)

The component at order zero is at least one order of magnitude higher than
those of the higher orders. We can therefore assume that r1 ≈ r0,1 and
φ1 ≈ φ0,1. Harmonic ν is

rν sin(νΩt+φν) = εr1,ν sin(νΩt+φ1,ν)+ε2r2,ν sin(νΩt+φ2,ν)+O(ε3). (5.44)

Every superharmonic resonance corresponding to a harmonic ν present in
the nonlinear force fnl is one order of magnitude lower than the fundamental,
i.e., rν ≈ εr1,ν and φν ≈ φ1,ν . For every harmonic µ present in f ′nl but not
in fnl, r1,µ = 0, and rµ ≈ ε2r2,µ and φµ ≈ φ2,µ.

For general nonlinearities, Eqs. (5.12) and (5.22) imply that first-order
superharmonic resonances happen when

tan ∆ν = − gν(r0,1)

hν(r0,1)
, (5.45)

and second-order superharmonic resonances happen when

tan ∆ν,µ = −
g′ν,µ(r0,1, r1,ν)

h′ν,µ(r0,1, r1,ν)
. (5.46)

In conclusion, it is in general impossible to know the phase lag value at
superharmonic resonance for a system with an unknown nonlinearity. The
phase lag is known in advance if and only if the nonlinearity is purely odd
or purely even.

The analysis cannot predict the existence of even superharmonic reso-
nances of systems with an odd nonlinearity. However, such superharmonic
resonances are known to exist [86]. It appears that even superharmonic
resonances of odd systems are created through a different mechanism. This
kind of resonance peak does not lie on the main FRC branch, rather, a new
branch is created near the resonance by branch-point bifurcations [86].

For single-degree-of-freedom oscillators, superharmonic resonances are
always well separated from each other and from the fundamental resonance.
At frequencies below the fundamental resonance, φ1 ≈ 0 rad and ∆ν ≈ φν .
Similarly, if µ > ν, φ1 ≈ φν ≈ 0 rad and ∆µ ≈ φµ at low frequencies. In
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other words, the influence of lower harmonics on superharmonic resonances
can be neglected, in which case superharmonic resonances always happen
at the same phase lag, as stated in [86].

For multiple-degrees-of-freedom oscillators, the fundamental phase lag
φ1 drops by π rad when crossing a resonance and rises by the same amount
when crossing an antiresonance. At frequencies in-between, φ1 is a multiple
of π rad, i.e., φ1 ≈ kπ. If a first-order νth superharmonic resonance happens
in this region, Eq. (5.12) tells us that the phase lag of its νth harmonic is
φν ≈ ∆ν + kνφ1. The superharmonic resonance does not always happen
at the same phase lag, because it is shifted due to the influence of the
fundamental phase lag. This influence is absent from ∆ν , which can be
used to identify the resonance.

A critical case happens when a superharmonic resonance interacts with
a fundamental resonance or antiresonance, as shown in Section 5.6. The
fundamental phase lag φ1 is in the process of dropping or rising by π rad;
its influence on φν is therefore greater than 2π: φν can have any value at
resonance depending on φ1. The influence of φ1 can be removed only by
considering ∆ν instead of φν .

The same discussion applies to a second-order superharmonic resonance.
This time, however, both φ1 and φν influence the phase lag φµ. Previous
fundamental or νth superharmonic resonance change the phase lag φµ at
which the µth superharmonic resonance happens. Modal interactions with
the fundamental or νth superharmonic resonance can lead to any φµ value
at resonance. The influence of φ1 and φν can be removed only by considering
∆ν,µ instead of φµ.

5.3 Control-based continuation

As discussed in Chapter 1, S-curves increasing monotonically in response
amplitude allow for the definition of a CBC experiment without folding.
However, superharmonic resonances are an example for which the S-curves
can exhibit folding, i.e., multiple responses share the same fundamental
amplitude X1.

For an oscillator with natural frequency ω0 under harmonic excitation
at Ω = ω0/ν for ν ∈ N1, part of the oscillator’s energy can be transferred
from the fundamental harmonic to the νth harmonic, leading to a super-
harmonic resonance [96]. This energy redistribution causes the amplitude
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Figure 5.5: S-curve of a third superharmonic resonance of (a) Eq. (1.1)
and (b) Eq. (1.6) with kd = 1 (blue), 2 (orange), and 4 (yellow); all with
parameter set 1 from Table 1.1, and Ω = 0.7; computed using the harmonic
balance method [59] with 3 harmonics.

of the fundamental harmonic X1 to decrease locally, as shown in Fig. 5.5a.
Fig. 5.5b illustrates that the observed folding persists even if the control
gain is increased. Thus, a CBC experiment acting on the fundamental har-
monic alone is in general not able to characterize superharmonic resonances
without jumps.

It is difficult to extrapolate the conclusions of Chapter 2 to superhar-
monic resonances because the fundamental harmonic is not dominant; a
critical assumption of the analysis. Further work is needed to understand
the stability of such orbits. It is not clear whether increasing the damp-
ing of a CBC experiment with a differential controller can always stabilize
responses such as the ones shown in Fig. 5.5. It is however certain that ”ex-
citation CBC” as formulated in this work cannot cross the fold bifurcations
shown in Fig. 5.5 because both its input parameters are locally constant
at the fold points. Further work is needed to determine whether “action
CBC” with the resonating harmonic of the reference signal as an additional
input is capable of crossing fold bifurcations at superharmonic resonances
during a pseudo-arclength continuation process.
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Figure 5.6: PLL controlling the parameter ∆ν = φν − νφ1 for a first-order
νth superharmonic resonance

5.4 Phase-locked loop testing

Chapter 4 demonstrated that online Fourier decomposition methods are ca-
pable of estimating the phase lag of any harmonic. Besides, as discussed
in Section 5.2, a first-order superharmonic resonance happens at a specific
value of ∆ν = φν − νφ1 (e.g., −π/2 rad for odd nonlinearities and 0 rad for
even nonlinearities). ∆ν can be evaluated by combining estimations of φν
and φ1. A PLL can therefore identify a superharmonic resonance following
the diagram in Fig. 5.6. For second-order superharmonic resonances, PLL
can be used by considering the phase lag ∆ν,µ = φµ − φν − (µ − ν)φ1 in-
stead. It should be noted that the phase lag ∆ depends on the nonlinearity.
Specifically, if the nonlinearity is purely odd or even, the target phase is
known a priori. Otherwise, the nonlinearity must be fully identified prior
to PLL testing.

The procedure to identify the backbone curve of a superharmonic reso-
nance is identical to the one proposed in Section 3.2.3. The phase difference
target ∆∗ is set to the desired value, and the voltage amplitude U is swept
(Algorithm 3.2).

Fig. 5.7 depicts the frequency response curve (FRC), calculated using
the harmonic balance method, around the first and second-order superhar-
monic resonances of the cubic oscillator in Table 5.2. As shown earlier,
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Figure 5.7: FRC around the third and fifth superharmonic resonances of
Eq. (1.1) with parameters in Tab. 5.2; computed using the harmonic balance
method [59] with 5 harmonics.
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Table 5.1: Parameters of the virtual PLL experiment.

ki kp µ fs N
0.2 0.3 10−3 104 11

Table 5.2: Parameters of the cubic oscillator.

m c k fnl(x, ẋ) p
0.05 0.2 57 2× 108x3 0.1

the first (resp. second) order resonance happens when ∆3 = −π/2 rad
(∆3,5 = −π/2). Fig. 5.7b (5.7c) shows that ∆3 (∆3,5) drops monotonically
by approximately π rad across the first (second) order resonance. There-
fore, the FRC can be identified using the method in Section 3.2.4, i.e., the
force amplitude p is kept constant by the additional control loop in Fig. 3.3
and the target ∆∗ is swept from above to below the value at resonance.
Similarly to fundamental resonances, the FRC can only be identified in the
vicinity of the resonance, because the slope dΩ/d∆3 (dΩ/d∆3,5) becomes
very large far from the resonance.

The parameters of the virtual PLL experiment designed to identify the
FRC are listed in Table 5.1. The high number of harmonics N of the
Fourier decomposition decreases the noise in the estimated phase lags. The
amplitude of the dominant harmonics around the third and fifth superhar-
monic resonances are presented in Fig. 5.8 along with harmonic balance
results. It is clear that the PLL is able to stabilize and accurately identify
the resonance peaks for both superharmonic resonances.

5.5 Experimental demonstration

The experimental set-up is the nonlinear beam with artificial cubic non-
linearity presented in Section 4.4.2, Fig. 4.18 and Eq. (4.16). The motion
was recorded at three additional locations, namely 54, 77, and 100 cm from
the clamping, with three accelerometers DYTRAN 3035BG. Except for the
mode shapes, every measurement is performed by the laser vibrometer at
30 cm from the clamping. During the PLL experiments, the online Fourier
decomposition was performed using adaptive filtering with µ = 10−3. The
sampling frequency was fs = 10 kHz, and the number of harmonics was
N = 10. A PI controller with the gains in Table 5.3 was used.

The linear frequency response function is displayed in Fig. 5.9. The (low-
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Figure 5.8: (a) Amplitude of the third harmonic around the third super-
harmonic resonance; ∆3 is swept from −0.1 rad to −π + 0.1 rad, and (b)
amplitude of the fifth harmonic around the fifth superharmonic resonance;
∆3,5 is swept from −0.2 rad to −π + 0.2 rad. Virtual PLL experiment
(black) and harmonic balance with 20 harmonics (dashed gray).

Table 5.3: Controller gains of the PLL.

kp in Hz rad−1 ki in Hz (rad s)−1

H1M2 20.0 20.0
H3M3 2.5 2.5
H5M4 0.1 0.5
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Figure 5.9: Linear frequency response function of the experimental beam.

amplitude) resonance frequencies ω0 are listed in Table 4.4. The letter “M”
refers to a mode whereas the letter “H” refers to a harmonic. For instance,
H1M2 means that the second mode is undergoing fundamental resonance.
Fig. 5.9 shows that ω0,2 is slightly greater than ω0,3/3 and slightly lower than
ω0,4/5. We thus expect the third mode to feature a H3M3 superharmonic
resonance around Ω = ω0,3/3. Similarly, the fourth mode is expected to
exhibit a H5M4 superharmonic resonance around Ω = ω0,4/5.

Fig. 5.10 depicts the frequency response curve around H1M2 identified
using an open-loop frequency sweep and PLL testing. The fundamental
resonance peak bends toward higher frequencies due to the hardening cubic
stiffness. Two additional peaks can be seen around Ω = 26 Hz and 34 Hz,
corresponding to the superharmonic resonances H3M3 and H5M4, respec-
tively. The figure also displays the backbone curves identified thanks to
PLL testing. For H1M2, the phase lag φ1 = −π/2 was targeted in view of
the cubic nonlinearity. H3M3 resonance being of first order, the targeted
phase lag difference was ∆3 = −π/2 rad. For the second-order superhar-
monic resonance H5M4, the PLL targeted ∆3,5 = −π/2 rad.

To evaluate the validity of the assumed odd (cubic) nonlinearity, dif-
ferent phase lags along the FRC are represented in Fig. 5.11. Fig. 5.11a
confirms that the fundamental phase lag drops from 0 to −π rad across the
H1M2 resonance. The phase lag difference ∆3 = φ3 − 3φ1 in Fig. 5.11b
also drops from 0 to −π rad across H3M3, as expected from a first-order
superharmonic resonance for an odd nonlinearity. Fig. 5.11c shows ∆3,5 =
φ5 − φ3 − 2φ1 around the H5M4 resonance. The curve is not displayed
away from H5M4 because the noise in φ5 becomes larger than 2π. Even if
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Figure 5.10: Frequency response curve (PLL: solid black, open loop: dashed
black) at p = 1 N around the second mode of the beam. The identified
backbone curves are pictured in gray.

∆3,5 drops by π rad, it is close to π/4 rad before H5M4, which indicates
that the nonlinearity is not purely odd. Nonetheless, the response at which
∆3,5 = −π/2 is still near resonance, and such a target is deemed sufficiently
close for our application.

Fig. 5.12 presents the time series of the displacement at resonances
H1M2, H3M3, and H5M4. It confirms that H1M2 is dominated by the
fundamental harmonic. The responses at H3M3 and H5M4 have a high
third and fifth harmonic component, indicating a resonance at three and
five times the excitation frequency, respectively. However, both responses
at H3M3 and H5M4 resonances have a dominant fundamental harmonic,
due to the proximity to H1M2.

The nth harmonic mode shape is defined from the complex Fourier co-
efficients cx,n = (bx,n − iax,n)/2 of the displacement, localized at the dif-
ferent measurement points on the structure. The sine and cosine Fourier
coefficients ax,n and bx,n are defined in Eq. (1.2). Just like fundamental
mode shapes, the harmonic mode shapes are in general complex but usu-
ally closely aligned. The mode shape amplitude is therefore the modulus of
cx,n, and its sign is determined by the direction of the coefficient along the
alignment axis, as explained in [1]. The measured harmonic mode shapes
are represented in Fig. 5.13. The mode shape of H1M2 has one node, as
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Figure 5.11: (a) Fundamental phase lag, (b) ∆3, and (c) ∆3,5 across the
H1M2 resonance of the beam at p = 1 N (solid: PLL, dashed: open loop).
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Figure 5.12: Beam displacement measured by a laser vibrometer at p = 1 N
and at resonance: (a) H1M2, (b) H3M3, (c) H5M4.

expected from the second bending mode, whereas the third (resp. fifth) har-
monic mode shape has two (three) nodes at H3M3 (H5M4), in accordance
with the third (fourth) bending mode.

The FRCs around H1M2 at different forcing amplitudes are displayed
in Fig. 5.14a. Fig. 5.14b depicts a close-up of H3M3. Complicated dy-
namics in the form of a loop appears in the frequency response for higher
force amplitudes. The backbones resulting from either φ3 = −π/2 or
∆3 = φ3 − 3φ1 = −π/2 rad slightly disagree due to the proximity of H1M2
meaning that φ1 has an influence on the superharmonic resonance. H5M4 in
Fig. 5.14c happens on the resonance peak of H1M2, leading to a modal in-
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Figure 5.13: Measured mode shape of first (blue), third (orange), and fifth
(yellow) harmonic of the beam at (a) p = 1 N, Ω = 40.2 Hz, (b) p = 4 N,
Ω = 27.3 Hz, and (c) p = 2 N, Ω = 34.0 Hz.
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Figure 5.14: Frequency response curves (black) and backbone curves (gray)
of (a) H1M2, (b) H3M3, and (c) H5M4 of the beam. The dashed backbones
are defined by quadrature of phase lags (a) φ1, (b) φ3, and (c) φ5. The solid
backbones are defined by quadrature of phase lag differences (b) ∆3 and
(c) ∆3,5. Everything is identified during PLL experiments, except for the
plain gray curve in (b) which is identified during a CBPLL experiment.
(Chapter 7)
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teraction. On the one hand, when the PLL targets either φ5 = −π/2 rad or
φ5 = π/2 rad, the measured responses do not always correspond to H5M4.
On the other hand, when ∆3,5 = −π/2 rad is sought, each measured re-
sponse is near H5M4. Due to the folding in the backbone, the responses at
∆3,5 = −π/2 rad had to be identified during a control-based phase-locked
loop (CBPLL) experiment as proposed in Chapter 7.

5.6 Modal interaction

It is difficult to understand the behavior of φ5 during the H5M4-H1M2
modal interaction because the measured fifth harmonic has a low signal-to-
noise ratio. A nonlinear model of the experiment is therefore used in this
section. A cubic stiffness identical to the artificial nonlinearity was added
to the linear model of the steel beam made in Section 4.4.2. The harmonic
balance method was again exploited for FRC computation.

Fig. 5.15a shows the FRCs at relatively low amplitudes. The fifth har-
monic phase lag φ5 drops by 5π rad across the fundamental resonance
H1M2, in agreement with the behavior predicted in Section 5.2. Around
Ω = 34 Hz, φ5 drops by a value of π rad, highlighting the existence of
the superharmonic resonance that cannot yet be seen from the amplitude
plot. The fundamental peak has not reached Ω = 34 Hz; there is no modal
interaction. At around p = 0.1 N, the high amplitude fold bifurcation of
H1M2 crosses Ω = 34 Hz in Fig. 5.15b. There are three superharmonic res-
onances, each on a different branch of the H1M2 peak, namely on the high
amplitude stable branch, on the unstable branch, and on the low amplitude
stable branch. No peak is seen in the amplitude plot on the lower branch,
but the phase φ5 of each superharmonic resonance drops by π rad. Simul-
taneously, φ5 gradually drops by 5π rad across the fundamental resonance.
As a consequence, the exact value of φ5 at H5M4 can range anywhere from 0
to 2π depending on φ1. The solution is to consider ∆3,5 instead in Fig. 5.16.
It alternates between 0 and −π rad along the FRC, each time a fifth su-
perharmonic resonance is encountered. The experimenter can thus target
∆3,5 = −π/2 rad to reach resonance, or sweep ∆3,5 from 0 to −π rad to
identify the local FRC around the fifth superharmonic resonance.

As a final remark, we highlight that the H5M4 backbone has fold bi-
furcations in forcing amplitude. A PLL imposing the forcing amplitude as
an input parameter cannot handle such a case without jumps. Chapter 7
introduces a novel control-based method able to identify such backbones.
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Figure 5.15: Amplitude and fifth harmonic phase lag around H1M2 (numer-
ical model, computed using harmonic balance with 5 harmonics [59]), (a)
without modal interaction at p = 0.03 N (light gray), 0.05 N (dark gray),
0.08 N (black) and (b) with modal interaction at p = 0.13 N (black), 0.22 N
(dark gray), and 0.36 N (light gray)
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Figure 5.16: ∆3,5 around H5M4 of the numerical model; the intersection
with the plane ∆3,5 = −π/2 rad (gray) is highlighted by circles.

5.7 Conclusion

This Chapter has proposed a new phase lag-based technique for the identifi-
cation of superharmonic resonances. The technique was validated both nu-
merically and experimentally. The phase lag of the relevant harmonic drops
monotonically through the resonance, making it an ideal input parameter
for a PLL-based method. Conversely, CBC cannot identify superharmonic
resonances in view of the folding present in the S-curves.

There is an important difference between the identification of fundamen-
tal and superharmonic resonances. The former always happens at phase
quadrature, whereas the latter may be influenced by multiple harmonics.
In the particular case of a single degree-of-freedom oscillator, the influence
of additional harmonics can be neglected. In any other case and especially
for modal interactions, targeting a single value of the resonant harmonic
phase lag can lead to failure. The harmonics involved in the combination
and the corresponding resonant value depend on the nonlinearity. There-
fore, prior knowledge about the nonlinearity is necessary for a successful
identification of superharmonic resonances.



Chapter 6

Derivative-free arclength
continuation for control-based
continuation

Abstract

This Chapter focuses on the continuation process that is inherent
to control-based continuation. Existing continuation procedures can
be separated in two families. Similarly to numerical continuation,
derivative-based methods find the solution of an objective function,
the derivatives of which are estimated using finite differences. In
mapping-based methods, the input parameter space is exhaustively
or partially explored during the experiment. The features of interest
can then be extracted during a post-processing phase or in paral-
lel to the experiment. A novel arclength continuation procedure
is developed in this Chapter. It requires neither the estimation of
derivatives nor the identification of responses outside the features of
interest, thus simplifying and accelerating the continuation process.
The method is demonstrated numerically using several examples,
then experimentally on a thin curved beam possessing an isolated
frequency response branch.

6.1 Introduction

Chapter 1 discussed how experiments should be designed such that a set
of input parameters always leads to a single response, in which case the

141
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Table 6.1: Parameters of the cubic oscillator.

m c k fnl(x)
0.05 0.2 57 2× 108x3

experiment is said to be unfolded. Specifically, a control-based continua-
tion (CBC) experiment can always be unfolded when none of the system’s
frequency response curves (FRCs) intersect. Then, a continuation proce-
dure takes place during which a trajectory in the input parameter space
is followed (see Chapters 3 to 5). In this Chapter, we propose a new,
derivative-free continuation scheme to identify FRCs.

Section 6.2 presents the existing continuation schemes for CBC exper-
iments, namely derivative-based methods in Section 6.2.1 and mapping-
based methods in Section 6.2.2. The novel continuation procedure is pro-
posed in Section 6.3. This arclength continuation procedure is validated nu-
merically using different oscillators in Section 6.4. It is then demonstrated
experimentally in Section 6.5 using the system introduced in Section 4.3.2.
This system possesses complicated dynamics including an isola. Concluding
remarks are drawn in Section 6.7.

6.2 Control-based continuation procedures

To illustrate the concepts in the following Sections, the oscillator in Eq. 1.1
with the parameters in Table 6.1 is studied. As discussed in Chapter 1, each
input parameter pair corresponds to one and only one response when the
differential gain kd = 2 is considered (see Fig. 1.6). Fig. 6.1 shows the corre-
sponding excitation amplitude p for each coordinate in the input parameter
space (Ω, X∗1 ). An FRC is the collection of responses at a constant p. For
example, the FRC corresponding to p = 0.01 is represented in Fig. 6.1. To
identify a FRC, the experimenter must find both the reference frequencies
Ω and amplitudes X∗1 leading to the desired p in the input parameter space.

6.2.1 Derivative-based continuation

The pair of input parameters for CBC (Ω, X∗1 ) defines the fundamental
reference signal

x∗f = X∗1 sin(Ωt). (6.1)
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Figure 6.1: Input parameters of a CBC experiment applied to the cubic
oscillator with kd = 2; the FRC corresponding to p = 0.01 is represented
with a dotted line.

In turn, the non-fundamental harmonics of the reference must equal to ones
of the response for the excitation output by a differential controller

f = kd(ẋ∗ − ẋ) (6.2)

to be monoharmonic (see Section 3.2.2). The oscillator responds in steady-
state with a fundamental harmonic

x1 = X1 sin(Ωt+ φ1). (6.3)

The measured parameters are the response amplitude X1(Ω, X∗1 ) and phase
lag φ1(Ω, X∗1 ).

Identifying an FRC during a CBC experiment consists in finding the
pair (Ω, X∗1 ) which leads to a targeted excitation amplitude p∗, essentially
finding the roots of the objective function

Y (Ω, X∗1 ) = p− p∗ (6.4)

= Ωkd

√
(X∗1 −X1 cosφ1)2 + (X1 sinφ1)2 − p∗. (6.5)

The usual method to solve this equation is Newton’s method. This approach
works whether the experiment is numerical or physical, as noted in [29, 31].
Because the governing equations of motion are unknown during a physical
experiment, the gradient of the objective function must be estimated using
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finite differences [32], which requires to interrupt the continuation process.
The procedure is therefore adequate for the offline methods presented in
this thesis: the Fourier coefficients can be estimated using the DFT (Sec-
tion 4.2.1) and the non-fundamental harmonics of the excitation can be
canceled offline, e.g., using fixed-point iterations (Algorithm 3.1).

An alternative is to consider the multiharmonic reference

x∗ =
N∑
n=1

X∗n sin(nΩt) (6.6)

and to extend to objective function to each harmonic

Y (Ω, X∗1 , . . . , X
∗
N)

= Ωkd


√

(X∗1 −X1 cosφ1)2 + (X1 sinφ1)2

2
√

(X∗2 −X2 cosφ2)2 + (X2 sinφ2)2

...

N
√

(X∗N −XN cosφN)2 + (XN sinφN)2

−

p∗

0
...
0

 . (6.7)

Its Jacobian is first estimated by finite differences, then it can be updated
using Broyden’s method [97], as in [32, 35]. Although it requires the esti-
mation of more derivatives, this method has the advantage of taking care
of potential shaker-structure interaction because we can directly solve for
the desired force signal, rather than the voltage sent to the shaker.

Once the objective function has been solved, the FRC can be identified
point by point using a prediction-correction algorithm such as the pseudo-
arclength continuation method [98, 99]. The prediction is made along the
tangent to the FRC extracted from the derivatives, whereas the correction
is made along the orthogonal direction.

6.2.2 Mapping-based approximation

A more straightforward approach to finding the input parameters (Ω, X∗1 ) is
to explore a large portion of the parameter space, leading to a response sur-
face. The desired FRC is simply a two-dimensional section of the resulting
surface [40, 53, 57].

Chapter 3 presented a procedure in which a collection of S-curves at
constant excitation amplitude was used to build the response surface [57].
The trajectory to be followed in the input parameter space is displayed in
Fig. 6.2a. The advantage is that the continuation can be carried out on-
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(a) (b)

Figure 6.2: Input parameter plane of a CBC experiment for the cubic os-
cillator (kd = 2). The trajectories to identify the complete response surface
are drawn with dotted black lines. (a) S-curve and (b) RCT approaches.

line by sweeping the reference amplitude at constant frequency. An equiv-
alent method, termed response-controlled stepped-sine testing (RCT), is
to identify successive responses at varying frequency but constant ampli-
tude [53, 54], shown in Fig. 6.2b. The drawback of both approaches is that
the excitation amplitude increases significantly far away from the resonance
(see the yellow areas in Fig. 6.2).

The entirety of the parameter space must not necessarily be explored.
A local approximation of the response surface can be achieved during the
experiment, as in [41, 71]. The CBC experiment stays close to the FRC,
and the continuation procedure follows a branch.

6.3 Arclength continuation: the basic idea

The objective of this Section is to develop a continuation procedure which
is simple to conceptualize and to implement and which avoids the need
for post-processing or offline computations. The method is inspired by (i)
the numerical arclength continuation procedure [100, 101] during which a
control parameter is changed until it reaches the desired equilibrium, and
(ii) the adaptive filtering-based online CBC experiment of Chapter 4.
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Figure 6.3: The proposed arclength continuation procedure. Previously-
identified responses: circles, next response to be identified: square, center
of the arc: blue, and responses on the arc: red.

Because the sought FRC is one-dimensional in the input parameter
space, a sufficiently small ellipse centered on the branch intersects it twice,
as illustrated by the red markers in Fig. 6.3. One intersection is a previously-
identified response, and the other one is the next response to be identified.
Successive responses on the FRC can thus be identified by increasing the
arc angle α on the ellipse until the system reaches the next intersection.
The response lies on the FRC if the excitation amplitude p given by the
CBC controller equals the targeted excitation amplitude p∗. For illustra-
tion, Fig. 6.4 depicts the value of p depending on the arc angle α along the
ellipse in Fig. 6.3. The ellipse intersects the FRC twice, because p reaches
the target value p∗ twice.

The continuation procedure is detailed in Algorithm 6.1. Thanks to
the online CBC experiment developed in Section 4.4.1, the higher harmon-
ics in the excitation are canceled automatically. The continuation process
only involves choosing the input parameters. We only need to know two
responses on the FRC to identify a third one; the current one is denoted
(Ωc, X

∗
c ), and the previous one (Ωp, X

∗
p). An ellipse with semi-major axes

∆Ω and ∆X∗1 is centered at the current point. The slope angle β between
the current and previous points approximates the FRC slope. The input
parameters (Ω, X∗1 ) are set on the ellipse with an arc angle α from the pre-
vious point. The arc angle α is increased progressively from an initial angle
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Figure 6.4: Force amplitude p during the CBC experiment (Table 6.2) along
the arc centered atX∗ = 0.02, Ω = 40.8 with the continuation parameters in
Table 6.3 and excitation amplitude target p∗ = 0.01. Previously-identified
response: circles, and next response: square.

α0 sufficiently far away from the previous point until p reaches p∗, up to a
certain tolerance tolp.

Algorithm 6.1 Arclength continuation for CBC experiment

1: (Ωp, X
∗
p) and (Ωc, X

∗
c ) defined by user

2: loop
3: α← α0

4: β ← atan2(X∗c −X∗p,Ωc − Ωp)
5: (Ω, X∗1 ) = (Ωc + ∆Ω cos(β + π − α), X∗c + ∆X∗ sin(β + π − α))
6: Wait a duration twait for steady state
7: while |p− p∗| > tolp do
8: Modify α with chosen method (see Section 6.4.1) while maintaining

the equality in step 5 continuously
9: end while

10: (Ωp, X
∗
p)← (Ωc, X

∗
c )

11: (Ωc, X
∗
c )← (Ω, X∗1 )

12: end loop

In practice, we advise to identify the backbone curve before using the
arclength continuation method to identify an FRC. In doing so, the exper-
imenter can estimate the intervals in which the frequency and amplitude
vary, and, in turn, adimentionalize the input parameter space (Ω, X∗1 ) such
that the eccentricity of the ellipse is close to unity, i.e., ∆Ω ≈ ∆X∗1 . Ad-
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ditionally, knowing the backbone allows to decrease the rate of change of
the arclength when approaching the resonance peak, the region where tran-
sients can have the greatest effect on accuracy. The resonance peak can
also be localized by looking at the evolution of the phase lag. An arc angle
margin α0 is chosen to ensure a sufficient distance with previously identified
responses on the FRC. Finally, a cooldown time twait is needed for damping
the transients resulting from sudden changes in input parameters.

During the arclength continuation process, the responses identified along
the continuation arcs are not part of the useful exported data. The method
is therefore similar to members of the “mapping-based” continuation family,
and in particular to the method used in [41, 71] that creates a local map of
the response surface near branches of interest. The main conceptual differ-
ence is that no interpolation or extrapolation is made during the arclength
process.

It is possible to implement an offline arclength continuation process such
that the derivative of the excitation amplitude along the continuation arc
is evaluated by finite differences. Finding the next point on the frequency
response curve can then be done in an iterative way using e.g. the Newton
method on the arc length. Such an implementation would be integrated in
the “derivative-based” method family. One difference with existing methods
is that the root-finding problem would be one-dimensional instead of two-
or multi-dimensional.

6.4 Numerical examples

In this Section, the arclength continuation method is first demonstrated
numerically using the cubic oscillator in Table 6.1 with the parameters in
Tables 6.2 and 6.3.

During a CBC experiment, the reference derivative ẋ∗ appears in the
differential controller. It is usually equivalent to define the reference signal
x∗, then differentiate it to obtain ẋ∗, or to define ẋ∗ directly. However, for
arclength continuation, because the reference amplitude follows an ellipse
in the input parameter space, the path is different if the fundamental am-
plitude of x∗, X∗1 , or the fundamental amplitude of ẋ∗, ΩX∗1 , is considered,
especially when the frequency Ω changes significantly during the experi-
ment. In this Section, we implement the CBC experiment by defining ẋ∗

directly. The reference amplitudes are therefore displayed as ΩX∗1 .
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Figure 6.5: Arclength continuation of a cubic oscillator with arclength
sweep. The accepted points are marked by circles. (a) Input parameter
space, and (b) FRC at p = 0.01 (harmonic balance in dotted curve).

Table 6.2: Simulation parameters of the CBC experiment (cubic oscillator).

N fs in kHz µ kd

5 5 0.001 2

6.4.1 Arclength strategy

In this Section, three strategies for moving along the ellipse and reaching
the force target p∗ are introduced.

The first method is to sweep at a constant rate α̇ = ηα until the exci-
tation amplitude tolerance tolp is reached. The path followed in the input
parameter space is represented in Fig. 6.5a. Fig. 6.6 shows that the system
is not in steady state when p∗ is reached. Transients both in the system re-
sponse and in the adaptive filters thus decrease the accuracy of the identified
FRC, which is slightly shifted compared to the harmonic balance reference
in Fig. 6.5b.

The impact of changes in the sweep rate ηα or the semi-major axes
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Figure 6.6: Time series of the arc angle α (arc sweep) and force amplitude
p along an arc centered at ΩX∗ = 0.02, Ω = 6.5.

Table 6.3: CBC continuation parameters (cubic oscillator).

tolp α0 ηα ki ∆Ω ∆X∗ twait

p∗/100 π/4 π/15 75 0.5 0.002 2

(∆Ω,∆X∗) is plotted in Fig. 6.7. As expected, decreasing the sweep rate
reduces the transients, which, in turn, increases the accuracy. However,
this comes at the cost of a longer testing time (Table 6.4). When increasing
the sweep rate, the more important transients may prevent the estimated
force amplitude from reaching p∗. In this case, the continuation procedure is
looping indefinitely and fails to go across the fold bifurcation. Reducing the
size of the arc allows the experimenter to identify more points on the FRC,
as confirmed in Fig. 6.7. Additionally, smaller arcs reduce the magnitude of
the transients. Eventually, the accuracy is improved whereas testing time
is increased (Table 6.4).

The second arclength strategy is to use an integral controller acting
on the arc angle α with the excitation amplitude error as the input, i.e.,
α̇ = ki(p−p∗). The path followed in Fig. 6.8a is similar to that in Fig. 6.5a,
because the arcs have the same dimensions. The effects of the transients are,
however, diminished as the arc angle gently converges toward its target, as
displayed in Fig. 6.9. The identified FRC in Fig. 6.8b is thus more accurate.
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Figure 6.7: Parametric study varying (a) the sweep rate ηα = π/30 (blue
×), π/15 (black ◦), and 2π/15 (orange +) or (b) the semi-major axes
(∆Ω,∆X∗) = (0.25, 0.001) (blue ×), (0.5, 0.002) (black ◦), and (1, 0.004)
(orange +). The dotted curve represents harmonic balance results.

Table 6.4: Time (s) to reach the amplitude peak of the cubic oscillator.
The reference parameters are (∆Ω,∆X∗) = (0.5, 0.002), ηα = π/30, and
ki = 75. The slower and faster runs correspond to ηα/2- ki/2 and 2ηα-
2ki, respectively. Smaller and larger arcs correspond to half and twice the
reference semi-major axes. An asterisk means CBC failed to go across the
fold bifurcation.

Arc sweep Arc control
Reference 365 259
Slower 650 500
Faster *210 *153
Smaller arc 908 1486
Larger arc 180 *73
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Figure 6.8: Arclength continuation of a cubic oscillator with arclength inte-
gral control. The accepted points are marked by circles. (a) Input param-
eter space, and (b) FRC at p = 0.01 (harmonic balance in dotted curve).

The influence of the integral gain ki is similar to that of the sweep rate
ηα. For instance, decreasing ki leads to a longer (Table 6.4) but more ac-
curate experiment (Fig. 6.10a). Fig. 6.10b evidences one drawback of the
integral controller, namely the arclength evolution depends on the force
amplitude error. Input parameters further away from the desired values
means a greater force amplitude error and therefore faster evolution of the
arclength. Decreasing the semi-major axes cause the experiment to last
much longer (Table 6.4), but leads to excellent accuracy (Fig. 6.10b). We
note that a PID controller could also be considered. In theory, the pro-
portional and differential gains could decrease the settling time and the
overshoot. However, we think that a single control law cannot be optimal
for the identification of the complete FRC, because the settling time would
increase far away from resonance whereas the overshoot would increase close
to resonance.

The third arclength strategy combines both arc sweep and integral con-
trol. The arc is first swept at a constant rate ηα. This has the advantage
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Figure 6.9: Time series of the arc angle α (integral control) and force am-
plitude p along an arc centered at ΩX∗ = 0.02, Ω = 6.5.
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Figure 6.10: Parametric study varying (a) the integral gain ki = 40 (blue×),
75 (black ◦), and 150 (orange +) or (b) the semi-major axes (∆Ω,∆X∗) =
(0.25, 0.001) (blue ×), (0.5, 0.002) (black ◦), and (1, 0.004) (orange +). The
dotted curve represents harmonic balance results.
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Figure 6.11: Time series of the arc angle α (arc sweep+integral control)
and force amplitude p along an arc centered at ΩX∗ = 0.02, Ω = 6.5.

that the arc’s semi-major axes are decoupled from the rate at which the
arclength evolves. When p∗ is reached, the sweep is interrupted, and an
integral controller is activated, allowing a gentle convergence toward p∗.
Fig. 6.11 plots the results for this strategy.

6.4.2 Softening-hardening and piecewise linear
oscillators

The versatility of the arclength continuation method is demonstrated using
two additional systems possessing either a softening-hardening nonlinearity
fnl(x) = ksoftx

2 + khardx
3 or a piecewise-linear stiffness

fnl(x) =


kpwl(x+ xlim) for x ≤ −xlim,

0 for − xlim < x < xlim,

kpwl(x− xlim) for x ≥ xlim.

(6.8)

The respective system parameters are listed in Tables 6.5 and 6.8. The
parameters used for the simulation are given in Tables 6.6 and 6.9, respec-
tively. The piecewise-linear stiffness generates high harmonic content in the
response. To ensure that CBC identifies the same responses as the open-
loop experiment, a high number of harmonics N must be evaluated in the
Fourier decomposition for this nonsmooth nonlinearity.
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Figure 6.12: Arclength continuation of a softening-hardening oscillator with
arclength sweep and integral control. The accepted points are marked by
circles. (a) Input parameter space, and (b) FRC at p = 0.0015 (harmonic
balance in dotted curve).

Table 6.5: Parameters of the softening-hardening oscillator.

m c k khard ksoft

0.008 0.01 20 2× 106 104

Table 6.6: Simulation parameters (softening-hardening oscillator).

N fs in kHz µ kd

5 5 0.002 1

The CBC experiment for the softening-hardening oscillator is designed
with the parameters in Table 6.7. It combines a phase arclength sweep
with integral control. The path followed in the input parameter space is
plotted in Fig. 6.12a, and the identified FRC is represented in Fig. 6.12b.
The accuracy is excellent, and the arclength continuation scheme is capable
of going through four successive fold bifurcations, including those around
the acute resonance peak.
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Table 6.7: CBC continuation parameters (softening-hardening oscillator).

tolp α0 ηα ki ∆Ω ∆X∗ twait

p∗/100 π/4 π/15 200 1 0.008 2
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Figure 6.13: Arclength continuation with arclength sweep of an oscillator
with piece-linear stiffness . The accepted points are marked by circles. (a)
Input parameter space, and (b) FRC at p = 0.01 (harmonic balance in
dotted curve).

Table 6.8: Parameters of the oscillator with piecewise-linear stiffness.

m c k kpwl xlim

0.05 0.2 57 100 6× 10−4

The parameters of the arclength continuation for the piecewise-linear
stiffness are listed in Table 6.10. The path followed in the input parameter
space is displayed in Fig. 6.13a. The identified FRC in Fig. 6.13b confirms
the effectiveness of the proposed method.
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Table 6.9: Simulation parameters (piecewise-linear stiffness).

N fs in kHz µ kd

11 5 0.001 2

Table 6.10: CBC continuation parameters (piecewise linear stiffness).

tolp α0 ηα ki ∆Ω ∆X∗ twait

p∗/100 π/4 π/15 75 2 0.003 1

Table 6.11: Parameters of the experimental set-up.

N fs in kHz µ kd in V s m−1

10 10 0.01 5

6.5 Experimental demonstration

An experimental setup featuring an isolated response branch was introduced
in Section 4.3.2 and in Fig. 4.13. The experiment was designed according
to the parameters in Tables 6.11 and 6.12. The differential gain leading to
an unfolded experiment was found by trial and error during a preliminary
run, i.e., it was increased each time a jump occurred.

A response was considered to belong to the FRC if the excitation ampli-
tude was within one percent of the targeted value p∗. An integral controller
drove the arc angle α with gain ki. The input parameter space was adi-
mentionalized, such that ∆Ω and ∆X∗1 have the same order of magnitude.
Specifically, frequencies were converted to units of 10 rad/s and reference
amplitudes to units of 1 mm. Before starting the control of the arc angle,
the experiment was allowed to settle for a duration twait.

The FRC identified for p = 0.17 N is shown in Fig. 6.14a. Two continu-
ation runs were necessary, namely one for the main branch and another one
for the isola. Initial coordinates on the isola were determined in a prelimi-

Table 6.12: CBC continuation parameters of the experimental set-up.

tolp in N α0 in rad ki in rad (N s)−1

p∗/100 π/4 30

∆Ω in rad/s ∆X∗1 in m twait in s
0.3 3× 10−4 1
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Table 6.13: Simulation parameters of the CBC experiment (3DOF system).

N fs in kHz µ kd

5 1 0.005 5

nary run by following the backbone curve until 22 Hz. Fig. 6.14b highlights
that multiple responses can possess the same phase lag, e.g. there are three
responses with phase quadrature. Furthermore, there are five responses
coexisting at φ1 ≈ −π/4, indicating that the isola might result from the
merging of two smaller isolas existing at lower excitation amplitudes.

Fig. 6.15 depicts the FRC at p = 0.2 N. It turns out that the isola has
grown and merged with the main branch. The merging point is not highest
peak on the main branch, leaving a complicated topology with multiple
inflection points handled successfully by the arclength continuation method.

6.6 Multi-degree-of-freedom systems

As discussed in Chapter 1, the identification of the FRCs of multi-degree-
of-freedom systems using a phase-locked loop (PLL) ic challenging, because
the phase lag does not vary monotonically across the different resonances
and antiresonances. Conversely, CBC arclength continuation can handle
multiple modes without difficulty, because it relies on the monotonicity of
S-curves rather than of phase lags. To illustrate this, a three-degree-of-
freedom (3DOF) system with the structural matrices and nonlinear vector

M =

0.1 0 0
0 0.1 0
0 0 0.1

 , C =

 0.2 −0.1 0
−0.1 0.2 −0.1

0 −0.1 0.2

 ,
K =

 200 −100 0
−100 200 −100

0 −100 200

 , fnl(x, ẋ) =

2× 107x3
1

0
0

 (6.9)

is considered. The different parameters for CBC arclength continuation are
listed in Tables 6.13 and 6.14.

The results of the different steps of the continuation algorithm are given
in Fig. 6.16. The resulting FRC in Fig. 6.17 is found to be in excellent
agreement with the harmonic balance method. The first harmonic phase
lag depicted in Fig. 6.18 features numerous changes of its slope, which
invalidates the use of PLL.
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Figure 6.14: (a) Total amplitude X and (b) phase lag φ1 of the fundamental
harmonic of the FRC (p∗ = 0.17 N, doubly clamped thin beam).

10 15 20 25

 in Hz

0

0.5

1

1.5

2

2.5

X
 i
n

 m

10
-3

(a)

10 15 20 25

 in Hz

-

-3 /4

- /2

- /4

0

1
 i
n

 r
a

d

(b)

Figure 6.15: (a) Total amplitude X and (b) phase lag φ1 of the fundamental
harmonic of the FRC (p∗ = 0.2 N, doubly clamped thin beam).
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Table 6.14: CBC continuation parameters (3DOF system).

tolp α0 ki

p∗/100 π/4 2

∆Ω ∆X∗1 twait

1.3 8× 10−3 2
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Figure 6.16: Successive input parameters of CBC (3DOF system).
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Figure 6.17: FRC of the 3DOF system. Red dots: CBC, black: harmonic
balance with 5 harmonics.
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Figure 6.18: Phase lag of the 3DOF system. Red dots: CBC, black: har-
monic balance with 5 harmonics.

Fig. 6.17 illustrates that the continuation steps decrease when the fre-
quency increases. This can be explained by the use of a reference signal in
velocity whose amplitude increases faster with frequency than that of the
displacement (compare Figs. 6.16 and 6.17). A higher resonance peak im-
plies more continuation arcs and, therefore, more continuation points. Ad-
ditionally, Fig. 6.16 shows that the elliptic arcs are wider along frequency
than amplitude. This causes the continuation steps to be finer vertically,
close to resonance and bifurcations, than horizontally. An adaptive step
size based on the local slope of the phase lag could be imagined. Indeed,
Fig. 6.18 highlights that the phase lag slope is greater near resonances and
antiresonances and flatter far away. Resonances and antiresonances could
then be differentiated by the sign of the phase lag slope.

6.7 Conclusion

This Chapter has introduced a novel experimental continuation method for
FRCs requiring neither the estimation of derivatives nor the approximation
of the response surface. One underlying assumption is that the input pa-
rameter space has no more than two dimensions. At the root of the method
is an arclength continuation process during which the experiment follows an
elliptic arc (centered on a previously-identified response on the FRC) until
it intersects the FRC again. Thanks to adaptive filtering, the continuation
does not need to be halted, rendering the complete process fully online.

The arclength continuation procedure was validated numerically using
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one- and multi-degree-of-freedom oscillators with various nonlinear stiff-
nesses and experimentally using a beam exhibiting an isolated response
branch. In all cases, a successful identification of the sought FRC was
achieved.



Chapter 7

Identification of folded
backbone curves

Abstract

A backbone curve can be defined as the collection of the reso-
nant responses of a harmonically-forced oscillator. They relate the
resonance frequency, excitation amplitude and response amplitude.
They can be easily identified during a phase-locked loop experiment,
because the excitation amplitude is an input parameter and the fre-
quency is modified until the oscillator features phase quadrature.
However, in some cases, backbone curves can be folded when varying
the excitation amplitude, causing jumps during experiments. This
Chapter proposes a new control-based method, termed control-based
phase-locked loop experiment, which combines control-based con-
tinuation and a phase-locked loop. This method allows to identify
folded backbone curves without jumps and with the improved sta-
bility offered by control-based continuation. The method is first
demonstrated numerically, then experimentally using a system fea-
turing an isolated frequency response curve and a superharmonic
resonance interacting with another mode.

163
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7.1 Introduction

The backbones considered so far were never folded. They could be regarded
as a collection of resonant responses for which each response corresponds
to a unique set of input parameters. Specifically,

• during an open-loop experiment, each response on the backbone had
a different force amplitude and excitation frequency;

• during a control-based continuation (CBC), two responses never cor-
responded to the same reference signal;

• during a phase-locked loop experiment (PLL), each response of the
backbone resulted from the same phase lag target (quadrature).

In this Chapter, backbone curves containing multiple responses at the
same force amplitude are considered, which may happen for isolated fre-
quency response branches and modal interactions. The origin of the folding
is explained in Section 7.2, and its consequences on control-based methods
are detailed in Section 7.3. In particular, Section 7.3.1 discusses that a
folded PLL experiment can lead to instabilities similar to those observed
in [102]. Then, a new control-based method combining a PLL with CBC,
termed control-based phase-locked loop (CBPLL), is introduced in Sec-
tion 7.4. This method can identify backbones which are folded when vary-
ing the excitation amplitude. CBPLL is demonstrated experimentally in
Section 7.5 for a system with an isolated frequency response and with a su-
perharmonic resonance interacting with the fundamental resonance. Con-
clusions are drawn in Section 7.6.

7.2 Examples of folded backbone curves

7.2.1 Isolated frequency response branch

Frequency response curves (FRCs) are one-dimensional curves in the ex-
citation frequency-response amplitude plane. There can, however, exist
branches which are completely disconnected from the main branch, i.e.,
isolated branches or isolas [89]. For illustration, the numerical example
from [103] is considered herein, see Fig. 7.1. Two masses sliding on a
rail are connected by a spring. The left mass is connected to ground by
transverse springs causing a geometrical nonlinearity and is excited by a
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Figure 7.1: System composed of two masses constrained in a horizontal
motion with nonlinear stiffness due to transverse springs [103]

Table 7.1: Parameters of the system with transverse springs

m1 m2 k1 k2 L λ c1 c2

1 0.2 60 35 0.1 0.9 0.25 0.15

harmonic force:{
m1ẍ1 + c1ẋ1 + c2(ẋ1 − ẋ2) + fnl(x1) + k2(x1 − x2) = p sin(Ωt)

m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) = 0
(7.1)

with the nonlinear force

fnl(x1) = 2k1

(
1− λ√

1 + (x1/L)2

)
x1. (7.2)

The system parameters are listed in Table. 7.1.

At low amplitudes, the system behaves almost linearly. Above a certain
force amplitude, the isola depicted in Fig. 7.2 is created. As discussed in
Chapter 1, multiple responses exist at the same frequency Ω, leading to a
fold in the open-loop experiment. However, Fig. 7.2b presents a new be-
havior, i.e., multiple responses co-exist for the same phase lag. At higher
amplitudes, the isola grows until it merges with the main branch, as illus-
trated in Fig. 7.3. Fig. 7.3b shows that responses sharing the same phase
lag value can still co-exist.

Fig. 7.4 displays the input parameter space of a PLL experiment applied
to the same system. Each point in the plane corresponds to a pair of
input parameters that the experimenter is free to choose. It is seen that
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Figure 7.2: (a) Total amplitude X and (b) phase lag φ1 of the fundamental
harmonic of the FRC of the system with transverse springs (p = 0.17,
harmonic balance method with three harmonics).
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Figure 7.3: (a) Total amplitude X and (b) phase lag φ1 of the fundamental
harmonic of the FRC of the system with transverse springs (p = 0.2).
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Figure 7.4: Number of different responses of a PLL experiment applied to
the transverse springs system.

some input parameter pairs can correspond to three different responses,
confirming that the PLL experiment is folded. Fig. 7.5 illustrates what
happens with PLL if the FRC in Fig. 7.3 is identified by stepping through
the phase lag target. Regardless of the step direction, a fold bifurcation is
eventually reached, and the system jumps to another response at higher or
lower frequency. As a result, two FRC branches are left unidentified.

Moving now to the backbone of the system in Fig. 7.6, we see that, at
low excitation frequencies, the resonance frequency ω increases alongside
the excitation amplitude p, as a result of the hardening behavior. However,
around ω ≈ 5, p decreases locally, and three different responses featuring
phase quadrature co-exist in the range p ∈ (0.15, 0.19). The link between
the FRC and the backbone is shown in Fig. 7.7. The backbone is seen
to connect the resonance peak on the main FRC to the extremities of the
isola. Specifically, when p reaches a minimum along the backbone, the isola
is created; the isola then merges with the main branch when p reaches a
local maximum.

7.2.2 Modal interaction

Modal interactions happen when multiple resonances happen near or at the
same frequency. If the modes are not well-separated, a modal interaction
between fundamental modes can also take place [49].
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Figure 7.5: Jumps during a PLL experiment applied to the system with
transverse springs at p = 0.2 when stepping the phase lag target (a) down
or (b) up
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Figure 7.6: Backbone curve of the system with transverse springs (Eq. (7.1))
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Figure 7.7: Backbone curve of the system with transverse springs (black)
and corresponding FRC at p = 0.17 with an isolated response curve (gray)
computed using harmonic balance and pseudo-arclength continuation [59]

A modal interaction for a cantilever beam with artificial cubic nonlin-
earity was already discussed in Chapter 5. For the H5M4 resonance, the
fifth harmonic of the response was resonating with the fourth bending mode
of the beam. The excitation frequency, i.e., the natural frequency of the
fourth mode divided by five, happened to be slightly larger than H1M2, the
fundamental resonance of the second bending mode. Due to the harden-
ing effect of the cubic nonlinearity, the H1M2 resonance peak crossed the
frequency of H5M4, as it was shown in Fig. 5.15.

The H5M4 backbone of the numerical model of the beam made in Sec-
tion 4.4.2 is shown in Fig. 7.8. This figure confirms that modal interactions
can create a folded backbone curve for which multiple resonant responses
share the same force amplitude.

7.3 Backbone identification

7.3.1 Phase-locked loop experiment

Figs. 7.9a and 7.9b present the results of a PLL experiment which tries
to identify the backbone of the system with transverse springs and of the
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Figure 7.8: H5M4 backbone curve (black) of the cantilever beam and FRCs
at p = 0.07, 0.15, 0.3, and 0.45 N (from light to dark gray) computed
using harmonic balance. The backbone could not be evaluated at lower
amplitudes because the fifth harmonic amplitude becomes as low as the
numerical errors, rendering the fifth harmonic phase lag very noisy. A
linear extrapolation is shown as a dashed line.

cantilever beam, respectively. The phase lag target is φ∗ = −π/2 rad, and
the excitation amplitude is increased or decreased sequentially. In both
examples, two fold bifurcations occur along the backbone at excitation am-
plitudes p1 and p2. When p < p1, PLL behaves nominally by tracking
the resonance frequency ω. Once p reaches p1, two additional resonant
responses appear at higher response amplitudes, but the PLL experiment
has no knowledge about them. Once p2 is reached, the branch of tracked
responses suddenly disappears with the result that the PLL corrects the
excitation frequency until the resonant response at higher amplitude is at-
tained. A similar behavior happens when starting at high excitation ampli-
tude and decreasing it sequentially. Eventually, a portion of the backbone
is left unidentified for both examples.

7.3.2 Control-based continuation experiment

The folded backbones in Fig. 7.9 have an appealing property, namely the re-
sponse amplitude varies monotonically. As a consequence, Fig. 7.10 demon-
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Figure 7.9: PLL experiments for backbone identification of (a) the fun-
damental resonance of the system with transverse springs (φ1 = −π/2,
numerical) and (b) the H5M4 superharmonic resonance of the cantilever
beam (∆3,5 = −π/2, experimental).

strates that the backbone can be unfolded during a CBC experiment using
a sufficiently high differential gain. A CBC experiment is therefore able to
carry out a complete identification of the folded backbone curves presented
in this Chapter. However, the second input parameter of the experiment,
the reference frequency Ω corresponding to the resonance frequency ω, is
not known in advance. A method to correct the reference frequency until
the response is at phase quadrature is needed (see Algorithm 3.3).

7.4 Control-based phase-locked loop

experiment

A novel control-based method combining CBC with PLL, termed control-
based phase-locked loop (CBPLL), is proposed in this Section for the iden-
tification of backbone curves. In essence, it is a CBC experiment in which
the PLL corrects the frequency of the CBC reference signal (rather than
the excitation frequency) to reach a specific phase lag target φ∗. CBPLL
has the same key feature as CBC in that it is able to unfold and stabilize
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Figure 7.10: Amplitude of backbone curves vs. the reference signal ampli-
tude of a CBC experiment. (a) System with transverse springs (kd = 1:
light gray; 2: dark gray; and 5: black); (b) cantilever beam (kd = 20: light
gray; 50: dark gray; and 100: black).

any system whose fundamental response amplitude increases monotonically.
In addition, because CBPLL utilizes the stabilization provided by a CBC
feedback loop, the stability constraints of the PLL control gains discussed
in Chapter 2 do not apply. The PLL behaves more like a traditional control
loop that the experimenter can tune to reach the target phase as fast as
possible.

As schematized in Fig. 7.11, a CBPLL experiment has two input param-
eters, namely the phase lag target φ∗ and the fundamental amplitude of the
reference X∗1 . The voltage sent to the shaker is a combination of Eqs. (3.1),
(3.2), and (3.3):
u(t) = kp,CBC(x∗(t)− x(t)) + kd,CBC

d
dt

(x∗(t)− x(t))

x∗(t) = x∗f (t) + x∗nf(t)

x∗f (t) = X∗1 sin
(∫ t

0
Ω(τ) dτ

)
Ω(t) = ω0 + kp,PLL(φ∗ − φ1(t)) + ki,PLL

∫ t
0
(φ∗ − φ1(τ)) dτ − kd,PLL

dφ1

dt
(t).

(7.3)
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Figure 7.11: CBPLL algorithm. (a) Phase-locked loop correcting the fre-
quency of the reference signal, and (b) control-based continuation loop.

In this Chapter, CBPLL is implemented as an online scheme based on
adaptive filtering. However, the non-fundamental component of the refer-
ence signal x∗nf can also be defined offline as in Chapter 3, and the estimation
of the fundamental phase lag φ1 can be achieved using synchronous demod-
ulation as in Chapter 4.

For illustration, the Duffing oscillator in Eq. (1.1) is considered again
with the parameters in Table 7.2. The backbones identified using PLL
(Table 7.3) and CBPLL (Table 7.4) are in very close agreement in Fig. 7.12.
Fig. 7.13 compares the outcomes of PLL and CBPLL when the excitation
amplitude is suddenly increased by 10%. PLL takes around 4 seconds to
return to the phase lag target, while CBPLL takes about half the time. It
shows that the CBC loop in the CBPLL experiment reduces the transients
through damping increase.

PLL and CBPLL are now applied to the system with transverse springs.
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Figure 7.12: Backbone curve of the Duffing oscillator. PLL: dashed blue;
CBPLL: orange; and harmonic balance: black.
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Figure 7.13: Phase lag of the Duffing oscillator when p is suddenly increased
from 0.01 to 0.011 (φ∗ = −π/2 rad). PLL: blue; CBPLL: orange.

Table 7.2: Parameters of the Duffing oscillator.

m c k fnl(x)
0.05 0.2 57 2× 108x3

Table 7.3: Parameters of the virtual PLL experiment.

System N fs in kHz µ ki kp

Cubic stiffness 5 10 0.001 1 0.3
Transverse springs 5 1 0.001 0.1 0.5
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Table 7.4: Parameters of the virtual CBPLL experiment.

System N fs in kHz µ kd,CBC ki,PLL kp,PLL

Cubic stiffness 5 10 0.001 2 1 2
Transverse springs 5 1 0.0005 5 0.05 0.05
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Figure 7.14: Backbone curve of the system with transverse springs. CBPLL:
orange; PLL: blue; and harmonic balance with 3 harmonics: black.

The corresponding parameters are listed in Tables 7.3 and 7.4, respectively.
As discussed before, Fig. 7.14a confirms that jumps are present during the
identification with PLL. Conversely, CBPLL has not trouble to identify the
full backbone curve because the fundamental amplitude increases monoton-
ically along it, as shown in Fig. 7.14b. The same figure displays that the
CBPLL backbone is in excellent agreement with the one computed using
harmonic balance.

7.5 Experimental demonstration of

control-based phase-locked loop

Both PLL and CBPLL are exploited to identify the folded backbones of the
physical experiments of the previous Chapters. The first test case is the
clamped-clamped thin beam introduced in Section 4.3.2 which possesses an
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Table 7.5: PLL and CBPLL parameters for the clamped-clamped thin
beam.

kd,CBC in V s m−1 kp,PLL in Hz rad−1 ki,PLL in Hz (rad s)−1

5 1 0.3

µ fs in kHz N
10−2 10 5

Table 7.6: PLL and CBPLL parameters for the cantilever beam.

kd,CBC in V s m−1 kp,PLL in Hz rad−1 ki,PLL in Hz (rad s)−1

100 0.02 0.1

µ fs in kHz N
10−3 10 10

isola and whose FRC was identified in Chapter 6. The second test case is the
cantilever beam with the artificial cubic stiffness introduced in Section 4.4.2
whose superharmonic resonances were characterized in Chapter 5.

The PLL and CBPLL parameters are given in Tables 7.5 and 7.6. The
differential gain of the CBC loop was selected by trial and error such that
the experiment is not folded. The higher harmonics in the voltage signal
were canceled using adaptive filtering and the online process proposed in
Section 4.4. The phase lag detection in the PLL is carried out by the
same adaptive filter whose internal parameter µ was chosen slightly lower
than critical to ensure the filter’s stability. There is more freedom for the
PLL gains because the CBPLL experiment’s stability is ensured by the
CBC loop. The controller was tuned manually to ensure a fast convergence
while limiting the overshoot of the phase lag target. A greater number of
harmonics N was considered for the cantilever beam to include harmonics
higher than the fifth harmonic.

The backbone curve of the first mode of the clamped-clamped beam
identified using CBPLL is plotted in Fig. 7.15. Without the knowledge of
the excitation amplitude, there is no way to deduce the existence of an isola
from the backbone. Fig. 7.16a represents the backbones identified during
PLL and CBPLL experiments. At the highest and lowest amplitudes, both
experiments output similar results. However, when approaching the bifur-
cation points at p ≈ 0.07 N and 0.15 N, the PLL experiment is unable
to go around the fold and jumps either to lower or higher amplitudes, re-
spectively. Conversely, CBPLL goes across the folds without any problem.
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Figure 7.15: Backbone curve (black) of the clamped-clamped beam identi-
fied using CBPLL. The FRC (gray) is identified using CBC with arclength
continuation (p = 0.17 N).
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Figure 7.16: Backbone curves of (a) the fundamental resonance of the
clamped-clamped beam with an isola and (b) the H5M4 resonance of the
cantilever beam. PLL: red; CBPLL: black.
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We note that the slight discrepancy in the location of the lower bifurca-
tion point could result from a slight change in testing conditions between
experimental runs.

The backbone curve of the fifth superharmonic resonance of the fourth
bending mode of the cantilever beam is plotted in Fig. 7.16b. The lower
bifurcation point and the lowest branch could not be identified because the
fifth harmonic amplitude is too low (X5 < 1×10−6 m). Unlike CBPLL, the
PLL backbone cannot go across the higher fold bifurcation at p ≈ 0.14 N,
but, more importantly, the PLL loses stability in its vicinity.

7.6 Conclusion

This chapter has examined the performance of control-based continuation
methods in the presence of folded backbones. Because the excitation am-
plitude is an input parameter of a PLL experiment, this method is unable
to go across fold bifurcations present on the backbones, which eventually
results in jumps in amplitude and frequency. This was exemplified in the
presence of isolas and superharmonic resonances. For a CBC experiment, it
was shown that the experiment may not be folded provided a large enough
differential gain is adopted. However, both input parameters, namely the
excitation frequency and the reference amplitude, change along the back-
bone. An offline method must be thus used to correct the frequency until
phase quadrature is reached.

To address this limitation, a novel online experiment, termed control-
based phase-locked loop (CBPLL), has been proposed. An online PLL
corrects the CBC reference amplitude rather than the excitation ampli-
tude. The key advantage is that the stability constraints imposed on the
PLL control gains do not apply to a CBPLL experiment because stability
is eventually ensured by the CBC loop. CBPLL was successfully demon-
strated experimentally using a clamped-clamped beam featuring an isola
and a cantilever beam with artificial cubic nonlinearity exhibiting a folded
superharmonic backbone curve.

We note that CBPLL is not well-suited for the identification of FRCs
because the excitation amplitude is not an input of the experiment, and the
relation between the reference and excitation amplitudes is not trivial.



Conclusions

This thesis work pursued a twofold research objective. On the one hand,
the main thrust of Chapters 1-3 was to build a deeper and more complete
understanding of control-based methods for the identification of nonlinear
structures. These chapters highlighted the inherent strengths and weak-
nesses of control-based continuation (CBC) and phase-locked loop (PLL)
testing. On the other hand, both CBC and PLL experiments were improved
in Chapters 4-7 with a particular effort to render the algorithms fully on-
line. Eventually, the proposed improvements rendered CBC and PLL more
efficient and amenable to identify more dynamical features than before.

In this final Chapter, we first come back to the important questions that
have been addressed. A discussion of our personal contributions followed
by the remaining limitations is then proposed. This thesis manuscript ends
with possible future research directions.

Answers to research questions

The Introduction raised several questions about control-based methods,
namely:

• How can control-based methods ensure that experiments are unfolded?

• Can we always tune the control gains to ensure stability?

• How do CBC and PLL compare to each other, what features can they
identify, and how?

These questions were answered in Chapters 1-3. Chapter 1 revealed that
the feedback loop of control-based methods transforms one input parameter
of the open-loop experiment into another. For CBC, the response amplitude
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is transformed indirectly into an input parameter. Except in specific situ-
ations (e.g., in Chapter 5), responses under the same excitation frequency
have different amplitudes, which removes fold bifurcations. Similarly, for
PLL, the phase lag is used as an input parameter. Again, except in specific
cases (e.g., in Chapter 7), responses under constant excitation amplitude
have different phase lags, ensuring that there is no bifurcation.

A crucial aspect of control-based methods is how they are able to iden-
tify unstable responses in the open-loop experiment. Chapter 2 demon-
strated analytically that a CBC experiment including a PD controller acts
like an oscillator with its own stiffness and damping directly affected by
the controller gains, making the link with experimental studies [34]. An
analytical study generalizing the work in [49] proved that the stability of a
PLL experiment results from a complex interaction between the controller,
the oscillator and the phase lag estimator.

When methods pursuing the same objective exist in the literature, it
is certainly useful to discuss their similarities and differences. This was
achieved in Chapter 3, adapted from the journal article [51]. Although
CBC and PLL differ in their architecture and continuation procedures, they
were both able to identify backbone curves, frequency response curves and
nonlinear modal parameters to a comparable degree of accuracy.

Contributions

Although significant work remains to be done, we believe that our advance-
ments have pushed the envelope in the area of control-based methods and
have helped close the gap between an academic and an industrial use of
these techniques.

Chapter 2 indicated that, under certain simplifications, hypotheses, and
limitations brought by real life implementation, a CBC loop could signif-
icantly improve the stability of a nonlinear oscillator. When confronted
to unstable responses, experimenters will have the opportunity to couple
their experiment with a CBC loop, just like PLL was coupled with CBC in
Chapter 7.

In addition to analytical developments to better understand control-
based methods, direct improvements were proposed both for CBC and
PLL experiments. First and foremost, performing Fourier decomposition
through adaptive filtering was shown to be very valuable throughout this



181

thesis. For CBC, adaptive filtering allows to perform the experiment in a
fully online manner, as in Chapter 4. This change in architecture removes
the need to interrupt the experiment regularly to perform offline compu-
tations. This not only accelerates testing time, but input parameters of
the CBC experiment can now be swept continuously. Adaptive filtering
also leads to simpler continuation procedures such as the arclength con-
tinuation proposed in Chapter 6. For PLL, adaptive filters were found to
be more accurate and robust than synchronous demodulation for phase lag
estimation.

Chapters 5-7 identified features that were difficult, not to say impossible,
to consider using existing control-based techniques. Specifically, Chapter 5
highlighted that CBC was not adequate to characterize superharmonic res-
onances. For the first time, superharmonic resonances were characterized
experimentally using a PLL-based algorithm. Chapter 5 also proved an-
alytically that the influence of lower order resonances must be taken into
account when considering the resonant phase lags of superharmonic reso-
nances. The resonance therefore happens when the combination of multiple
phase lags reaches a specific value. This is especially important for multi-
degree-of-freedom systems and for modal interactions.

Chapter 6 proposed a novel arclength continuation procedure for CBC
experiments. This method requires neither the estimation of derivatives
during the experiment nor the mapping of the response surface. Rather,
the arclength is swept or controlled until the next point on the branch is
identified. This greatly simplifies the identification of topologically complex
branches of responses such as frequency response curves.

Finally, a new online experiment coupling CBC and PLL, termed CB-
PLL, was introduced in Chapter 7. This method is especially relevant
for identifying backbones which cannot be handled by PLL alone, such as
folded backbones. Furthermore, CBPLL simplifies the continuation process
to obtain backbones while offering the more robust CBC stabilization.

Limitations

The analytical developments in Chapter 2 did not result in a predictive
method which can determine the PLL control gains robustly. Because the
stability of a PLL experiment depends heavily on the system’s dynamics,
in the absence of knowledge about the nonlinearity, we systematically used
trial and error to tune the gains. However, this work has confirmed the
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result from [49] that a fast phase lag estimation has a positive effect on the
stability, and that a large integral gain has a destabilizing effect.

Along the same lines, the precise impact of adaptive filters in the CBC
and PLL experiments has not been derived analytically. However, we know
from Section B.2.3 that the stability of an adaptive filter is conditional when
implemented in a feedback loop. Reducing the internal parameter of the
LMS algorithm improves stability but slows down the filter.

In the theoretical sections of this thesis, it is assumed that the control-
based methods output a force signal; a stark contrast with experimental sec-
tions where the output is a voltage signal. A discrepancy between these two
signals is due to shaker-structure interaction, mentioned in Section 3.2.5.
This open problematic in structural engineering may defy one stated ob-
jective of the experiments: ensure harmonic forcing, whether in open- or
closed-loop.

The resonant phase lags for superharmonic resonances derived in Chap-
ter 5 change according to the nonlinearity at end (e.g., odd, even, or none
of the two). Without any knowledge of the nonlinearity, the experimental
resonant phase lag should be determined by trial and error.

Finally, in this thesis, the methods were not implemented with time
performance in mind. Therefore, they could not be compared under that
umbrella.

Further research and development

One of the most important developments which is currently lacking in the
domain of control-based methods is a robust and general method for con-
trol gain tuning. We have, however, shown that increasing the differential
gain of a CBC experiment improves its stability. Estimating the stability
during the experiment as in [36, 37] could be sufficient to know whether
the gain must be increased or decreased. Adaptive controllers with gains
automatically corrected during experiments [78] are certainly a path to
investigate.

To increase the maturity of control-based methods in view of an indus-
trial application, an all-in-one experimental continuation package switching
between methods and controllers depending on the dynamics of interest
would be also a meaningful contribution.
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Finally, dynamical features not considered in this thesis could be iden-
tified using control-based methods. For instance, even superharmonic reso-
nances behave differently than superharmonic resonances, i.e., they emerge
from branch point bifurcations on the main frequency response branch [86].
But the resonant phase lags for such resonances are still unknown. Other
secondary resonances exist as well, such as subharmonic and ultrasubhar-
monic resonances [86]. Identifying quasiperiodic branches experimentally
could also be an important future development for control-based methods.





Appendix A

Derivation of slowflow
dynamics

Let us consider an experiment during which a general single-degree-of-
freedom nonlinear oscillator is excited by harmonic forcing following the
equation of motion

ẍ+ δẋ+ ω2
0x+ fnl(x, ẋ) = p sin(Ωt). (A.1)

Such an experiment will be referred by “open-loop” due to the absence of
a feedback. Under the right assumptions, the dynamics of the system can
be separated in “fast” and “slow” parts whose time constants differ by an
order of magnitude.

The objective of this Appendix is first to use the Van der Pol trans-
formation in Section A.1 to derive the slowflow dynamics of the open-loop
experiment in Section A.1.1 and of control-based continuation (CBC) in
Section A.1.2. Secondly, a phase Van der Pol transformation is proposed
in Section A.2 to derive the slowflow dynamics of the same open-loop ex-
periment in Section A.2.1 and of phase-locked loop (PLL) testing in Sec-
tion A.2.2.

A.1 Van der Pol transformation

The Van der Pol (VdP) transformation is defined{
u = x cos(Ωt)− ẋ

Ω
sin(Ωt)

v = −x sin(Ωt)− ẋ
Ω

cos(Ωt)
(A.2)
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whose inverse is {
x = u cos(Ωt)− v sin(Ωt)

ẋ = −Ω[u sin(Ωt) + v cos(Ωt)].
(A.3)

Eq. (A.3) looks very similar to the Fourier decomposition of a monohar-
monic signal. In reality, the coordinates vary through time, i.e. u = u(t),
v = v(t). In that way, any trajectory (x, ẋ) can be transformed into VdP
coordinates (u, v), whether monoharmonic or not, periodic or not. If the
(x, ẋ) trajectory is indeed monoharmonic with frequency Ω, the trajectory
(u, v) is constant through time. This is the key to the VdP transformation:
It transforms monoharmonic orbits into limit points whose stability is much
easier to characterize.

A.1.1 Open-loop experiment

Differentiating the VdP coordinates defined in Eq. (A.2) leads to{
u̇ = 1

Ω
(−xΩ2 − ẍ) sin(Ωt)

v̇ = 1
Ω

(−xΩ2 − ẍ) cos(Ωt).
(A.4)

For convenience, let us define a new parameter ψ = Ω2 − ω2
0 showing how

close the excitation frequency is from the natural frequency. Replacing the
system’s state (x, ẋ) by the VdP coordinates (Eq. (A.2)) into the equation
of motion of the open-loop experiment (Eq. (A.1)) leads to

− xΩ2 − ẍ
= −ψ[u cos(Ωt)−v sin(Ωt)]−Ωδ[u sin(Ωt)+v cos(Ωt)]+g(u, v,Ωt)−p sin(Ωt)

(A.5)

with the reparametrized nonlinear force

g(u, v,Ωt) = fnl(u cos(Ωt)− v sin(Ωt),−Ω[u sin(Ωt) + v cos(Ωt)]). (A.6)

Substituting Eq. (A.5) into Eq. (A.4) removes every (x, ẋ), leaving only
(u, v).

We are now going to make a strong set of assumptions that we will call
the VdP assumptions. A parameter ε is introduced highlighting parame-
ters with small order of magnitude. We assume that the system is weakly
nonlinear (fnl → εfnl), lightly damped (δ → εδ), the excitation is small in
amplitude (p → εp), and the difference y between excitation and natural
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frequency is small (Ω − ω0 → εy). The last assumption implies that the
parameter ψ is also of order ε:

ψ = Ω2 − ω2
0 = εy(εy + 2ω0)

→ εψ. (A.7)

Both sides of Eq. (A.5) are consequently of order ε. As a consequence, we
deduce from Eq. (A.4) that u̇ and v̇ are small, i.e., u and v vary slowly
through time. More specifically, they vary in time scales larger than the
excitation period 2π/Ω during which they can be considered constant:∫ t+ 2π

Ω

t

u(τ) dτ =
2π

Ω
u(t) +O(ε), (A.8)∫ t+ 2π

Ω

t

v(τ) dτ =
2π

Ω
v(t) +O(ε). (A.9)

Averaging the right-hand side of Eq. (A.4) over one period therefore leads
to the autonomous dynamic system{

u̇ = 1
2Ω

(ψv − Ωδu+ gs(u, v)− p)
v̇ = 1

2Ω
(−ψu− Ωδv + gc(u, v)) .

(A.10)

with the harmonic components of the internal nonlinear force

gs(u, v) =
Ω

π

∫ t+ 2π
Ω

t

g(u, v,Ωτ) sin(Ωτ) dτ, (A.11)

gc(u, v) =
Ω

π

∫ t+ 2π
Ω

t

g(u, v,Ωτ) cos(Ωτ) dτ. (A.12)

A.1.2 Control-based continuation

Let us consider that the general nonlinear system from the open-loop ex-
periment in Eq. (A.1) is subjected to CBC:

ẍ+ δẋ+ ω2
0x+ fnl(x, ẋ) = y. (A.13)

The excitation y is the output of a controller C whose input is the difference
between the displacement x and a user-defined reference displacement x∗ =
u∗ cos(Ωt)− v∗ sin(Ωt). In the Laplace domain,

Y (s) = C(s)(X∗(s)−X(s)). (A.14)
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Let us consider an LTI controller whose transfer function is the fraction
between two polynomials A(s) and B(s) of respective degrees m and n:

C(s) =
A(s)

B(s)
=

∑m
k=0 aks

k∑n
k=0 bks

k
, (A.15)

with m ≤ n+1. C(s) is in general an improper transfer function because the
derivative of the input, i.e. the velocity of the system, is available for use.
Writing Eq. (A.14) in the time domain leads to the differential equation

n∑
k=0

bk
dk

dtk
z =

m∑
k=0

ak
dk

dtk
(x∗ − x). (A.16)

Let us apply a complex VdP transformation on x to derive the excitation
y:

x = w exp(iΩt) + w̄ exp(−iΩt). (A.17)

This transformation is analogous to Eq. (A.2) with w(t) = [u(t) + iv(t)]/2.
The complex Fourier transformation of x∗, a monoharmonic reference signal,
is

x∗ = w∗ exp(iΩt) + w̄∗ exp(−iΩt) (A.18)

with constant coefficients w∗ = (u∗ + iv∗)/2. Under the VdP assumption,
the “low excitation” assumption now implies that every coefficient ak is
small. The assumption ensure that w varies slowly through time. The time
derivative ẇ is therefore small compared to the other terms and Eq. (A.16)
can be rewritten

n∑
k=0

bk
dk

dtk
y

= (w∗ − w)
m∑
k=0

ak(iΩ)k exp(iΩt) + (w̄∗ − w̄)
m∑
k=0

ak(−iΩ)k exp(−iΩt).

(A.19)

The solution to this ODE is directly

y = C(iΩ)(w∗ − w) exp(iΩt) + C(−iΩ)(w̄∗ − w̄) exp(−iΩt). (A.20)

Separating the controller’s transfer function in its real and imaginary parts,
i.e., C(iΩ) = c(Ω) + id(Ω), leads to

y = [c(Ω)(u∗ − u)− d(Ω)(v∗ − v)] cos(Ωt)

− [d(Ω)(u∗ − u) + c(Ω)(v∗ − v)] sin(Ωt). (A.21)
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To describe the controlled system dynamics, we will perform a devel-
opment similar to the one done in Sect. A.1 for the open-loop system.
Substituting Eq. (A.21) into Eq. (A.13) leads to

− xΩ2 − ẍ
= −(ψ − c)(u cos(Ωt)− v sin(Ωt))− (Ωδ + d)(u sin(Ωt) + v cos(Ωt))

+ g(u, v, t)− (cu∗ − dv∗) cos(Ωt) + (du∗ + cv∗) sin(Ωt). (A.22)

Substituting Eq. (A.22) into the VdP coordinates derivatives (Eq. (A.4))
and averaging over one period leads to the autonomous dynamic system{

u̇ = 1
2Ω

((ψ − c)v − (Ωδ + d)u+ gs(u, v) + du∗ + cv∗)

v̇ = 1
2Ω

(−(ψ − c)u− (Ωδ + d)v + gc(u, v)− cu∗ + dv∗).
(A.23)

A.2 Phase Van der Pol transformation

Let us consider the phase VdP transformation defined by the coordinates{
r =

√
x2 + 1

Ω2 ẋ2

φ = atan2
(
x, 1

Ω
ẋ
)
− Ωt mod 2π

(A.24)

whose inverse is {
x = r sin(Ωt+ φ)

ẋ = rΩ cos(Ωt+ φ)
(A.25)

It is equivalent to the VdP transformation from Eq. (A.2) with u = r sinφ
and v = −r cosφ, or r =

√
u2 + v2 and tanφ = −u/v. Similarly to VdP co-

ordinates (u, v), phase VdP coordinates (r, φ) are time-varying. The trans-
formation can therefore correspond to any response of system (A.1). Under
the transformation, monoharmonic orbits of the system become limit points
that are easier to study.

A.2.1 Open-loop experiment

Differentiating r leads to

ṙ =
1

Ω
(Ω2x+ ẍ) cos(Ωt+ φ). (A.26)

Substituting Eq. (A.25) into Eq. (A.1) leads to

Ω2x+ ẍ = ψr sin(Ωt+φ)−Ωδr cos(Ωt+φ)−h(r,Ωt+φ)+p sin(Ωt) (A.27)
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with ψ = Ω2 − ω2
0 and the parametrized nonlinear force

h(r,Ωt+ φ) = fnl(r sin(Ωt+ φ), rΩ cos(Ωt+ φ)). (A.28)

Differentiating φ leads to

φ̇ = − 1

Ωr
(Ω2x+ ẍ) sin(Ωt+ φ). (A.29)

Let us now make the VdP assumption from Section A.1. As a conse-
quence, the right-hand sides of Eqs. (A.26) and (A.29) are of order ε and so
are ṙ and φ̇ on the left-hand side. The consequence of the assumptions are
that r and φ vary in time scales much larger than one period of the system.
Therefore, they can be considered constant when integrating over a period.
Under this assumption, averaging Eqs. (A.26) and (A.29) over one period
lead to the system{

ṙ = −1
2

(
δr + 1

Ω
(hc(r) + p sinφ)

)
φ̇ = −1

2

(
ψ
Ω
− 1

Ωr
(hs(r)− p cosφ)

)
,

(A.30)

with

hs(r) =
Ω

π

∫ t+ 2π
Ω

t

h(r,Ωτ + φ) sin(Ωτ + φ) dτ (A.31)

hc(r) =
Ω

π

∫ t+ 2π
Ω

t

h(r,Ωτ + φ) cos(Ωτ + φ) dτ (A.32)

independent of φ because h is periodic with frequency Ω.

A.2.2 Phase-locked loop testing

Let us consider a variation of the nonlinear system from Eq. (A.1) once
again

ẍ+ δẋ+ ω2
0x+ fnl(x, ẋ) = p sin θ. (A.33)

A phase-locked loop targets a phase lag φ∗ with a PI controller that it
compares to the phase lag φ:

θ̇ = ω0 + y + kp(φ− φ∗), (A.34)

ż = ki(φ− φ∗). (A.35)

Eqs. (A.33) to (A.35) form a dynamic system describing Eq. (A.1) controlled
by a phase-locked loop.
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Until now, Ω represented the user-defined excitation frequency. Let now
us consider a constant parameter Ω that does not correspond in general to
the excitation frequency θ̇(t), as the latter is time-varying. A practical
application of a phase-locked loop does not require the user to define Ω. It
is an analytical parameter whose purpose is to reparametrize the response
to study the effect of the phase-locked loop. A phase VdP transformation
similar to Eq. (A.24) is defined with coordinates{

r =
√
x2 + 1

Ω2 ẋ2

φ = atan2
(
x, 1

Ω
ẋ
)
− θ mod 2π

(A.36)

whose inverse is {
x = r sin(θ + φ)

ẋ = rΩ cos(θ + φ)
(A.37)

Like in Section A.2.1, the parameter space (r, φ) is time-varying. The trans-
formation can therefore correspond to any response of system (A.33). Under
the transformation, monoharmonic orbits of the system become limit points
that are easier to study.

Firstly, let us make the VdP assumption from Section A.1. In this
setting, the difference between excitation and natural frequency θ̇−ω0 is of
order ε. Secondly, let us assume that the gains of the controller are order ε
as well (ki → εki, kp → εkp). Consequently from Eq. (A.34),

θ̈ = ε
(
ki (φ− φ∗) + kpφ̇

)
, (A.38)

i.e. the excitation frequency θ̇ varies slowly through time. We can therefore
choose a parameter Ω arbitrarily close to θ̇ at some point in time, at which
point ψ = Ωθ̇ − ω2

0 is also order ε. The same development done in Sec-
tion A.2.1 concludes that r and φ vary in time scales much larger than one
period of the system: They can be considered constant when integrating
over a period. Finally, combining with Eqs. (A.34) to (A.35) lead to the
time-invariant dynamic system

ṙ = −1
2

(
δr + 1

Ω
(hc(r) + p sinφ)

)
φ̇ = −1

2

(
ω0(1− ω0

Ω
) + z + kp(φ− φ∗)− 1

rΩ
(hs(r)− p cosφ)

)
ż = ki(φ− φ∗).

(A.39)





Appendix B

Dynamics of online Fourier
decomposition methods

This Appendix analyzes the online Fourier decomposition methods as dy-
namical systems. The accuracy and convergence speed of synchronous de-
modulation and adaptive filtering are derived in order to build a perfor-
mance comparison in Chapter 4.

B.1 Synchronous demodulation

Let us evaluate the Fourier coefficient a of a signal x(t) = a sin(Ωt) through
synchronous demodulation. Let us only consider a demodulation by a sine
wave, such that the product

x′(t) = x(t) sin(Ωt) (B.1)

= a sin2(Ωt) (B.2)

=
a

2
(1− cos(2Ωt)) (B.3)

has a constant term proportional to a. In the Laplace domain,

X ′(s) =
a

2
L{1− cos(2Ωt)} (B.4)

=
a

2

(
1

s
− s

s2 + 4Ω2

)
(B.5)

=
2aΩ2

s(s2 + 4Ω2)
. (B.6)

Let us now extract the Fourier coefficient by applying a low-pass (LP)
filter with cut-off frequency ωlp to x′(t). The LP filter has the transfer

193



194
APPENDIX B. DYNAMICS OF ONLINE FOURIER

DECOMPOSITION METHODS

function
F (s) =

ωlp

s+ ωlp

. (B.7)

The output of the filter is

Y (s) = F (s)X ′(s) =
2aΩ2

s(s2 + 4Ω2)
· ωlp

s+ ωlp

(B.8)

=
2aΩ2ωlp

s(s+ 2iΩ)(s− 2iΩ)(s+ ωlp)
(B.9)

=
ar0

s
+

ar1

s+ 2iΩ
+

ar̄1

s− 2iΩ
+

ar2

s+ ωlp

(B.10)

with a bar marking the conjugate operator. The residues are

r0 =
1

2
(B.11)

r1 = −1

4
· ωlp

ωlp − 2iΩ
(B.12)

r2 = − 2Ω2

ω2
lp + 4Ω2

. (B.13)

To derive the output of the LP filter in the time domain, we apply the
inverse Laplace transform:

y(t) = L−1{Y (s)} =
a

2
+ ar1 exp(−2iΩt) + ar̄1 exp(2iΩt) + ar2 exp(−ωlpt).

(B.14)
The output has three terms: the constant term is still a/2, the oscillatory
error is

ye(t) = −a
2
· ωlp

ω2
lp + 4Ω2

(ωlp cos(2Ωt) + 2Ω sin(2Ωt)), (B.15)

and the transient is

yt = −2a
Ω2

ω2
lp + 4Ω2

exp(−ωlpt). (B.16)

Fig. B.1 shows an example of output y.

Two performance factors are defined: the relative amplitude of the os-
cillatory error in the Fourier coefficient

e =
2‖ye‖
a

=
ωlp√

ω2
lp + 4Ω2

, (B.17)
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Figure B.1: Time series of the LP filter output y from Eq. B.15 with a = 1,
Ω = 200, and ωlp = 10

and the settling time until reaching a convergence margin ε

τlp(ε) = − 1

ωlp

log

(
ε
ω2

lp + 4Ω2

2Ω2

)
. (B.18)

An non-dimensional alternative for τlp is the number of periods needed to
settle within the margin ε

Nlp(ε) =
Ωτlp(ε)

2π
. (B.19)

If we assume that the cut-off frequency is much lower than the frequency
of the signal to demodulate, i.e. ωlp � Ω, the expression of the error
amplitude ratio and settling time can be simplified

e ≈ ωlp

2Ω
, (B.20)

Nlp(ε) ≈ − Ω

2πωlp

log(2ε). (B.21)

B.2 Adaptive filtering

The objective of an adaptive filter is to replicate a reference signal using a
number of basis signals. In this work however, the goal is to estimate the
Fourier coefficients of a signal x at a reference frequency ωf . We use an
adaptive notch filter that was introduced in [Widrow, 1975]. The adaptive
filter synthesizes the signal y by performing a time-varying linear combina-
tion of the basis q:

y(t) = wT (t)q(t). (B.22)
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The basis q is composed of harmonic signals

q(t) =

[
qs(t)
qc(t)

]
=

[
sin(ωft)
cos(ωft)

]
(B.23)

and the combination coefficients are the weights

w(t) =

[
ws(t)
wc(t)

]
. (B.24)

There exist several algorithms to define appropriate weights w. A sim-
ple and inexpensive one is the Least Mean Square (LMS) algorithm [88],
which updates w discretely through time. At time t, the synthesis error is
estimated

e(t) = x(t)− y(t) (B.25)

= x(t)−wT (t)q(t) (B.26)

The weights are updated after a step time ts

w(t+ ts) = w(t) + µq(t)e(t) (B.27)

with µ the step size factor, which is an internal parameter of the LMS
algorithm and therefore of the adaptive filter. For further information about
adaptive filters, the reader is invited to consult reference books, such as [88].

Traditionally, the output of interest is y when the purpose is filtering,
or e when the purpose is noise cancellation. In this application, we notice
that if e has a very low frequency content at ωf , the weights ws and wc are
very close to the Fourier coefficients of y at frequency ωf . An adaptive filter
can therefore be used to perform a Fourier decomposition at each time step
ts.

B.2.1 Transfer function

The transfer function between the z-transform of the synthesized harmonic
signal Y and the adaptive filter error E is has been shown [87] to equal

A(z) =
Y

E
= µ

z cos(ωfts)− 1

z2 − 2z cos(ωfts) + 1
(B.28)

with ts the sampling time, µ the LMS parameter. There is a zero at z =
1/ cos(ωfts) and poles at z = exp(±iωfts), i.e. at a frequency Ω = ωf .
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The error signal is expressed

E = X − Y (B.29)

= X − A(z)E (B.30)

=
1

A(z) + 1
X = B(z)X. (B.31)

The corresponding Bode diagram is shown in Fig. B.2. It corresponds to a
notch filter at frequency ωf . The value of µ determines the sharpness of the
peak: values closer to 0 lead to a sharper peak but a longer convergence
time. The synthesized signal is expressed

Y = X − E (B.32)

= X − 1

A(z)
Y (B.33)

=
A(z)

A(z) + 1
X = C(z)X. (B.34)

The corresponding Bode diagram is shown in Fig. B.3. It corresponds to
a filter reproducing the signal x at frequency ωf and cancelling everything
else. Increasing parameter µ still sharpens the filter while increasing the
convergence time.

B.2.2 Performance

Like in Section B.1, the performance is evaluated when applying the filter
to a sine wave of amplitude a. The frequency of the basis is chosen identical
to the discrete reference signal x[n] = a sin(Ωnts), i.e. ωf = Ω. In the z
domain,

X(z) = Z{a sin(Ωtsn)} (B.35)

=
az sin(Ωts)

z2 − 2z cos(Ωts) + 1
. (B.36)

Interestingly, the denominator of X is identical to the numerator of B(z)
from Eq. (B.31). Therefore, the error is easily expressed

E(z) = B(z)X(z) =
az sin(Ωts)

z2 + (µ− 2)z cos(Ωts) + 1− µ
. (B.37)

The performance of the filter depends on the dynamics of the error e[n]. Its
poles in the z domain depend on the value of µ. The discriminant of the
denominator is

∆ = (µ− 2)2 cos2(Ωts)− 4(1− µ). (B.38)
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Figure B.2: Bode diagram of B (exp(iΩts)) for ts = 10−3 s, µ = 0.01, and
ωf = 200 rad/s
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Figure B.3: Bode diagram of C (exp(iΩts)) for ts = 10−3 s, µ = 0.01, and
ωf = 200 rad/s
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Figure B.4: Time series of the error signal e with step size ts = 10−3, a
reference signal with a = 1, Ω = 200, and an adaptative filter coefficient
µ = 0.2 (dotted curve), µ = µc ≈ 0.33 (plain curve), and µ = 0.6 (dashed
curve)

Let us define a critical coefficient

µc = 2 sin(Ωts)
1− sin(Ωts)

cos2(Ωts)
. (B.39)

Subcritical coefficient With a subcritical µ ∈ [0, µc), ∆ < 0. The error
has two complex conjugate poles in the z domain:

p =
1

2

(
(2− µ) cos(Ωts) + i

√
−∆

)
(B.40)

and p̄. The error is expressed

E(z) =
arz

z − p
+

ar̄z

z − p
(B.41)

with the residual

r =
sin(Ωts)

i
√
−∆

. (B.42)

In the time domain,

e[k] = Z−1{E(z)} = arpk + ar̄p̄k. (B.43)

An example is shown in Fig. B.4 with a dotted curve. The error is said to
be underdamped with oscillation envelope

‖e‖[k] = 2a|r| exp(k<(log p)). (B.44)

The settling time to reach an amplitude ratio ‖e‖/a = ε in the underdamped
case is therefore

τud(ε) =
log ε

2|r|

<(log p)
ts. (B.45)
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Critical coefficient In the critical case, µ = µc and ∆ = 0. The error
has a pole with double multiplicity in the z domain:

p =
1

2
(2− µc) cos(Ωts). (B.46)

The error is expressed

E(z) =
arz

(z − p)2
(B.47)

with the coefficient

r = sin(Ωts). (B.48)

In the time domain,

e[k] = Z−1{E(z)} = arkpk−1. (B.49)

An example is shown in Fig. B.4 with a plain curve. The error is said to be
critically damped. The settling time to reach an amplitude ratio e/a = ε is

τc(ε) =
W−1

(
εp log p

r

)
log p

ts (B.50)

with W−1 a Lambert W function.

Supercritical coefficient Finally for a supercritical µ ∈ (µc, 1], ∆ > 0.
The error has two real poles in the z domain:

p1,2 =
1

2

(
(2− µ) cos(Ωts)±

√
∆
)
. (B.51)

The error is expressed

E(z) =
arz

z − p1

− arz

z − p2

(B.52)

with the residual

r =
sin(Ωts)√

∆
. (B.53)

In the time domain,

e[k] = Z−1{E(z)} = arpk1 − arpk2. (B.54)

An example is shown in Fig. B.4 with a dashed curve. The error is said
to be overdamped. The time constant of the first term ar1p

n
1 is greater
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Figure B.5: Settling time to reach an error amplitude ratio of 1% for Ω =
200, ts = 10−3; the critical coefficient µc is shown with an asterisk

than the second because p1 > p2. Therefore, the settling time to reach an
amplitude ratio e/a = ε is approximated

τod(ε) ≈
log ε

r

log p1

ts. (B.55)

Fig. B.5 compares the settling time depending on the adaptive coeffi-
cient µ. The three regimes are visible: underdamped, critically camped,
then overdamped. It can be proven that the optimal value of the adaptive
coefficient µ is µc.

Let us consider a critical coefficient µc from Eq. (B.39) with correspond-
ing values p and r from Eqs. (B.46) and (B.48) respectively. Let us assume
a small time step compared to the reference signal’s frequency: Ωts � 1
implies µc ≈ 2Ωts. Taking the limit

lim
ts→0

log(p)

ts
≈ lim

ts→0

log(1− Ωts)

ts
= −Ω. (B.56)

Therefore, Eq. (B.50) can be approximated

τc(ε) ≈ −
1

Ω
W−1(−ε). (B.57)

B.2.3 Stability

Let us consider that the adaptive filter is in a positive feedback loop with a
linear oscillator, as shown in Fig. B.6. The oscillator’s transfer function is

O(s) =
1

s2 + δs+ ω2
0

. (B.58)
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Figure B.6: Positive feedback loop between the oscillator O(z) and the
adaptive filter C(z)

The corresponding discrete system is

O(z) =
1

ω2
0

(1− exp(s1ts))(1− exp(s2ts))

(z − exp(s1ts))(z − exp(s2ts))
. (B.59)

with

s1,2 = −1

2

(
δ ± i

√
δ2 − 4ω2

0

)
, (B.60)

the poles of O(s).

Let us take the transfer function of the adaptive filter from the input
X to the output Y , C(z) (Eq. (B.34)), and put it in a positive closed loop
with O(z), as shown in Fig. B.6. We will not focus on the feedback input
U . Rather, we will discuss the stability of the feedback itself.

An easy way of knowing whether the system O(z)C(z) is stable in closed
loop is to look at a Bode plot in open loop. If the gain is larger than one
while the phase lag is 0◦, the feedback system is unstable. Fig. B.7 shows
that an adaptive filter at frequency ωf lower than the resonance frequency
ω0 of the oscillator will always lead to a stable feedback. The frequency at
which the phase lag equals 0◦ is always ωf and the amplitude is |O(iωf)|,
very small if ωf � ω0. The story is not the same if ωf > ω0. Fig. B.8 shows
that the phase lag can be equal or very near zero at the resonance peak,
whose amplitude can be higher than 1 due to resonance. In this case, the
feedback loop can be unstable. The solution is to reduce µ, i.e. make the
adaptive filter slower.
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Figure B.7: Bode plot of the positive feedback between an oscillator res-
onating at ω0 = 10 rad/s and an adaptive filter targeting ωf = 1 rad/s with
µ = 0.001 (light gray), 0.01 (dark gray), and 0.1 (black); ts = 0.01 s
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Figure B.8: Bode plot of the positive feedback between an oscillator res-
onating at ω0 = 10 rad/s and an adaptive filter targeting ωf = 20 rad/s
with µ = 0.001 (light gray), 0.01 (dark gray), and 0.1 (black); ts = 0.01 s
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