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A B S T R A C T

Two of the most popular vibration testing methods for nonlinear structures are control-based
continuation and phase-locked-loop testing. In this paper, they are directly compared on the
same benchmark system, for the first time, to demonstrate their general capabilities and to
discuss practical implementation aspects. The considered system, which is specifically designed
for this study, is a slightly arched beam clamped at both ends via bolted joints. It exhibits a
pronounced softening–hardening behavior as well as an increasing damping characteristic due to
the frictional clamping. Both methods are implemented to identify periodic responses at steady-
state constituting the phase-resonant backbone curve and nonlinear frequency response curves.
To ensure coherent results, the repetition variability is thoroughly assessed via an uncertainty
analysis. It is concluded that the methods are in excellent agreement, taking into account the
inherent repetition variability of the system.

. Introduction

Experimental characterization of structures is essential to calibrate and validate theoretical models [1] even though laboratory
onditions rarely capture operational conditions. Dynamic testing techniques for linear systems can now be considered mature and
traightforward, as they have been widely studied in the structural dynamics community over the last decades [2–4] and are now
outinely used in the industry [5]. Experimental techniques are set to play a key role in the development and validation of nonlinear
odels because of the immense variety in the sources of nonlinear behavior (joints, material, geometry, etc.) and in the nonlinear

ehaviors themselves. In some circumstances, conventional testing methods can be adequate to test nonlinear structures and extract
ome of their dynamic features. For instance, nonlinear frequency responses can be accurately obtained by exploiting successive
requency sweeps performed with an increasing and a decreasing order [6,7]. The time-domain Hilbert transform [8] applied to
tructures in free decay is another example. Methods relying on free decay necessitates finding and temporarily maintaining the
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Abbreviations

CBC Control-Based Continuation
FRC Frequency Response Curve
LP filter Low-pass filter
NNM Nonlinear Normal Mode
P Proportional
PD Proportional and Differential
PID Proportional, Integral and Differential
PLL Phase-Locked Loop
RCT Response-controlled stepped-sine testing
SSI Shaker–Structure Interaction

Mathematical symbols

𝑣 Velocity at the measurement point
𝑓 Force applied on the structure, also called excitation
𝑢 Voltage sent to the shaker’s amplifier
𝑁 Number of harmonics considered
𝛼̂𝑥,𝑛 𝑛th sine Fourier coefficient of the signal 𝑥
𝛽𝑥,𝑛 𝑛th cosine Fourier coefficient of the signal 𝑥
𝜃 Instantaneous phase of the voltage
𝛺 Excitation frequency
𝜔 Nonlinear natural frequency
𝜔0 Linear natural frequency
𝜙𝑣 Phase lag between the excitation and the first harmonic of 𝑣
𝑋𝑛 Amplitude of the 𝑛th harmonic of a multiharmonic signal 𝑥
ℎ Thickness of the beam

structure at resonance, which can be difficult to do. The free decay can then follow a non-trivial path through different resonant
branches separated by transient jumps [9]. For more complex nonlinear behavior, model-based methods are powerful but strongly
depend on the modeling assumptions. For instance, a frequency-domain nonlinear subspace identification can be exploited to identify
the parameters of a nonlinear model after exciting the system with random excitation at different constant RMS force levels [10].
The frequency response is subsequently computed from the model using for instance the harmonic balance method [11]. The wide
range of nonlinear sources and the potentially high number of parameters render model-based methods difficult to scale to more
complex systems, and random excitation might not trigger high-amplitude nonlinear effects.

Consequently, there is a strong need to develop methods to generally and reliably characterize structures with a wide range of
omplex nonlinear behavior without the need for a model. Some of these behaviors are presented using a single-degree-of-freedom
scillator describing a mode of the physical experiment described in Section 2 with higher damping for readability. The equation
f this oscillator is

𝑥̈(𝑡) + 2𝜉𝜔0𝑥̇(𝑡) + 𝜔2
0𝑥(𝑡) + 𝑘2𝑥

2(𝑡) + 𝑘3𝑥
3(𝑡) = 𝑝 sin(𝛺𝑡), (1)

where 𝜉 = 0.8%, 𝜔0 = 2178, 𝑘2 = 1.9×1010, 𝑘3 = 4.1×1013, and where the right-hand side term represents a harmonic excitation with
amplitude 𝑝 and frequency 𝛺. The purpose of this model is not to predict experimental results quantitatively but merely to illustrate
the concepts presented in this article. Fig. 1 shows the periodic responses of the oscillator for a range of excitation frequencies and
amplitudes computed using the harmonic balance method [11] with one harmonic. The response is represented by the amplitude
𝑋1 and phase 𝜙𝑥 of its fundamental harmonic component. Responses other than periodic are outside the scope of the present study.

The collection of periodic responses obtained at a constant excitation amplitude defines one of the frequency response curves
(FRC) of the system (blue in Fig. 1). Although FRCs usually depict the total response amplitude, this article studies systems that
respond primarily through the first harmonic, i.e. that are excited close to a primary resonance without modal interaction. The
FRCs in this article therefore depict the relation between the excitation frequency and the first harmonic amplitude. The periodic
response with maximum amplitude along a FRC is called the amplitude resonance. In general, it must be distinguished from the
phase resonance where the response and excitation satisfy a phase quadrature condition. However, both types of resonances coincide
well for systems with well-separated natural frequencies and light damping, as it is the case in this study. In Fig. 1b, phase-resonant
responses are represented by a dash-dot orange curve and have a phase 𝜙𝑥 equal to −𝜋∕2. In Fig. 1a, phase-resonant responses form
the so-called backbone curve of the system. The backbone curve is the frequency–amplitude relation of a nonlinear normal mode
(NNM) [12], and has been used for nonlinear model updating and parameter estimation [13,14].
2



Mechanical Systems and Signal Processing 170 (2022) 108820G. Abeloos et al.
Fig. 1. Response surface representing the periodic responses of the example model (1) by (a) amplitude or (b) phase lag of the fundamental harmonic for varying
excitation frequencies and amplitudes, with highlighted FRC (blue curve), S-curve (yellow curve), backbone curve (dash-dot orange curve), and constant-response
FRF (dashed purple curve) and unstable responses in lighter gray.

The FRC and the backbone curve shown in Fig. 1a highlight some of the key challenges in the experimental characterization of
nonlinear structures using testing methods for linear systems.

1. The resonance frequency of nonlinear systems is amplitude-dependent. Here, the example model (1) has a softening-hardening
nonlinearity which results in a backbone curve that first decreases in frequency with the response amplitude and then
increases after a turning point, as shown in Fig. 1a. As the amplitude-dependent resonance frequency cannot be predicted
using linear modal analysis, reaching the resonance of this system using linear techniques would typically require to tune
manually the excitation frequency at every excitation amplitude.

2. For a single choice of excitation parameters 𝑝 and 𝛺, Fig. 1 shows that the system can exhibit different responses.
As a consequence, a slight perturbation on the system can trigger the so-called jump phenomenon during which the
response suddenly changes from one steady state response to another. Jumps in an experiment can result in an incomplete
characterization of the dynamics, repeatability issues, and even damages to the testing equipment.

3. Some periodic responses are unstable and cannot be identified experimentally without control. The regions where unstable
responses exist are enclosed by curves of saddle–node bifurcations and highlighted in light gray in Fig. 1. Fig. 1 also shows
3
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Fig. 2. One FRC of the example model (1) exhibiting a stable branch (black arrow) that could be left unidentified when performing a frequency sweep up
(yellow arrows) or down (orange arrows) due to meeting bifurcation points (circles).

that the backbone curve is usually very close to the instability boundary, rendering its identification potentially difficult with
traditional methods.

4. When unstable responses cannot be measured, curves of stable responses are disconnected from each other. As such, it might
be unclear how they are meant to connect with each other and if any additional feature is present between the curves. For
instance, the example model (1) exhibit FRCs whose maximum amplitude may be reached neither by forward nor backward
frequency stepping or sweeping. Indeed, both directions encounter a bifurcation point leading to a jump towards a lower
amplitude branch, as illustrated in Fig. 2.

An emerging practice to address the challenges introduced by nonlinearity without requiring building a model is to implement
feedback control in the experiment. This ensures more systematic and robust tests [15,16] because transitions between different
regimes of motion can be controlled by the experimenter. The use of feedback control enables the identification of responses
around fold bifurcations [17] and responses difficult to reach with classical methods [18], to observe unstable responses [19]
and to characterize bifurcations experimentally [20]. Unstable responses and bifurcations are important features of the dynamics.
For instance, unstable responses separate the phase space, i.e. they are the boundaries between different types of behavior, and
can be used to determine the perturbation size leading to jump between solutions. With control, the complete nonlinear response
of the system can be captured directly and without requiring models during the experiments. When using classical experimental
techniques, this is only possible through post-processing [8]. Three methods for feedback-controlled testing of nonlinear structures
are control-based continuation, phase-locked loop testing, and response-controlled stepped-sine testing.

Control-based continuation (CBC) is a means to apply the principles of numerical continuation directly to a physical system [16].
CBC is a general technique that has been used in many experiments to steer and maintain the dynamics of a physical system around
a periodic but otherwise arbitrary prescribed target response using feedback control [21–25]. To guarantee that the responses
measured with CBC are identical to the open-loop responses measured with a single-harmonic voltage input to the shaker, a so-called
non-invasiveness condition resulting in the cancellation of the higher-harmonics in the control signal has to be satisfied [24,26].
CBC has been applied to cantilever beams with magnetic or geometric nonlinearities exhibiting bifurcation points and multiple
branches of responses. It has been used to identify FRCs [20,22], backbone curves [25] and bifurcation curve [27]. As FRCs cannot
be parametrized uniquely by the response amplitude or frequency, their identification using CBC necessitates continuation algorithms
such as the pseudo-arclength method [22]. An easier alternative is to find a parametrization of the response surface that does not
require such algorithms. Exploiting the fact that CBC uses a response-based feedback controller, the response surface can be easily
characterized by collecting responses at constant forcing frequency 𝛺 (yellow curve in Fig. 1a). These curves, called S-curves due
to their usual shape, are characterized by a monotonous evolution of the response amplitude and can be interpolated to extract
FRCs [18,24].

Another experimental method relies on feedback control using a phase-locked loop (PLL) to impose the phase lag between
excitation and response of nonlinear systems [28,29]. Fig. 1b shows that the phase lag and excitation amplitude fully parametrize
the surface, rendering unnecessary the use of complicated continuation methods to identify FRCs. FRCs at constant excitation
amplitude can be identified straightforwardly by imposing the phase lag [28,30]. Backbone curves can also be identified by imposing
phase quadrature, linking directly the method to the identification of NNMs. PLL testing has been successfully applied for the
characterization of NNMs in many experiments including a blade [31] and a joint [32] with frictional nonlinearities, a circular
plate [19] exhibiting hardening and modal interaction, and a cantilever beam with magnetic nonlinearity [33].

Response-controlled stepped-sine testing (RCT) is similar in principle to CBC as the control law is used to impose a particular
response to the system, permitting the identification of constant-response FRFs [34], shown in a dashed purple curve in Fig. 1a.
By imposing a constant response amplitude rather than a constant excitation amplitude, constant-response FRFs do not exhibit
4
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Fig. 3. Test rig consisting in a thin arched beam with both ends clamped to a frame which is connected to an electrodynamic shaker.

bifurcation points, even if the FRCs exhibit one or multiple turning points. A collection of constant-response FRFs can be identified
to interpolate the surface and extract FRCs. RCT has been used, notably on a satellite structure [34], on a T-beam, on a guided
missile and its control fin [35,36].

These control-based methods measure directly the features of interest: Identifying the frequency response of the structure or the
backbone of a nonlinear mode is invaluable in the industry e.g. for rapid prototyping. Such a characterization of nonlinear systems
can be used for system stabilization [37] or vibration mitigation through nonlinear control [38]. For some systems, physics-driven
modeling is still not predictive enough e.g. frictional systems with uncertainties or bolted joints [39]. Data-driven modeling is an
attractive and attainable alternative.

The objective of this article is to present and compare control-based testing techniques in a theoretical and practical point of view,
and to apply them on the same structure for the first time. The control laws used for RCT have not been disclosed (e.g. proprietary
software was used in [35]). For this reason, this article focuses specifically on PLL testing and CBC. The test rig and its design
are presented in Section 2. Section 3 explains the two methods and discusses their main differences. Experimental data obtained
successively with PLL testing and CBC is presented in Section 4. A detailed comparison between FRCs and backbone curves obtained
with both methods is made. Conclusions are presented in Section 5.

2. Design and linear modal analysis of the test rig

The main structure of the experimental campaign consists of a thin arched beam whose both ends are clamped via bolted joints
to a frame. The beam is specifically designed with a slight curvature in order to observe a softening–hardening behavior in the
experiments. Unlike the flat beams, the stiffness of curved structures first decreases while the onset of buckling approaches, then it
starts to increase after a certain point due to large deformations resulting in axial-bending stretches [40]. The difference between
the dynamics of flat and curved beams is experimentally shown with a comparison study in [41]. Moreover, arched beams have also
sophisticated characteristics that increase the complexity of the systems [42,43]. All of these phenomena challenge the methods for
the identification of the beam’s dynamic features and enable a thorough comparison with their positive and negative aspects on a
difficult system.

The beam’s shape is defined as a circular arc with radius of curvature 𝑅 and constant thickness ℎ, see Fig. 3. The objective of the
design was to select a combination of 𝑅 and ℎ such that the beam’s first bending mode exhibits a pronounced softening–hardening
behavior qualitatively similar to the one exhibited by system (1) without snap-through phenomenon (to avoid chaotic motions)
nor internal resonances in the amplitude range of interest. To this end, we performed a preliminary parameter study of a finite
element model of the ideally clamped arc with respect to 𝑅 and ℎ. More specifically, a reduced order model (ROM) of the finite
element model was created to confirm that the system follows the desired dynamics using the implicit condensation procedure (see
e.g. [44] for details about the method) and is used as the introductory example (1). The ROM was exposed independently to both
static point load at center as well as dynamic excitation. In the latter case, the clamping points were moved harmonically in the
vertical direction where both nonlinear normal modes (NNMs) and FRCs corresponding to the lowest frequency bending mode were
computed using the free tool NLvib [45]. The nominal numeric values for 𝑅 and ℎ resulting from this study are given in Fig. 3.

The arched beam was manufactured by wire electrical discharge machining using spring steel 1.8159 (density 7.7–8.03 × 1000
kg/m3, Poisson’s ratio 0.27–0.30, Young’s modulus 190–210 GPa). To ensure the clamped–clamped boundary conditions, a stiff
support frame and two identical clamping blocks were designed and manufactured from the same steel as the beam to avoid stresses
as a consequence of temperature change. On both sides (left and right), the beam’s ends are laid between the frame and a block,
after which the block is clamped via two screws toward the frame. The outer screws (#2 and #4) are fitting screws ISO 7379 which
5
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Fig. 4. Top: height surface profile of the beam’s top face, reflective tape highlighted in red; bottom: mid-width profile (plain blue curve) and nominal profile
(dashed orange curve).

also positions the beam longitudinally, whereas on the left-hand side the bore through the beam’s end has a bigger diameter than
the fitting screw such that axial prestress in the beam are avoided. #1 and #3 are M5 × 25 hexagon socket screws with the function
to generate a contact pressure large enough to avoid macroslip of the beam’s ends in the joints during vibration tests. Therefore
they are fixed by a defined torque of 6 Nm. To avoid as much variation as possible in the axial prestress caused by the bolts, the
order of tightening the screws is defined by #1 → #2 → #3 → #4. The resulting curvature of the beam in its clamped–clamped
configuration may differ from the nominal shape as a consequence of imperfections of manufacturing and assembly processes. The
actual surface profile of the beam in its clamped configuration is measured by means of the height of the top surface using a laser
scanner (Keyence LK-H052), see Fig. 4. The height increases significantly and in a symmetrical manner from left and right sides
toward center as intended. The rectangles with increased height close to the left clamping point and at center are reflection tapes
which were glued at these positions. The final geometry is very close to the nominal profile.

The frame supporting the curved beam is connected to an electrodynamic shaker (B&K type 4809 driven by amplifier type
2718). An impedance head (PCB 288D01) is placed between the shaker’s armature and the frame to measure both excitation force
and acceleration of the frame at the drive point. The beam’s response is measured by a laser Doppler vibrometer (Polytec OFV-5000
with OFV-552-2 laser head) 20 mm away from the left clamping. The measurement location was chosen close to clamping to avoid
instabilities in feedback loops emanating from the measurement and driving points being non-collocated.

The velocity 𝑣 measured by the laser vibrometer constitutes the beam’s response and the force 𝑓 measured by the impedance head
constitutes the excitation. When a harmonic voltage of the form 𝑢(𝑡) = 𝑈 sin(𝛺𝑡) is sent to the electrodynamic shaker, it generates
the force 𝑓 (𝑡). If the response is periodic, it can be approximated by a truncated Fourier series of 𝑁 harmonics

𝑣(𝑡) =
𝑁
∑

𝑛=1
𝛼̂𝑣,𝑛 sin(𝑛𝛺𝑡) + 𝛽𝑣,𝑛 cos(𝑛𝛺𝑡). (2)

In practice, only a limited number of harmonics is considered. Subharmonic components of the form

𝛼̂𝑣,𝑛∕𝜈 sin
( 𝑛
𝜈
𝛺𝑡

)

+ 𝛽𝑣,𝑛∕𝜈 cos
( 𝑛
𝜈
𝛺𝑡

)

, 𝑛
𝜈
∉ N (3)

are not taken into account in this study because their amplitudes was negligible in the experiments described in the rest of the article.
The fundamental amplitude of the response is defined as 𝑉1 =

√

𝛼̂2𝑣,1 + 𝛽2𝑣,1 and the fundamental phase lag 𝜙𝑣 = atan2(𝛽𝑣,1, 𝛼̂𝑣,1). The
phase lag defined on the velocity causes the periodic responses to be in phase quadrature—or in phase resonance—when 𝜙𝑣 = 0 rad.

At low forcing amplitudes, the beam is assumed to behave linearly. Therefore, the modal properties corresponding to the lowest
frequency bending mode of the underlying linear system are determined using a hardware platform for linear modal analysis (m+p
VibRunner). A random voltage signal was sent to the shaker’s amplifier with an amplitude of 0.03 V and a frequency range between
10 and 3200 Hz. The natural frequency has been measured to be 𝜔0 = 1988 rad/s, and the damping ratio 𝛿0 = 0.026%. The mode
shape of the experiment is not to be confused with the beam’s (continuous) deflection shape. Rather, it is defined by the relationship
between the acceleration of the base and the velocity of the beam at the measurement point. To realize the control loops of PLL
testing and CBC (see Sections 3.1 and 3.2 for details), the sensors and the amplifier are connected to a rapid control prototyping
system (dSPACE MicroLabBox, sampling frequency: 10,000 Hz).

3. Methods

Phase-locked loop (PLL) testing and control-based continuation (CBC) are introduced in Sections 3.1 and 3.2 respectively.
Continuation algorithms to identify backbone curves and FRCs are developed in Sections 3.3 and 3.4 respectively. Section 3.5
focuses on a method to compensate for shaker–structure interaction and recover a single-harmonic input force. PLL testing and CBC
are compared from a theoretical point of view in Section 3.7. A comparison based on experimental results will be given in Section 4.
6
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Fig. 5. (a) Phase-Locked Loop and (b) synchronous demodulation [46].

3.1. Phase-locked loop testing

The basic working principle of PLL testing is illustrated in Fig. 5. A sine signal

𝑢(𝑡) = 𝑈 sin(𝜃(𝑡)) = 𝑈 sin
(

∫

𝑡

0
𝛺(𝜏) d𝜏

)

, (4)

with instantaneous phase 𝜃(𝑡) and time-varying excitation frequency 𝛺(𝑡) is provided as voltage input to the experimental set-up.
The excitation frequency 𝛺 is calculated by a PID control law,

𝛺(𝑡) = 𝜔0 + 𝑘p(𝜙ref − 𝜙𝑣(𝑡)) + 𝑘i ∫

𝑡

0
(𝜙ref − 𝜙𝑣(𝜏)) d𝜏 − 𝑘d

d𝜙𝑣
d𝑡

(𝑡), (5)

iming at reaching a reference phase lag 𝜙ref between the fundamental harmonic of the excitation 𝑓 and response 𝑥 [28]. When
he controller has settled, i.e. when the excitation frequency remains constant, the voltage signal is monoharmonic.

A key task within PLL testing is to evaluate the phase lag 𝜙𝑣 online, i.e. at each time sample of the experiment. One method
o perform this is the synchronous demodulation shown in Fig. 5b that consists in an online Fourier decomposition using linear
ow-pass (LP) filters. It has been successfully applied in other PLL tests [19,29,30,33] and is used in this work. A promising alternative
s the use of adaptive filters [26] to perform the online Fourier decomposition.

PLL has been shown capable of stabilizing unstable orbits depending on the gains of its controller [19]. The tuning of the gains
s discussed in Section 3.6. The time constant of the low-pass filter used for phase demodulation is 0.4 s. This values was selected
o compromise between convergence time and filtering capacity.

.2. Control-based continuation

The general formulation of CBC, as presented in [16], separates the excitation from the control signal that can be applied along
he excitation by the same actuator or by a separate actuator. The present article exploits a simplified implementation of CBC [24]
hown in Fig. 6, in which the excitation is provided by the controller.

The voltage signal 𝑢 is generated by a PD controller whose input is the difference between a reference signal 𝑦 and the velocity
measured by the laser vibrometer:

𝑢(𝑡) = 𝑘 (𝑦(𝑡) − 𝑣(𝑡)) + 𝑘 d (𝑦(𝑡) − 𝑣(𝑡)). (6)
7
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Table 1
Parameters for Algorithm 1.
𝑌init in m/s 𝑡wait in s 𝑁 tol in V

0.01 1 3 0.05

The PD controller modifies how the system responds to perturbation and can stabilize unstable orbits [47]. The tuning of the control
gains are discussed in Section 3.6. Note that CBC does not require a specific type of controller such that other control law could
have been used.

The multi-harmonic response of the system generally leads to a multi-harmonic control signal. At steady state, the response
Eq. (2)) and the input voltage signal can be approximated with truncated Fourier series of 𝑁 harmonics:

𝑢(𝑡) =
𝑁
∑

𝑛=1
𝛼̂𝑢,𝑛 sin(𝑛𝛺𝑡) + 𝛽𝑢,𝑛 cos(𝑛𝛺𝑡). (7)

There exist multiple methods to perform the Fourier decomposition. Offline methods need to gather data during one or more
periods before computing the coefficients, as such they work at a frequency lower than the controller. Online methods update
the coefficients at every sample time or at the same frequency than the controller. Both are compatible with CBC [26]. In this
article, the decomposition is performed offline by integrating one period of the signal following Fig. 6b. The reference signal is
constructed to be multi-harmonic with its fundamental component

𝑦f (𝑡) = 𝛼̂𝑦,1 sin(𝛺𝑡) + 𝛽𝑦,1 cos(𝛺𝑡) (8)

and non-fundamental component

𝑦nf (𝑡) =
𝑁
∑

𝑛=2
𝛼̂𝑦,𝑛 sin(𝑛𝛺𝑡) + 𝛽𝑦,𝑣 cos(𝑛𝛺𝑡). (9)

To compare CBC with PLL testing or even standard open-loop testing methods such as stepped sines, it is necessary to recover
a monoharmonic input voltage signal, i.e. (𝛼̂𝑢,𝑛, 𝛽𝑢,𝑛)𝑁𝑛=2 = 0. This can be achieved by adequately choosing the higher-harmonics of
the reference signal. Eq. (6) shows directly that 𝑢 is monoharmonic when

(𝛼̂𝑦,𝑛, 𝛽𝑦,𝑛)𝑁𝑛=2 = (𝛼̂𝑣,𝑛, 𝛽𝑣,𝑛)𝑁𝑛=2. (10)

Eq. (10) is a zero problem that can be solved using standard root-finding methods while the physical experiment is running. The
solver can operate at a frequency that is different or identical to the real-time controller, making iterations offline or online [26]
respectively. In this article, the algorithm runs offline and consists in derivative-free Picard-iterations [24]. It is presented in
Algorithm 1 and its parameters are shown in Table 1. For the rest of the article, the left arrow operator (⋅ ← ⋅) signifies a value
assignment.

Algorithm 1 Algorithm to make the voltage monoharmonic during CBC

1: (𝛼̂𝑦,1, 𝛽𝑦,1) ← (𝑌init , 0)
2: repeat
3: Wait a duration 𝑡wait for steady state
4: Record time series 𝑢 and 𝑣 during one period
5: Perform Fourier decomposition on 𝑢 and 𝑣
6: (𝛼̂𝑦,𝑛, 𝛽𝑦,𝑛)𝑁𝑛=2 ← (𝛼̂𝑣,𝑛, 𝛽𝑣,𝑛)𝑁𝑛=2
7: until max

𝑛

(

(|𝛼̂𝑢,𝑛|, |𝛽𝑢,𝑛|)𝑁𝑛=2
)

< tol

The phase of the reference signal can be constrained by setting 𝛽𝑦,1 = 0. The only two adjustable parameters of the experiment
re the frequency of excitation 𝛺 and the fundamental reference amplitude 𝑌 = 𝛼̂𝑦,1. The excitation amplitude 𝐹 is not defined by
he user but depends on the response 𝑣 and reference amplitude 𝑌 . Furthermore and contrarily to PLL, measuring the excitation 𝑓
s not necessary for the method but is only an output of the experiment.

.3. Identification of backbone curves

Phase quadrature is directly imposed by the PLL to identify responses of the backbone curve. A sequential continuation (i.e. a
arameter stepping) shown in Algorithm 2 is followed to step through different amplitude levels. Its parameters are shown in Table 2.
or the rest of the article, simple loops are used in algorithms to signify that the interruption is at the user’s discretion. For the
dentification of backbones, it is practical to start at low amplitude and use the corresponding natural frequency 𝜔0 of the underlying
inear system as initial condition for the resonance frequency 𝜔 [32].
8



Mechanical Systems and Signal Processing 170 (2022) 108820G. Abeloos et al.
Fig. 6. (a) Control-based continuation consisting in an online feedback loop and offline correction/continuation algorithms, (b) offline Fourier decomposition
for harmonic 𝑛; offline operations are displayed as gray boxes.

Algorithm 2 Algorithm to identify backbone curves during PLL testing
1: 𝜙ref ← 0
2: 𝑈 ← 𝑈init
3: loop
4: Wait for convergence of 𝛺
5: Save response
6: 𝑈 ← 𝑈 + 𝛥𝑈
7: end loop

Table 2
Parameters for Algorithm 2.
𝑈init in V 𝛥𝑈 in V

0.006 0.006
9
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Table 3
Parameters for Algorithm 3.
𝑌init in m/s 𝛥𝛺init in rad/s tol𝜙 in rad tol𝛺 in rad/s 𝛥𝑌 in m/s

0.01 1 0.05 0.01 0.02

Keeping the reference amplitude 𝑌 constant during CBC and varying the excitation frequency 𝛺 allows the continuation of
periodic responses with an indirect constraint on the response amplitude under which a single periodic response is in phase resonance
(similar to constant-response FRFs). CBC therefore enables the identification of backbone curves by performing a sequential
continuation on 𝑌 and solving 𝜙𝑣(𝛺) = 0 at every step using the bisection method, as was done in [25]. Both are implemented
in Algorithm 3 with parameters shown in Table 3.
Algorithm 3 Algorithm to identify backbone curves during CBC

1: 𝑌 ← 𝑌init
2: 𝛺 ← 𝜔0
3: loop
4: 𝛥𝛺 ← 𝛥𝛺init
5: Make voltage monoharmonic following Algorithm 1
6: Evaluate 𝜙𝑣
7: while |𝜙𝑣| > tol𝜙 and |𝛥𝛺| > tol𝛺 do
8: if sign(𝜙𝑣 𝛥𝛺) < 0 then
9: 𝛥𝛺 ← −𝛥𝛺∕2

10: end if
11: 𝛺 ← 𝛺 + 𝛥𝛺
12: Make voltage monoharmonic following Algorithm 1
13: Evaluate 𝜙𝑣
14: end while
15: Save response
16: 𝑌 ← 𝑌 + 𝛥𝑌
17: end loop

In summary, the same phase quadrature can be attained by different means during PLL testing and CBC. On the one hand, PLL
esting is an online method in that the phase lag converges continuously towards quadrature thanks to the PID controller acting
n the excitation frequency. On the other hand, CBC is an offline method, i.e. successive periodic responses are identified and
n algorithm is used to iterate automatically the excitation frequency until quadrature is found up to tolerance. More operations
re made online during PLL testing (numerical integration, synchronous demodulation) while CBC’s offline continuation algorithm
ossesses more steps. The amplitude of the periodic responses are determined by the voltage signal 𝑈 , defined directly during PLL

testing or indirectly through the reference amplitude 𝑌 during CBC.
Limitations of the algorithms presented in this section arise when confronted to internal resonance. In such a case, both the

excitation amplitude and the fundamental response amplitude are expected to locally decrease along the backbone curve [48].
Given that Algorithm 2 increases the excitation amplitude sequentially and that Algorithm 3 increases the fundamental reference
amplitude sequentially, such drop would result in a jump in the backbone curve. More complex continuation algorithms using, for
instance, pseudo-arclength continuation would be required to characterize fully such systems.

3.4. Identification of FRCs

The identification of FRCs requires a constant-amplitude, usually single-harmonic excitation. To reach a constant excitation
amplitude 𝐹 at the fundamental excitation frequency, the feedback loop shown in Fig. 7 is introduced on top of the controlled
experiment. This loop contains a synchronous demodulation to measure 𝐹 online and a PID controller that adjusts the amplitude 𝑈
f the voltage signal to reach the forcing amplitude 𝐹ref. The force applied to a nonlinear structure also contains higher harmonics,
hich typically result from shaker–structure interactions and the lack of linearity between the voltage sent to the shaker’s amplifier
nd the force applied by the shaker. A method to compensate for these higher harmonics and cancel them is presented in Section 3.5.

The algorithm to identify FRCs using PLL testing is shown in Algorithm 4. It performs a sequential continuation on the phase
ag in the vicinity of the resonance [30]. For lightly damped structures, the ratio 𝜕𝛺∕𝜕𝜙 is small at resonance but large away from
t. To avoid divergence of the controller after a phase step (e.g. towards another mode) and to obtain reasonably spaced data points
n the amplitude frequency plane, smaller steps of the reference phase are chosen away from resonance as shown in Fig. 8.

Although CBC can be used for the direct identification of FRCs, more complicated continuation procedures are required to go
round fold bifurcations [20,22,49]. It is usually easier to identify S-curves and extract FRCs through post-processing as in [25].
eeping the excitation frequency 𝛺 constant and varying 𝑌 enables the continuation of S-curves following Algorithm 5, with its
arameters shown in Table 4. In the absence of internal resonance, S-curves vary monotonically with 𝑌 and a sequential continuation
10
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Fig. 7. Amplitude control of the voltage 𝑈 to reach a reference excitation amplitude 𝐹ref for the identification of FRCs during PLL testing.

Algorithm 4 Algorithm to identify FRCs during PLL testing
1: 𝐹ref defined by user
2: 𝜙ref ← 𝜙init
3: loop
4: Wait for convergence of 𝑈 and 𝛺
5: Save response
6: 𝜙ref ← 𝜙ref + 𝛥𝜙
7: end loop

Fig. 8. Time profile of 𝜙ref for Algorithm 4.

Table 4
Parameters for Algorithm 5.
𝑌init in m/s 𝛺init in rad/s 𝛥𝑌 in m/s 𝛥𝛺 in rad/s

0.01 1967 0.01 3.14

procedure is applicable. Identifying a collection of S-curves at different frequencies and defining a suitable interpolation allows
to identify the full (continuous) response surface. Regression techniques can then be exploited to approximate FRCs at constant
excitation amplitude 𝐹 . This indirect identification removes therefore the need for the feedback loop applied to the fundamental
excitation amplitude shown in Fig. 7 and used during PLL testing.

In summary, the same periodic responses can be identified during PLL testing and CBC. In the former, an arbitrary phase lag
is imposed thanks to the PLL. However, it is necessary to add an additional control loop during PLL testing in order to impose
a desired excitation amplitude 𝐹 and identify FRCs. CBC can identify FRCs directly and would, in that case, also require such a
control loop on the excitation. Alternatively, S-curves can be identified sequentially and interpolated into a continuous response
11
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Algorithm 5 Algorithm to identify a collection of S-curves during CBC in order to approximate FRCs from the dynamic response
surface

1: 𝑌 ← 𝑌init
2: 𝛺 ← 𝛺init
3: loop
4: loop
5: Make voltage monoharmonic following Algorithm 1
6: Save response
7: 𝑌 ← 𝑌 + 𝛥𝑌
8: end loop
9: 𝑌 ← 𝑌init

10: 𝛺 ← 𝛺 + 𝛥𝛺
11: end loop

Fig. 9. Shaker–structure interaction control correcting the 𝑛th harmonic of the voltage by a proportional controller (P).

urface in post-processing, providing an approximation of the FRCs of interest. As discussed in Section 3.5, the two methods require
n additional control loop to cancel higher harmonics present in the applied excitation (if desired).

.5. Compensation of the shaker–structure interaction

Shaker–structure interaction (SSI) can result in multiple phenomena including resonance force drop, jumps, internal resonance,
r subharmonic resonance [50]. Although these phenomena were not observed in the experiments of this article, higher harmonics
n the applied force were. As the excitation is directly measured at the application point by an impedance head, it can be directly
alidated: If the force signal is close to a sine wave at the desired amplitude, the system’s response is accepted.

Without additional control, a monoharmonic voltage 𝑢 can lead to a multiharmonic excitation 𝑓 [32]. The excitation 𝑓 can be
pproximated by a truncated Fourier series of 𝑁 harmonics:

𝑓 (𝑡) =
𝑁
∑

𝑛=1
𝛼̂𝑓,𝑛 sin(𝑛𝛺𝑡) + 𝛽𝑓,𝑛 cos(𝑛𝛺𝑡). (11)

The amplitude and phase of harmonic 𝑛 are expressed as 𝐹𝑛 =
√

𝛼̂2𝑓,𝑛 + 𝛽2𝑓,𝑛 and 𝜙𝑓,𝑛 = atan2(𝛽𝑓,𝑛, 𝛼̂𝑓,𝑛), respectively. Once the voltage
is monoharmonic during CBC or PLL testing, a correction is computed from its instantaneous voltage phase 𝜃 by a proportional

ontroller:

𝑢nf,𝑛 = −𝑘p𝐹𝑛 cos
(

𝑛𝜃(𝑡) − 𝜙𝑓,𝑛
)

(12)

hown in Fig. 9. In this paper, this correction was done for only 𝑛 = 2 and 3 as the higher harmonics were not significant in the
xperiments. The controller gain is discussed in Section 3.6.

This method makes the assumption that the shaker is phase-neutral, i.e. the phase-lag between the voltage and the force is
ero. At high amplitudes, when the SSI is most significant, the shaker indeed approaches phase-neutrality and the higher harmonics
re reduced by the feedback loop. At low amplitudes, the phase-lag added by the shaker approaches 90◦ between the voltage and
12

he force. The violation of the assumption is considered acceptable due to the low amplitude of higher harmonics in this case.
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Fig. 10. Frequency content of the resonant force signal at amplitudes (a) 𝑉1∕(𝛺ℎ) ≈ 0.1 and (b) 𝑉1∕(𝛺ℎ) ≈ 0.25 with and without shaker–structure interaction
control (yellow and blue, respectively).

Table 5
Gains of the controllers used in PLL testing and in CBC.

PLL Ampl. control (PLL) CBC SSI control

𝑘p 150 s−1 120b 20 N s/m 12a,40b

𝑘i 50 s−2 40b s−1 – –
𝑘d 40a, 10b 0.04b s 0.4 N s2/m –

aBackbone identification.
bFRC identification.

he limitations of the method are considered out of this article’s scope. Until more analytical work is done, the method is to be
onsidered ad-hoc and not generally applicable.

Fig. 10 shows the amplitude of the first four harmonics of the excitation signal 𝑓 for resonant periodic responses experimentally
easured at different response amplitudes. Without SSI compensation, the excitation signal is clearly multiharmonic. After closing

he SSI compensation control loop, the higher harmonics are significantly reduced. Interestingly, a slight variation in fundamental
xcitation amplitude is noted as well, showing the influence of higher excitation harmonics on the periodic response.

.6. Controller gains

There is currently no general method to construct a control law for control-based methods to reach their control objectives—
.g. the stabilization of unstable responses—without knowing some characteristics of the system. However, control-based methods
re meant to be applicable without the need to identify a model beforehand. There is some promising but very early proposals
or such tuning methods, for instance using control Lyapunov–Razumikhin functions [51] or adaptive control design [52]. In the
eantime, control gains are tuned heuristically, i.e. by trial and error. The scope of this article is not to derive formally the influence

nd effect of each control gain on the dynamics of general systems. Rather, this Section presents guides to tune the controllers for
LL testing and CBC.

The controller used during PLL testing has a conventional purpose: A measured value must converge towards a setpoint.
pecifically for PLL testing, the phase lag 𝜙v between the beam’s velocity and the force detected by synchronous demodulation
ust converge towards the reference phase lag 𝜙ref . One can therefore use manual tuning for PID controllers, as proposed for

nstance in [53], showing that the time needed to converge towards the target depends heavily on the controller gains. The PID
ains found in this way are shown in the first column in Table 5. A similar methodology is used for tuning the PID controller used
o impose a constant force amplitude. The gains are shown in the third column of Table 5.

The feedback control used in the simplified CBC method steers the response of the system towards a setpoint but it is not meant
o reach it. The main purpose of the controller is to stabilize the unstable response of the uncontrolled system. Velocity feedback
odifies the effective damping of the structure while displacement feedback modifies its effective stiffness [54]. Adding or removing

ffective damping reduces or increases the transient time respectively. In this article, the signal fed back is directly the velocity. The
D controller includes a proportional gain adjusting the velocity feedback and a differential gain adjusting the acceleration feedback
analog to a displacement feedback). Practically, a frequency at which the structure exhibits unstable responses at the force levels of
nterest is chosen. Successive S-curves are identified using CBC, increasing progressively the controller gains until all of the S-curve
s stabilized. The corresponding gains of the PD controller are shown in the second column of Table 5.
13
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3.7. Comparison of the methods

To summarize the previous sections, a general comparison of the working principles behind phase-locked loop (PLL) testing and
ontrol-based continuation (CBC) is summarized below.

Control PLL testing includes a controller designed to reach a phase lag target. It is usually a PI controller [29], the
proportional gain providing stability and the integral gain leading to a zero set point error. The control and
excitation are applied via the same actuator.
CBC includes a controller designed to stabilize the system’s response by comparing it to a reference signal. The
actuator used to apply the control can be identical or different to the one used to apply the system excitation.
With the simplified CBC method, the controller is not required to reach the reference signal. Examples of
controllers include PD controllers [16] and controllers designed by pole-placement techniques [18].

Identified
features

PLL testing controls the phase lag: It is naturally suited to identify backbone curves [29] and FRCs [28,30].

CBC controls the response signal: It can identify FRCs [20,22,24] and backbone curves [25] but can also
reach a broader range of responses that might not be well parametrized by the phase [27].

Harmonic
excitation

PLL testing is designed to send a monoharmonic voltage to the exciter once the PLL has converged, such that
measured responses are directly comparable with responses obtained with open-loop methods such as stepped
sines.
With CBC, the voltage provided to the exciter is a priori multi-harmonic such that a specific reference signal
must be found to recover results comparable with open-loop tests.
Both methods require additional control loops to cancel higher harmonics present in the applied force.

Online/offline
variants

PLL testing is an online method, i.e. the method runs in real time. The Fourier decomposition must be online
as the phase lag is fed to the controller.
CBC comprises in general an offline algorithm running in parallel to the experiment and performing the
continuation procedure. Online variants are possible [26].

Additionally, here is a comparison of more practical aspects focusing on the continuation algorithms to identify FRCs and
backbone curves, the features of interest in this article.

Identification of
backbone curves

With PLL testing, backbone curves are identified by keeping the phase lag constantly at quadrature and
performing a sequential continuation on the voltage amplitude.
With CBC, backbone curves are identified by performing a sequential continuation on the voltage
amplitude and finding phase quadrature at each step by iterating on the excitation frequency.

Identification of
FRCs

With PLL testing, FRCs are identified by keeping the force amplitude constant via an additional control
loop and performing a sequential continuation on the phase lag.
With CBC, FRCs can be identified by implementing a pseudo-arclength continuation [22]. In this article,
FRCs are extracted from a collection of S-curves identified by keeping the frequency constant and
performing a sequential continuation on the voltage amplitude.

4. Experimental results

The system is subjected to a series of experiments to characterize the first bending mode of the beam. Specifically, a harmonic
force 𝑓 = 𝐹 sin(𝛺𝑡) is applied vertically to the frame. Its acceleration 𝑎 is measured by the impedance head while the velocity 𝑣 of
the beam is measured by the laser vibrometer. When periodic, these signals define closed orbits characterizing the system’s response
to the excitation.

PLL testing and CBC are independently used to identify the periodic responses of the beam at and around the resonance of the
first bending mode. The excitation frequency at resonance 𝜔 depends on the amplitude of the response and is obtained through
the identification of backbone curves in Section 4.1 following the method presented in Section 3.3. The backbone is used for
estimating the modal properties of the NNM, presented in Section 4.2. These properties define a reduced order model which enables
to synthesize FRCs in the vicinity of the mode, presented in Section 4.3. Additionally, FRCs are directly identified during experiments
14

in Section 4.4 following the method presented in Section 3.4.
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Fig. 11. (a) Backbone curves identified with PLL testing (blue curve) and CBC (orange curve) from six successive experimental identifications (warm-up in
ashed curve); frequency content of periodic responses at resonance and at amplitudes (b) 𝑉1∕(𝛺ℎ) ≈ 0.1 and (c) 𝑉1∕(𝛺ℎ) ≈ 0.25 identified during PLL testing

(blue) and CBC (orange).

4.1. Backbone curves

Fig. 11a shows backbone curves identified during PLL testing and CBC following Algorithms 2 and 3 respectively. The experiment
was repeated six times in a row with each method to assess repeatability. The first experiment of the series applied CBC and resulted
in a qualitatively different identification (dashed curve). It is suspected that the temperature of the beam increased during the
experiment, resulting in a change of modal properties. The curve is therefore discarded while the five subsequent CBC experiments
and six PLL testing experiments constitute the results. The frequency content of two periodic responses—one at low amplitude in
the softening regime and the other at high amplitude in the hardening regime—is shown in Figs. 11b and 11c. The low amplitude
of higher harmonics relative to the fundamental supports the assumption that a single mode is excited without modal interaction.

The minimum amplitude reachable during the experiments depends on the signal-to-noise ratio. PLL testing requires an online
Fourier decomposition for the phase lag to be fed into the PLL controller at each sample time. Low signal-to-noise ratio prevents
the PLL to converge and thus low-amplitude responses to be identified. In contrast, the offline Fourier decomposition used during
CBC can gather as much data as needed before proceeding with the continuation algorithm. This allows averaging of the signals
and better performance at low signal-to-noise ratios.

The nonlinear natural frequency 𝜔 approaches the linear natural frequency 𝜔0 at low amplitudes using both methods. The beam
exhibits a softening behavior until an amplitude 𝑉1∕(𝛺ℎ) ≈ 0.15 before which 𝜔 decreases with 𝑉1. Above this amplitude, 𝜔 increases
with 𝑉1 in a hardening behavior. This turning point corresponds to a displacement amplitude of 0.67ℎ at the beam’s center (estimated
using the linear mode shape of the FE model). A softening–hardening transition at this amplitude is expected from a slightly curved
15

beam, as demonstrated in [55] showing excellent agreement between the results and theory.
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Fig. 12. (a) Standard deviation of the successive backbone experiments using PLL testing (blue area) and CBC (orange area), (b) measured phase lag error and
(c) frequency error in the identified backbone responses during PLL testing (blue curve) and CBC (orange line and squares) estimated from the (d) local response
phase surface around the backbone.

Let the successive backbone curves be described by the functions 𝜔𝑘(𝑉1) for the 𝑘th curve. For every value 𝑉1, the standard
deviation 𝜎(𝜔) is computed and shown in Fig. 12a. The standard deviation increases suddenly when reaching amplitude 𝑉1∕(𝛺ℎ) =
0.15, corresponding to the softening–hardening transition, and stays large at higher amplitudes. The maximum standard deviation

max
𝑉1

𝜎(𝜔𝑘(𝑉1)) = 0.00145𝜔0 for PLL testing and

= 0.00137𝜔0 for CBC,

are comparable between the methods. These values are small in absolute value but relatively significant in the light of the amplitude-
dependent frequency change of about −0.5% and +2 % attributed to the softening and hardening behavior respectively. To adequately
represent the repeatability variations, the standard deviation is included as colored areas next to the results in the rest of the article.
16
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Fig. 13. (a) Average nonlinear natural frequency and (b) nonlinear modal damping depending on the response level, identified with PLL testing (blue curve)
and CBC (orange curve); compared to linear parameters identified during the linear modal analysis (∗).

A potential explanation for this increase of variability with amplitude resides in the knowledge that steady state response of
ry frictional systems under periodic loading may depend on the initial conditions (slip displacements in sticking contact zones).
hese slip displacements can depend in a complex way on the entire load history of the system under consideration and are thus
enerally unknown. Consequently, repeated experiments can show a certain variability [39]. At small amplitudes, the contact area
s mostly sticking, leading to a unique dynamic response. With increasing amplitude, the variability increases. In the macro-slip
egime, theoretically, variability would decrease again, but this regime is not reached by bolted joints. This behavior is studied in
etail for instance in [56].

Additionally, the softening effect characterized during the experiments and shown in Fig. 11a is much less pronounced than
hat is predicted from the numerical model (Fig. 1). The model assumes that the extremities of the beam are ideally clamped,
hereas the actual joints are bolted. Predictive numerical models for bolted structures are extremely challenging to produce [39],
ighlighting the relevance of model-free control-based methods.

Fig. 12b shows the error in phase lag compared to the quadrature target 𝜙𝑣 = 0 rad. PLL testing is able to reach a phase error
almost two orders of magnitude lower than CBC. This is not surprising as CBC can only approach quadrature using prescribed
finite steps, presently following Algorithm 3. Despite the higher precision achieved by PLL testing, the standard deviation shown in
Fig. 12a is not reduced compared to CBC. It can be concluded that high phase precision is not needed in this particular application
due to high inherent variability.

A frequency error shown in Fig. 12c is estimated as the distance from the local response surface shown in Fig. 12d. The surface
is an interpolation of S-curves identified using CBC and presented later in the article (Fig. 16). Fig. 12b shows that most periodic
responses identified during CBC at high amplitudes (𝑉1∕(𝛺ℎ) > 0.15) lie within the phase tolerance, while Fig. 12c shows that most
periodic responses at low amplitudes (𝑉1∕(𝛺ℎ) < 0.15) lie within the frequency tolerance. This can be linked to later results showing
that damping increases with amplitude (Fig. 13b). Lower damping implies a sharper resonance peak: The phase-lag is sensitive
to small variations in frequency. As damping increases, the sensitivity to changes in frequency diminishes while the sensitivity to
changes in phase-lag increases. The change in damping can be seen visually in Fig. 12d as the response surface is flatter on its
left-hand boundary (lower amplitude and damping) and more curved on its right-hand boundary (higher amplitude and damping).

4.2. Nonlinear modal analysis

As established in [32], the amplitude-dependent modal properties can be extracted from the phase-resonant backbone curve,
provided that strong modal interactions (e.g. due to closely-spaced or internally resonant natural frequencies) remain absent and
damping is light. Here, the definition of a nonlinear mode in accordance with the extended periodic motion concept [57] is used.
The modal frequency (or natural frequency) 𝜔 corresponds to the excitation frequency at phase resonance and is a direct output of
the experiments. The nonlinear modal damping ratio 𝛿 is determined by following the idea that the power supplied by the excitation
has to cancel the power dissipated by the system-inherent damping (see [32] for the details). Finally, the Fourier coefficients of the
modal deflection shape are obtained by Fourier analysis. The fundamental harmonic component of this deflection shape is mass-
normalized using the linear mass-normalized modal deflection shapes [32]. The average modal frequency and modal damping ratio
are shown in Figs. 13a and 13b, respectively. As expected, the values of the parameters at low amplitude are consistent with the
linear modal parameters.

Increasing damping ratio with amplitude is typical for micro-slip friction, which may also cause the increase in variability with
17

amplitude shown in Fig. 12a. Although the damping has a standard deviation so small that it is barely visible in Fig. 13b, it exhibits
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Fig. 14. FRCs at varying excitation amplitudes synthesized from the average backbone curve identified with PLL testing (blue curve) and CBC (orange curve),
and compared to the standard deviation from PLL testing (blue area) and CBC (orange area) data.

an interesting hysteresis behavior. It is important to note that it is not a dynamical hysteresis, i.e. each point on the curve corresponds
to a steady state periodic response identified during PLL testing or CBC. Rather, the behavior of the structure is different whether
the amplitude is sequentially increased or decreased. We do not know the cause of this behavior, but a possible explanation could
be linked to thermal effects analogous to the observations in [58].

4.3. FRC synthesis

FRCs can be synthesized from the nonlinear modal parameters presented in Section 4.2. It can be advantageous to do this as
fewer periodic responses need to be measured compared to a direct FRC identification. Identifying FRCs both through synthesis and
directly is done here as a cross-validation.

The synthesis relies on the single-nonlinear-mode theory: The frequency 𝛺 of the FRC at a specific response amplitude is
computed following [31]. The FRCs synthesized from the backbone curves are shown in Fig. 14. FRCs are synthesized from each
backbone curve shown in Fig. 11a. They are parametrized by their phase lag such that there is a one-to-one correspondence between
each point of the different curves: The successive FRCs are described by the functions 𝜔𝑘(𝜙𝑣) and 𝑉1(𝜙𝑣) for the 𝑘th curve. The
standard deviation is computed for each phase lag value both in amplitude and frequency, and is shown as colored areas in Fig. 14.

The softening–hardening behavior is apparent in the FRCs. Under a forcing amplitude of 3 N, the FRCs are in the softening regime
and are skewed toward lower frequencies. They include two saddle–node bifurcations. This indicates the existence of a branch of
unstable orbits. Increasing the forcing amplitude above 3 N creates two more saddle–node bifurcations as the FRCs begin to be
skewed towards higher frequencies. This hardening regime therefore includes two branches of unstable orbits, one due to softening
and the other due to hardening. Recall that this leads to as much as four turning point bifurcations and a stable high-level branch
which can be unreachable by a conventional frequency response test (stepping or slowly sweeping the frequency and controlling
only the excitation level).

4.4. FRC identification

FRCs are identified experimentally using PLL testing by following Algorithm 4. They are shown in blue in Fig. 15. The
identification of FRCs is limited around the resonance peak. Further from resonance, a small phase lag variation implies a large
frequency variation as illustrated in Fig. 1b. Consequently, even low phase lag uncertainty prevents the accurate identification of
periodic responses. Additionally, periodic responses further from resonance have a low amplitude, leading to low signal-to-noise
ratio in the measurement and high phase lag uncertainty, as explained in Section 3.3. Such a limitation is nuanced by the fact that
interesting behavior is rarely expected far from resonance.

The S-curves identified during CBC are shown in Fig. 16. Far away from resonance, the force level increases quickly, constituting
a potential limitation of the method when applied to structures or equipment sensitive to high forcing. The phase lag along the S-
curves is shown in Fig. 16b. The presence of two resonance points where 𝜙𝑣 = 0 rad and the double-S shape of some S-curves results
from the softening–hardening behavior of the system.

Processing S-curves into FRCs requires the approximation of the response surface from the measurement data. The experiments
18
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Fig. 15. FRCs at excitation amplitudes (a) 𝐹 = 1 N, (b) 3 N, and (c) 5 N identified experimentally with PLL testing (blue curve) and CBC (orange curve),
compared to the S-curves identified with CBC (◦) and to the standard deviation of the FRCs synthesized from backbone curves identified with PLL testing (blue
area) and CBC (orange area).

Fig. 16. (a) Amplitude and (b) phase lag of S-curves identified experimentally during CBC for varying excitation frequencies; with highlighted resonance points
at phase quadrature (◦).

into the response surface as was done in [24]. Rather, the response surface is approximated by a cubic spline surface with 10 equally
spaced control points along the frequency dimension and 12 points along the response amplitude dimension. The location of the
control points along the fundamental excitation force dimension is determined by minimizing the average distance between the
surface and the data points. The data consists in the S-curves and the average backbone, useful to accurately capture the resonance
region. The surface and data points are shown in Fig. 17.

The FRCs are finally extracted from the response surface as collections of periodic responses at constant excitation amplitudes.
They are shown in orange in Fig. 15. To highlight the fact that the FRCs are not interpolations but approximations, the intersection
of the S-curves with the plane embedding the FRC are shown as orange circles. The resulting FRCs stay close to these intersections,
showing an accurate approximation.

Although the identified FRCs—either directly using PLL testing or indirectly using CBC—show a slight difference in frequency,
they lie within or very close to the standard deviation of FRCs synthesized from the backbones. In other words, such a difference in
frequency is expected from the inherent variability of the system. This gives strong confidence in both the FRCs and the backbone
curves identified using PLL testing and CBC. Finally, both methods successfully stabilize the unstable orbits in the FRCs.
19
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Fig. 17. Response surface representing the response amplitudes of the system for varying excitation signals, approximated from the S-curves and the backbone
identified experimentally with CBC (data points shown in orange and approximated FRC at 𝐹 = 3 N in white).

5. Conclusion and future works

The aim of this article was to compare two recently developed methods capable of nonlinear modal characterization on the same
structure. Both methods use feedback to control different experimental parameters. During phase-locked loop (PLL) testing, the
phase lag between response and excitation signals is imposed by a controller. During control-based continuation (CBC), a controller
generates an excitation signal from the difference between a reference signal and the response of the structure.

Both PLL testing and CBC were shown capable of a successful characterization of the amplitude-dependent modal properties
of the lowest-frequency bending mode of a thin beam possessing an intrinsic curvature when unstressed. The structure exhibits
complex nonlinear hardening–softening dynamics and nonlinear micro-slip in the bolted joints, handled and identified successfully
by both methods. The backbone identification—and subsequent nonlinear modal parameters and synthesized FRCs—and the FRC
identification lead to consistent results obtained by PLL testing or CBC. The important difference between experimental data and
model prediction shows the importance of control-based methods when predictive models are difficult to build.

It is difficult to compare quantitatively experimental duration using both methods. The tuning of the controllers plays a critical
role in the dynamics of the system, e.g. the time needed to reach steady state. The parameters chosen in the continuation algorithms
affect greatly the duration of experiments. An in-depth parameter study might be done to assess accurately performance of CBC and
PLL testing but it is deemed outside the scope of this article. With these considerations, no significant difference in performance
was observed in this study.

This article focused on bringing PLL testing and CBC together and presenting their different approaches in performing the same
characterization. An equally relevant approach would set the methods apart by studying special cases where PLL testing or CBC might
fail. Such cases are mentioned in this article and result from a difference in parametrization of the response surface exploited by both
methods. On the one hand, modal interaction might render a parametrization by phase lag challenging [48] and a characterization
by PLL testing incomplete. On the other hand, superharmonic resonance might prevent a parametrization by a single response
harmonic [59] and a characterization by CBC might be incomplete. Further work looking into such particular systems will bring
valuable elements to the discussion.

General methods are still lacking regarding the determination of control laws for control-based methods. Unless knowing in
advance the nonlinearities of a system—i.e. building a model, defeating the purpose of the methods—controller gains are currently
tuned heuristically. Further work looking into robust and general methods for building control laws is needed, possibly building
upon the early work that has been done on the subject [51,52].
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