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a b s t r a c t

In this paper, a nonlinear active damping strategy based on force feedback is proposed. The
proposed device is composed of a pair of collocated actuator and force sensor. The control
law is formed by feeding back the output of the force sensor, through one single, one
double integrator and another double integrator of its cube. An equivalent mechanical
network which consists of a dashpot, an inerter and a cube root inerter is developed to
enable a straightforward interpretation of the physics behind. Closed-form expressions for
the optimal feedback gains are derived. Numerical validations are performed to demon-
strate the proposed control strategy.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Flexible structures such as beams, cables and rods are commonly seen in engineering applications. The associated vi-
bration problems have drawn the attention of many researchers as they often exhibit low damping characteristics. In some
cases, especially when the flexible structures are excited around their resonant frequencies, nonlinear vibrations may occur
due to, for example, nonlinear properties of materials, geometric nonlinearities, and nonlinear external forces [1]. Traditional
linear solutions based on tuned absorbers via passivemeans [2] or activemeans [3] are no longer effective. This is because the
resonant frequency of the nonlinear oscillations depends intrinsically on the motion amplitudes [4]. In order to recover their
control effectiveness, mechanisms that can deliver nonlinear reacting forces should be added in these linear approaches.
Habib et al. [5] and Sun et al. [6] proposed to use nonlinear tuned vibration absorbers (NLTVAs) for vibration mitigation of
nonlinear resonances. Although this concept is promising, it may become cumbersome and expensive to realise NLTVAs in
practice using passive means for complex nonlinear primary systems.

On the other hand, active approaches might be appealing which might lead to a less complex solution. Zhao et al. [7]
applied the same tuning strategy as proposed in Ref. [5] on a nonlinear positive position feedback (NPPF) controller aiming to
optimally damp a Duffing oscillator based on the H ∞ criterion. However, the stability of this active control system is not
unconditionally guaranteed, which might be problematic in practical engineering applications. Zhao et al. [8] proposed an
unconditionally stable controller using force feedback for linear applications. The stability is presumed given idealised force
).
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sensors and actuators are employed. In fact, the realised active system is equivalent to a pure mechanical system consisting of
an inerter and a damper.

This work is built upon the previous developments [7,8] to investigate the potential of using an active nonlinear inerter
damper (ANLID) for vibrationmitigation of a Duffing oscillator (primary structure). More specifically, a cubic nonlinear term is
added in the original linear controller [8] in order to counteract the nonlinear dynamics of the primary structure. The added
nonlinear term plays the same role as a cube root inerter in the equivalentmechanical network. The optimal nonlinear control
gain is derived such that the control effectiveness achieved with the linear controller-linear primary structure is maintained
for a nonlinearly coupled system. It is shown that the ANLID further outperforms the previously proposed NPPF controller for
suppressing the occurrence of the detached resonance curves (DRC) which may limit the practical application of the NPPF
approach. As the ANLIDmay be alternatively realisedwith passivemeans, the optimal tunings derived in the paper can be also
used to guide the design of its equivalent passive counterpart.

The paper is organised as follows. In the next section, the mathematical model of the system under consideration is
developed, based on which the optimal nonlinear control gain is derived. In Section 3, numerical analysis is performed in
order to validate the derived formulae and to examine the control effectiveness of the ANLID. Conclusions are drawn in
Section 4.

2. Mathematical modelling and parameter optimisation

A Duffing oscillator is considered as the primary structure which is shown in Fig. 1(a). It is defined through a lumped mass
m1, a linear spring k1 and a cubic spring k3. A harmonic excitation force F ¼ Fd cosðUtÞ is applied. An actuator is placed in
parallel to the suspension of the Duffing oscillator, whose stiffness is denoted by ka. A collocated force sensor which measures
the transmission force represented by Fs is installed. The active control loop is implemented by feeding the output of the force
sensor Fs through a nonlinear controller CðFsÞ to drive the actuator.

The governing equations of the coupled system read:

m1 €xþ k1xþ k3x
3 ¼ Fd cosðutÞ þ Fs (1)

Fs ¼CðFsÞ � kax (2)
The nonlinear controller CðFsÞ is modified from the linear controller proposed in Ref. [8] by including a cubic term in order
to counteract the nonlinear dynamics of the primary structure. The controller CðFsÞ reads:

CðFsÞ¼ � gs

Zt

0

Fsdt� gd

Zt

0

Zt

0

Fsdtdt � gd3

Zt

0

Zt

0

Fs3dtdt (3)
The following parameters are introduced to normalise the system governing equations:
Fig. 1. (a) The sketch of the coupled system under investigation and (b) its equivalent mechanical model.
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t ¼ u1t; y1 ¼ x=xd; y2 ¼ Fs=ðk1xdÞ; xd ¼ Fd=k1; u1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

q
;

m ¼ ka=k1; gsn ¼ gs=u1; gdn ¼ gd
.
u1

2; d ¼ k3xd
2
.
k1; b ¼ gd3k1

3
.
k3

(4)
The governing equations with normalised parameters are written as:

y
00
1 þ y1 þ dy1

3 � y2 ¼ cosðUtÞ (5)

y
00
2 þ gsny02 þ gdny2 þ dby2

3 þ my
00
1 ¼ 0 (6)

where U is the normalised frequency defined as U ¼ u=u1. As suggested by Eqs. (5) and (6), the proposed system can be
alternatively realised by a pure mechanical network composed by a spring, a dashpot, an inerter and a cube root inerter
connected in series. This equivalent mechanical scheme is shown in Fig. 1(b).

It has been shown that there exists two fixed points for the linearly coupled system (d ¼ 0 and b ¼ 0) [8]. The optimal
control parameters gsnand gdn have been derived based on the equal peak method. For the nonlinearly coupled system, the
optimal nonlinear control gain is sought to maintain the equal peak property with the presence of primary structure's
nonlinearity. However, it is difficult to derive the explicit expression of the performance index i.e. jy1j from Eqs. (5) and (6).
Instead, a pair of one-term harmonic balance approximation is assumed as the solutions as in Ref. [7]:

y1 ¼ðA11 þ dA12ÞcosðUtÞ þ ðB11 þ dB12ÞsinðUtÞ (7)

y2 ¼ðA21 þ dA22ÞcosðUtÞ þ ðB21 þ dB22ÞsinðUtÞ (8)

where the coefficients of cosðUtÞ and sinðUtÞ are expanded into series with respect to the primary nonlinear coefficient d.

Substituting Eqs. (7) and (8) into Eqs. (5) and (6), and applying the approximations cos3ðUtÞz3 =4cosðUtÞ and sin3ðUtÞz
3 =4sinðUtÞ, a set of polynomial equations can be obtained by balancing cosine and sine terms and collecting the resulting

expressions with respect to the order of the parameter d. After omitting the expressions whose orders are higher than d1, one
obtains:

�A11U
2 þ A11 � A21 ¼ 1 (9)

�A U2 þ A � A þ 3
.
4A 3 þ 3

.
4A B 2 ¼ 0 (10)
12 12 22 11 11 11

�B U2 þ B � B ¼ 0 (11)
11 11 21

�B U2 þB � B þ 3
.
4A 2B þ 3

.
4B 3 ¼ 0 (12)
12 12 22 11 11 11

ð � A m�A ÞU2 þ gsnB Uþ gdnA ¼0 (13)
11 21 21 21

ð � A m�A ÞU2 þ gsnB Uþ1
.
4
�
3A 3 þ3A B 2

�
bþ gdnA ¼0 (14)
12 22 22 21 21 21 22

ð � B m�B ÞU2 � gsnA Uþ gdnB ¼0 (15)
11 21 21 21

ð � B m�B ÞU2 � gsnA Uþ1
.
4
�
3A 2B þ3B 3

�
bþ gdnB ¼0 (16)
12 22 22 21 21 21 22
Solving for Aij and Bij (i ¼ 1;2, j ¼ 1;2) from Eqs. 9e16, the resulting solutions are found to be in terms of gsn , gdn, m and U.
Due to the complexity, these expressions are not given here. The modulus of the normalised receptance jy1ðUÞj can be
expressed as:

jQðUÞj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1

2 þ B1
2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A11

2 þ B11
2 þ 2dðA11A12 þ B11B12Þ þ Ο

�
d2
�q

(17)
An additional condition is imposed in order to derive the optimal coefficient of the nonlinear compensator b, which is
sought to ensure the equal peak property at the fixed points:
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���Q
�
Uf1

����¼
���Q

�
Uf2

���� (18)

where Uf1 and f2 denote the location of the fixed points of the linearly coupled system.

The expressions for Uf1 and Uf2 as well as the optimal values for gsn and gdn are given as [8]:

gsnopt ¼
ffiffiffiffiffiffiffiffiffiffiffi
3m=2

p
; gdnopt ¼ 1� m=2; Uf1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffi
m=2

pq
; Uf2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffi
m=2

pq
(19)
Substituting Eq. (19) as well as the solutions of Eqs. 9e16 for Aij and Bij (i ¼ 1;2, j ¼ 1;2) into Eq. (18), one obtains

bopt ¼
m2 � 16m� 512
56m2 � 256m

(20)
3. Discussion

Numerical studies are performed to validate and examine the control effectiveness of the ANLID controller. The governing
equations are computed using a path-following algorithm combining harmonic balance and pseudo-arclength continuation
[9]. A modal damping of 1% is added to the primary structure.

The first study is focused on the validity of Eq. (20) which describes the optimal coefficient of the nonlinear compensator b.
Fig. 2 (a) plots the frequency response of the performance index jy1j, where the nonlinear coefficient d is set to 0.003, the
stiffness ratio m is set to 0.1, the linear control gains gsn and gdnare calculated as in Eq. (19), and the parameter b varies with
Fig. 2. The performance index jy1j for (a): the optimal ANLID with the nonlinear gain b varying with respect to its optimal value and (b) the ANLID when control
is off; The system parameters m ¼ 0:1 and d ¼ 0:003 (�: fold bifurcation).
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respect to its optimal value as b=bopt: 1/4, 1/2, 1, 2 and 4. It is seen that the response at the first resonance frequency increases
with an increase of the parameter b and an opposite trend is observed for the second resonance peak. Peaks of equal am-
plitudes are obtained with the optimal setting of the parameter b as given in Eq. (20). Fig. 2 (b) shows the performance index
when the control is set off, which clearly indicates the system is in the regime of nonlinearmotions.With the proposed ANLID,
the system response can be substantially suppressed as shown in Fig. 2 (a).

For the second study, the control effectiveness of ANLID is investigated and compared with that of the linear inerter-
damper [8] (ANLID for b ¼ 0). Fig. 3 (a) compares the resonance peaks associated with the two controllers. The loci of
resonant peaks are computed using the method proposed in Ref. [10]. As can be seen, the linear inerter-damper gets rapidly
detuned and a clear nonlinear dependence with respect to the nonlinear forcing coefficient dis observed i.e. non-unique peak
values are captured when 0:0088< d<0:01. The underlying dynamic mechanism is as follows: there is a DRC, also termed an
isola, coexisting with themain frequency response function curve and it merges with the main curve at the second resonance
when d approaches 0.01. On the contrary, the equal peak property is still maintained when the nonlinear controller is applied
for the value of dup to 0.02. Fig. 3 (b) continues to show the evolution of the resonance peaks for the case of the ANLID by
extending d to unity. It can be seen that the difference between the two peaks monotonously increases with an increase of dup
to 0.2. When the nonlinearity is more pronounced i.e. in the extremely strong nonlinear regime (d>0.2), the distance of the
two peaks seems to keep constant. Unlike the linear controller or the NPPF controller, there is no occurrence of isolas when
the ANLID is used for damping the Duffing oscillator. Although the equal peak property does not hold for large values of d,
ANLID remains more effective compared to its linear counterpart in terms of the resonance peak difference. Interestingly, it
has been noticed that the nonlinearly coupled system i.e. the Duffing oscillator and the active nonlinear inerter damper
exhibit a dynamic behaviour similar to that of its linearly coupled counterpart in a large range of forcing amplitudes. In order
to further improve the control performance, a stiffer actuator can be used as illustrated in Ref. [8] for the linear active inerter
damper.
Fig. 3. (a) comparison of the resonance peaks between the linear inerter-damper and ANLID; (b) the resonance peaks for the ANLID when dis extended to unity.
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4. Conclusion

A nonlinear active damping strategy based on force feedback has been proposed. The equivalent mechanical represen-
tative, i.e. ANLID, has been derived to better understand the working principle of the active control system. Closed-form
expressions of the control parameters have been derived. A Duffing oscillator has been considered to illustrate the pro-
posed tuning of the optimal control gains. It was shown that the control effectiveness of ANLID can be maintained for a
relatively large range of forcing amplitudes. More interestingly, the optimally configured ANLID can also suppress the
presence of isolas which occurs for the linear inerter-damper or the NPPF controller. Experimental validation and further
theoretical investigations are left for a future work.
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