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Abstract

The INFuSE project, funded by an FNRS PDR grant, began in 2020 to develop resonators for

inertial sensors and sensor arrays incorporating photonics for force/strain and biochemi-

cal sensing. This project harnesses the unique properties of glass along with advanced 3D

machining technology. Glass’s low loss factor, low thermal expansion rate, optical quality

surface finish, and high elastic limit-to-Young’s modulus ratio make it ideal for precision

mechanics and resonators. The manufacturing of fused silica structures at scales below 1

mm presents challenges. To address these challenges, the project utilizes the FEMTOprint

machine, a cutting-edge device that enables 3D machining with sub-micron precision. This

technology uses femtosecond laser-assisted wet etching to create monolithic structures that

can integrate fluidic, optical, and mechanical functionalities at nano- and micro-scale. This

work’s contributions include the successful fabrication of various flexible structures using the

femtosecond laser-assisted wet etching process, achieving thicknesses as low as 10 &m. The

bending strength for fused silica specimens is estimated, with a maximum estimated stress of

2.6 GPa and a recommended limit of 1 GPa for micro-scale flexure specimens conception. Ad-

ditionally, ring-down experiments on fused silica-based resonators showed that the damping

is influenced by the air pressure at 2 £ 10¡3 mbar, with a quality factor reaching 185,000. The

project also saw the development and manufacturing of two different vertical inertial sensors,

demonstrating the successful assembly of glass flexure joints with aluminium and stainless

steel components. The open-loop transfer function of the first sensor showed good coherence

with a reference sensor between 200 mHz and 100 Hz having its natural frequency at 2.8 Hz.

Then, the main novelty of the thesis is the realisation of Bragg grating sensors inscribed in

flexure specimens. Their sensitivity compares to the theoretical value of approximately 1.2

pm/&e. A method for compensating for temperature gradients in Bragg grating sensors was

proposed, pending further characterization. These contributions lay a strong foundation for

future advancements in resonator technology and instruments with embedded photonics,

enhancing applications in force/strain sensing.

Keywords: fused silica, precision manufacturing, compliant mechanisms, resonators, Bragg

grating sensors
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1 Introduction

1.1 INFuSE Project

The INFuSE project is �nanced by an FNRS PDR grant. It started in 2020 with two PhD students,

myself and Matéo Tunon de Lara, and three Professors, Christophe Collette of the University

of Liège and Université libre de Bruxelles, Pierre Lambert of the Université libre de Bruxelles

and Christophe Caucheteur of the University of Mons. This project started with the aim of

developing resonators for inertial sensors and sensor arrays that incorporate photonics for

force/strain and biochemical sensing. It brings together two crucial components to achieve

this goal. The �rst component is the unique characteristics of glass, which makes it an ideal

material for resonators and precision mechanics. Glass has a low loss factor, making it excellent

for resonators, and a low thermal expansion rate, perfect for precision applications. It also has

an optical quality surface �nish and optical properties that can allow measuring deformation

through photoelasticity or Bragg gratings. Additionally, glass has a high elastic limit-to-Young's

modulus ratio, which is bene�cial for force sensors that require both high resolution and a wide

measurement range. However, working with glass at scales smaller than 1 mm is challenging.

The second key component that addresses this challenge is the recently acquired FEMTOprint

machine. This innovative equipment allows for 3D printing of micro-devices from glass and

other transparent materials with sub-micron precision. This capability enables the integration

of �uidic, optical, and mechanical functions into single monolithic structures at nano- and

micro-scale. The technology uses a two-step process: direct laser writing followed by chemical

wet etching. This technique has a wide range of applications, including precision mechanics

with �exure hinges, micro�uidics, micromolding, and micro-optics. It can create microlenses,

diffractive optical elements, nanogratings, waveguides, lab-on-�bre structures, and integrated

optical monitoring and sensing systems. The latter application is the primary focus of this

project.
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1.2 Context and Motivations

Flexure Mechanisms Flexure mechanisms, also known as compliant mechanisms, rely

on the elastic deformation of materials to achieve motion or force transmission without

traditional joints. They are used in applications where smooth, precise, and repeatable motion

is required.

Material Selection for Flexure Mechanisms The choice of material for designing �exure

mechanisms is crucial because it in�uences the mechanism's performance, durability, and

manufacturing feasibility. The material should have high elasticity, to allow reversible defor-

mation under stress without enduring permanent deformation. It should also resist fatigue

to maintain its mechanical properties during its operational life, especially for resonator ap-

plications. The material should have high yield strength to maximize its operating range and

sustain high loads. It should also be ductile so it can endure shocks without cracking or break-

ing. Especially for resonators, to keep consistent performance over time, the material should

have a low level of energy loss during deformation. Finally, depending on the application,

it should have good corrosion resistance and temperature change resistance, especially for

mechanisms exposed to harsh conditions.

Considering these characteristics, here is a list of common materials used for �exure mecha-

nism design:

• Stainless steel: it has high strength, good elasticity, corrosion resistance and fatigue

resistance.

• Titanium alloys: they are known for their high strength-to-weight ratio, excellent corro-

sion resistance, and fatigue resistance.

• Spring steels: they are known for their high elasticity and fatigue resistance.

• Copper-Berylium alloys: after heat treatment, they are known for their high yield

strength and can be used for high-load applications. they also have good fatigue resis-

tance and corrosion resistance.

• Silicon: it is the most used material for micro-scale �exure mechanisms. thanks to its

semiconductor properties and high elasticity and thermal stability, it is the base material

for microelectromechanical systems (MEMS).

The main properties criteria are compared in �gure 1.1 and listed in table 1. The main point is

to compare them to fused silica glass.

Interest for Fused Silica Glass is one of the keys to this research project. Nowadays, the

good properties of glass have not been extensively used for compliant mechanisms. As glass

is a brittle material, it cannot endure short and intense shocks. And then, it is not adapted

for a hostile environment. Glass is also dif�cult to manufacture. There is no such method as

electro-discharge machining of metals for glass. However, a new process developed during the

"Femtoprint Project" [7] allows the manufacturing of 3D shapes out of glass material. The left
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diagram of �gure 1.1 compares the elastic range and the stiffness of usual materials for �exure

hinges. The elastic range is quanti�ed as a coef�cient proportional to the largest bending

angle of a cantilever beam. The geometry is limited by the manufacturing process. The yield

strength and Young's modulus depend on the material. Glass has one of the largest elastic

ranges. It is also softer than the best other material options which makes it an exceptional

candidate for compliant mechanism design. Other material properties are also important

depending on the application. For low-frequency inertial sensors ( Ç 1 Hz), the resolution is

usually limited by the thermal noise [72]. The part of the thermal noise which depends on

the material comes from the internal damping in the �exure hinges. It is quanti�ed as the

mechanical loss factor. The precision sensors need also the lowest sensitivity to temperature

gradient possible. The right diagram of �gure 1.1 shows that glass has both the lowest loss

factor and thermal expansion coef�cient. Fused silica is then a material of choice for resonator

design.

Figure 1.1: On the left, stiffness as a function of elastic range for usual materials for �ex-
ure hinges (Source: Ashby diagrams). On the right, the thermal expansion coef�cient and
mechanical loss factor for those materials.

Material Selection for Optical Structures The material should have the appropriate refrac-

tive index and high transparency across the desired wavelength range. It should also have

good mechanical and thermal stability to prevent warping or deformation. Finally, it should

be suitable for precision machining and coating processes.

The most used material for optics is fused silica. It has a high transparency and low dispersion

and it has good mechanical and temperature stability. For speci�c applications, transparent

plastics such as Polycarbonate or PMMA can be used. They are lightweight and easier to mould

than glass. Ceramics such as Zerodur are also used but are useful mainly for high-precision

large-scale optics such as telescopes. It has a very high temperature and mechanical stability

but is dif�cult to machine, especially for small-scale structures.

Fused Silica Manufacturing A FEMTOprint machine is available at the laboratory in Brussels.

It allows to manufacture the micro and macro-scale structures through femtosecond laser-

assisted wet etching [7]. It is a two-step process. First, a femtosecond laser is used to illuminate

the shape of the designed part in a fused silica substrate. Then, the substrate is bathed in a
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glass etchant such as KOH or HF. So, the illuminated volume of the substrate is etched faster

than the non-illuminated volume. It allows to manufacture the high aspect ratio structures

such as �exure mechanisms. Another technique can also be used to manufacture fused silica

structures. It is an additive manufacturing process of fused silica [82]. A photopolymer-silica

nanocomposite is illuminated tomographically. Then, the substrate is sintered to result in a

fused silica part. The minimum feature size is 20 � m with a surface roughness of 6 nm.

Concerning the optical sensor structures, the femtosecond laser of the FEMTOprint machine

can also be used to design optical elements.

Bragg gratings (BG) engraved in a glass substrate can then be merged with �exure manufac-

turing. It is possible to engrave directly the BG inside the �exure. This allows us to directly

measure strain in the �exure itself. In this work, different methods are applied to characterize

this sensor technology and their application opportunities will be discussed.

1.3 Objectives

The objectives of this work revolve around exploring the implementation and impact of fem-

tosecond laser-assisted wet etching on �exure specimens and fused silica structures at the

micro-scale. Key goals include understanding the limitations of this process and evaluating

the mechanical properties, such as bending strength and thermoelastic damping, of structures

created with this technique.

Another focus is to assess the feasibility of assembling fused silica monolithic structures with

metallic parts, investigating whether this integration improves the mechanics of inertial sen-

sors and identifying critical design aspects for vertical inertial sensor mechanisms.

Additionally, the work aims to determine if Bragg gratings can be inscribed within �exible

structures during manufacturing and whether they are suitable for monitoring deformation,

as well as their limitations.

Finally, the study seeks to address various factors crucial for practical applications, including

how �exible glass structures behave in water, the effects of temperature gradients on measure-

ments, and potential compensation methods. These objectives are designed to broaden the

understanding and application of advanced materials and sensor technologies.

The overview of the work plan of the INFuSE is detailed in �gure 1.2. My work follows the left

side of this plan. First, I study glass �exure manufacturing through femtosecond laser-assisted

wet etching. From this study, on one side, the mechanical properties of the structures can be

studied. On the other side, they can be used to design and characterize Bragg grating sensors.

For this step, the optical inscription such as waveguide and Bragg gratings needs to be de�ned.

Then, those Bragg grating sensors can be speci�ed for their use in �exible structures. Finally,

applications bene�ting from this work are discussed. Inertial sensors can bene�t from glass

�exure manufacturing and assembly. Instruments can be designed in a monolithic structure

bene�ting from the studied Bragg grating sensor technology. For example, the force applied

by a surgical instrument could be monitored.

4
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Figure 1.2: Overview of the INFuSE project. The left part describes the mechanical research
and the left part describes the optical research.

Questions Addressed in this Thesis

• How can we implement the femtosecond laser-assisted wet etching process to manufac-

ture �exure specimens? What are the limitations of this process?

• What are the mechanical properties of fused silica structures at the micro-scale manu-

factured through femtosecond laser-assisted wet etching? What is the bending strength

of this material? Can its thermoelastic damping be quanti�ed?

• Can fused silica monolithic structures be assembled with metallic parts? Does it improve

the mechanics of an inertial sensor? What are the critical aspects of the design of a

vertical inertial sensor mechanism?

• Can Bragg gratings be inscribed inside �exible structures during manufacturing and can

they be used to monitor their deformation? What are the limitations?

• What does need to be assessed to open perspectives for applications of instrumented

�exible glass structures? Mainly, how do they behave in water? How do temperature

gradients affect the measurement? Can it be compensated?

1.4 Contributions

The major scienti�c contributions of my work are listed in this section. They are then detailed

in the manuscript.

• The new glass structure manufacturing technique available at our laboratory, called

femtosecond laser-assisted wet etching, is used to obtain various �exible structures.

Three-dimensional monolithic structures are obtained. Their smallest thickness can be

5
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as low as 10&m. This contribution is detailed in 3.1.1.

• The annealing of glass structures is performed. The status of this work does not show

any improvement. However, the importance and the cleaning procedure of the parts

before annealing is demonstrated. Acids such as acetic acid must be used to clean the

parts before annealing. This contribution is detailed in 3.1.2.

• An estimation of the bending strength of fused silica specimens is performed. The

maximum estimated stress obtained is 2.6 GPa. The maximum bending stress to be

considered for �exure specimens at the micro-scale is 1 GPa. This contribution is

detailed in 3.2.

• Ring-down experiments are performed on resonators based on fused silica �exure joints.

It is performed to assess the internal damping of structures knowing that fused silica

is known for its low-damping behaviour. Two experiments are performed. The �rst

studies a micro-scale monolithic resonator. It showed that the quality factor is limited

by the air pressure obtained in the vacuum tank. A quality factor is estimated: Q ¼

185'000 obtained at a pressure p = 2£ 10¡ 3 mbar. The second experiment studies an

aluminium pendulum hanging on a fused silica �exure joint. The quality factor is limited

to Q = 250000 below a pressure p = 1 mbar. This contribution is detailed in 3.2.

• The mechanism of two different vertical inertial sensors is de�ned and manufactured.

The �rst one �ts in a 10 £ 10£ 10 cm3 box. The second is larger and features orienta-

tion tuning of its readout. It is also easier to mount and some parts can be detached

from the rest without dismounting everything. It shows that glass �exure joints can

be assembled into aluminium and stainless steel parts. However, their assembly is

dif�cult. So, other �exure parts are proposed manufactured in different materials such

as Copper-Beryllium or Titanium. An optimization experiment is performed to de�ne

the dimensions of such �exure joints. The open-loop transfer function of the �rst sensor

is compared to a reference sensor Guralp GS13. It shows a good coherence between 200

mHz to 100 Hz. The astatic leaf-spring suspension used for hanging the proof mass is

optimized experimentally. It shows that considering a �xed inertia of a proof mass and a

�xed length of leaf-spring suspension, the placement of its clamping points in�uences

the natural resonance frequency of the mechanism. To minimize this resonance, the

clamping points shall be as low as possible from the hinge of the proof mass. This

contribution is detailed in 4.

• Bragg grating sensors are inscribed in �exure specimens. Tensile and bending exper-

iments characterize their sensitivity. It compares to the theory with a sensitivity of
� ¸

² ¼ 1.2 pm/ &e with a standard deviation of about 10 pm which is limited by the

optical spectrum analyzer. The Bragg grating wavelength is obtained by extracting the

centroid of the re�ected spectrum. This contribution is detailed in 5.

• A method to compensate for the temperature gradient of Bragg grating sensors is pro-

posed. The test bench is not ready to perform a characterization yet though. This

contribution is detailed in 6.
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1.5 Structure of the Thesis

Chapter 2 presents a State of the Art of the different aspects studied in this work. First, it details

the properties of fused silica and how a femtosecond laser can modify its structure. Then,

different examples of mechanisms obtained using the femtosecond laser-assisted wet etching

process are presented. And then, a small review of inertial sensor designs is presented.

Chapter 3 describes the manufacturing of �exible structures through femtosecond laser-

assisted wet etching. It also proposes an annealing process. Then, it explains how the bending

strength of the manufactured specimen is assessed. It also describes two experiments to

measure the damping characteristics of resonators based on fused silica �exure joints.

Chapter 4 presents the design process of �exure mechanisms used for two vertical inertial

sensors. It starts with the study of an inertial sensor designed for integration in an atomic

quantum gravimeter. It then follows with a suspension mechanism experimental study for the

design of a second vertical sensor. This one is used to isolate a mirror from ground vibrations

used in a gravitational wave detector.

Chapter 5 describes how a Bragg grating sensor is designed to be manufactured by femtosec-

ond laser-assisted wet etching. It explains how a glass structure is instrumented. Then, the

axial strain sensitivity of the Bragg grating sensor is characterized through a tensile test and

three different bending tests. It includes a bending test of a Bragg grating sensor inscribed in

a �exure hinge joint. It also proposes an experiment to analyze a Bragg grating sensor in a

structure in torsion.

Chapter 6 presents experiments to assess the Bragg grating sensor for future application

perspectives. First, it veri�es that the sensor behaviour is not altered by the liquid water envi-

ronment. Then, it proposes a method to compensate the sensor measurement for temperature

gradients. It also introduces the opportunity to manufacture an instrument �exible structure

at the end of an optical �bre.

Reading suggestions This manuscript contains topics that are related to the �exure mecha-

nism design and the interest in fused silica. For readers interested in inertial sensor mechanics

or resonators, the reading suggestion is to begin with the reading of Chapter 3 and continue

with Chapter 4. For the readers interested in Bragg grating sensors, the reading suggestion is

to start with the reading of Chapter 3 and continue with Chapters 5 and 6.
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This chapter presents the previous studies establishing the groundwork of INFuSE. Section 2.1

describes the material properties of fused silica. Then, studies exploring the modelling of the

glass properties using a femtosecond laser are listed in 2.2, notably introducing Bragg gratings.

The different machining processes for �exure mechanism manufacturing are introduced in

2.3. Section 2.4 presents examples of glass �exure mechanisms manufactured by femtosecond

laser-assisted wet etching. Finally, some previous works on the challenges of vertical inertial

sensor mechanical design are described in 2.5.

2.1 Fused Silica

Fused silica glass has one of the largest elastic ranges (¾Y/ E ¼0.02 with ¾Y, its bending elastic

limit or yield strength and E, its Young's modulus), making it an exceptional candidate for

compliant mechanism design (the typical ¾Y/ E of Steel and TiAl6V4 are respectively 0.004 and

0.007).

2.1.1 Mechanical Strength

Fused silica is a brittle material, its mechanical strength depends mainly on its surface quality,

and thus, on its manufacturing process. As the intrinsic strength of the Si-O bond is in the

order of 21 GPa, approaching this limit can be an opportunity to design highly elastic �exure

mechanisms.

Mechanical Testing

The bending strength of fused silica �exures fabricated by femtosecond laser has been reported

[8], it can attain 2.7 GPa. The simpli�ed stress model can be used and has been con�rmed

by photoelasticity stress measurements inside the �exures. Also, glass manufacturing by

femtosecond laser-assisted etching is suitable for high-demanding technologies such as
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opto�uidics, optomechanics, marking and photonics [7]. Later, a monolithic structure was

designed to perform tensile tests on a fused silica sample without the necessity to interact

with the specimen mechanically [3]. A novel passive actuation structure, called stressors, is

used to load the specimen using the femtosecond laser. Laser-affected zones exhibit a net

volume expansion and thus stress. They reached stress levels up to 2.4 GPa.

Defects

Brittle-fracture statistics of fused silica under femtosecond laser exposure have been studied

[5]. The Weibull statistics were extracted by following the apparition of chaotic patterns along

exposed lines where periodic nano-gratings are expected. This defect can result from different

phenomena such as plasma dynamic relaxation, the excitons dynamics, the crack nucleation

rate of pulses as well as the scanning velocity. Also, the volume expansion in the laser-affected

zone causing high-stress concentration at the end of the nano-planes of the nano-gratings

can be a source of cracks.

Annealing

Concerning the possible enhancement of fused silica part mechanical strength, it has been

demonstrated that their strength can be increased by annealing [89]. Annealing the part at

1200°C resulted in a mechanical strength increase from 8 GPa to 10 GPa due to the reduction

of surface stress concentration. These tests were performed by applying compressive stress on

the specimens.

2.1.2 Temperature Stability

Fused silica has strong temperature stability in terms of dilatation ( » 0.5 ppm/ °C). However,

for precision mechanisms, its temperature coef�cient of elasticity is not negligible ( » 220

ppm/ °C). Irradiating amorphous silica with a femtosecond laser can decrease its temperature

coef�cient of elasticity beyond 50% [86].

2.1.3 Low Damping Quality Factor

For low-frequency inertial sensors ( Ç 1 Hz), the resolution is usually limited by the thermal

noise [72]. The part of the thermal noise which depends on the material comes from the

internal damping in the �exure joints. It is quanti�ed as the mechanical loss factor (down to

10¡ 5 for fused silica). The precision sensors also require the lowest coef�cient of expansion

(5.2 £ 10¡ 5 K¡ 1 for fused silica).
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2.2 Fused Silica Optical Properties Modeling Using a Femtosecond

Laser

Femtosecond pulse lasers are powerful tools used in a variety of industrial applications [53].

A prominent example remains the processing of glass using femtosecond pulse laser [87].

This process involves the use of a tightly focused high-powered laser beam to create precise

cuts, holes, and patterns within the glass and on its surface. The laser beam can be focused

to a very small spot size, such that the non-linear modi�cation can happen in a con�ned

volume that can be smaller than the focal volume. This level of precision is not possible with

traditional mechanical or chemical methods. Moreover, the short pulses allow for precise

control of the amount of energy delivered to the glass, minimizing heat damage and ensuring

high-quality cuts. Depending on the desired outcome, the focused laser beam is usually

moved across the glass structure in a predetermined pattern, or focused at speci�c points to

create holes or channels. The process can be controlled using computer software to ensure

precise and repeatable results. Complex 3D structures can also therefore be generated by

using multiple laser beams focused at different depths [31]. This technique is known as

femtosecond laser-assisted chemical etching and has a wide range of potential applications,

such as creating micro�uidic channels or optical components [10]. The mechanism of the

material modi�cation under a focused femtosecond pulse laser has been the subject of intense

research [11, 8, 10]. In glass, it has been demonstrated that three types of material modi�cation

can be generated depending on the properties of the used femtosecond pulse laser [11, 38, 80,

43], i.e. pulse energy and duration [11, 38], repetition rate and scanning speed and scanning

speed and direction as well as polarization [45]. Hence, with increasing energy density levels

the silica glass undergoes different structural changes:

1. Densi�cation [21, 96], which induces a local and isotropic modi�cation of the refrac-

tive index at the focal point and can lead to the creation of optical waveguides [92,

18]. Most recently, localized permanent densi�cation has been obtained between

non-overlapping simultaneous femtosecond laser-affected zones while preserving the

integrity of the material [66]. This method can be used for non-contact laser-induced

high-pressure studies (a few tens of GPa).

2. Nano-grating corresponding to a structural change of the material that usually takes

the form of an alternation of fused silica nanoplanes and nanochannels perpendicular

to the incident polarization of the laser beam [38]. Femtosecond laser to fabricate

birefringent surface elements in fused silica [30]. Written nanogratings exhibit up to a

three-fold increase after polishing and 25 h of KOH etching at room temperature. This

led to achromatic behaviour over the entire visible spectral range enabling opportu-

nities for micro-optics applications. Induced form birefringence in fused silica using

a femtosecond laser can be used to obtain circular-polarization beam splitters [12].

The birefringence results from the spontaneous formation of subwavelength periodic

structures oriented perpendicular to the writing beam polarization in the focal volume.

Studying the formation of nanogratings in fused silica using a femtosecond laser, it has
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been demonstrated that they can resist extremely large temperatures up to 1150 °C [68].

Also, formed birefringence can be tuned precisely to manufacture phase elements such

as quarter- and half-wave plates.

3. Direct ablation is the scenario where the energy of the pulse is ampli�ed to a signi�cant

degree, resulting in void creation within the exposed material sample [31, 52].

2.2.1 Bragg Gratings

Modi�cation of the Material For the grating inscription, unlike the standard writing meth-

ods with ultra-violet continuous or nanosecond pulse laser, the advent of tight focusing of

femtosecond pulse laser has allowed, through nonlinear absorption and tight focusing, to

produce gratings in different materials including pure silica [44]. Typically, each pulse of the

femtosecond laser engraves permanently one period of the grating through a nonlinear absorp-

tion process. In optical �bres, Bragg gratings are usually produced by the point-by-point [55],

line-by-line [21] or plane-by-plane [77] manufacturing processes and show unprecedented

resistance among the photonic sensing devices to high temperature and harsh environment

[48]. Temperature sensing up to 1050 °C has been successfully reported [58]. Driven by the

need and advances in technology, numerous companies developed femtosecond pulse laser-

induced FBGs nowadays. Besides, the planar glass substrates processing by femtosecond

laser has attracted the attention of researchers thanks to the many possibilities they offer for

device integration [53, 87]. Efforts have been made to optimize pulse laser parameters [80, 38],

beam shaping [75], waveguide design[71], to produce low-loss waveguides [76], waveguide

and Bragg grating within, [48, 78] and many other optical components.

Bragg Grating Sensors FBG can be placed on or in a structure to measure axial strain along

with the �bre. A review of this technology and its applications are presented in [17]. This

technology can be applied on a macro scale up to a very large scale. The minimum scale

is limited by the fact that an optical �bre has to be merged with the specimen. Zhang et al.

[95] demonstrated a method to integrate strain-optic and thermo-optic Bragg grating sensors

in bulk fused silica using an ultrafast laser. Their Bragg grating sensors are thermally stable

to 500°C. Also, BG strain sensors made in bulk materials are presented in [69] and [70] in

polymers and [95] in fused silica. The reported sensibilities to strain are respectively 2.95

pm / &eand 1.10 pm/ &efor the polymer sensors and 1.38 pm / &e, -1.27 pm/ &efor the fused silica

sensors. The last one was obtained by bending a fused silica plate composed of waveguide

BG. Polymer BG strain sensors give strong sensibility to strain due to their low elastic modulus

compared to fused silica. This material is not suitable for high-precision sensors due to its

lack of stability to temperature, thermoelastic damping and usually low yield strength.

The axial strain is de�ned as ² = ��
� with � , the refractive index modulation period. It can be

obtained from the Bragg wavelength shift � ¸ Bragg. This shift is coupled with the temperature
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effect
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Using the de�nition of the Bragg wavelength the strain dependant term in Equation (2.1) can
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For silica glass, which is an isotropic material, the strain-optic constant pe can be obtained

from [20] as

pe =
n2

eff

2
[p12 ¡ º (p11 Å p12)] (2.5)

The elasto-optic independent coef�cients for bulk silica are listed in [93] ( p11 = 0.121 and

p12 = 0.270). The Poisson's ratio and the effective refractive index are estimated as respectively

º = 0.16 and neff = 1.45.

For FBG, as described in [20], these parameters are different as the core of the �bre is Ge-

dopped silica ( p11 = 0.113, p12 = 0.252, º = 0.16 and neff = 1.482). It gives sensitivity to axial

strain at 1550 nm of around 1.2 pm/ &e.

2.3 Fused Silica Machining Process

2.3.1 Femtosecond Laser-Assisted Wet Etching

Manufacturing three-dimensional parts in fused silica with a micrometric resolution is now a

reality. The process is performed in two parts. First, a femtosecond laser exposure is applied

on the glass substrate following the shape of the designed part. Then, the substrate is placed

in a chemical bath for wet etching. Bellouard et al. [7] have shown that this method can

fabricate microstructures with high aspect ratios. This aspect ratio (100:1 with Thorlabs 10x

laser objective and using KOH as etchant) allows the fabrication of monolithic �exible joints

even in thick substrates (2 mm and 5 mm). With the commonly used Thorlabs 20x laser

objective and a pulse energy of 240 nJ, the material in the laser-affected zone undergoes a
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volume expansion by the introduction of pores or nano-gratings [19]. Local densi�cation

appears at the interface of regular patterns in the laser affected zone [10]. The enhancement

of the etching rate may be explained by the Si-O-Si bond angle deformation induced by the

local stress in the proximity of the compacted regions and by the presence of lower order ring

structures in the laser affected zone [10, 67]. The optimal energy deposition value to maximize

HF's fused silica etching rate has been studied [67]. The femtosecond laser-assisted etching

process has been optimized by tuning the energy dose and the use of various etchants [19].

They even demonstrated that using NaOH, a less dangerous etchant, enables a higher etching

rate than currently used HF and KOH resulting in higher aspect ratio manufacturing.

2.3.2 Fused Deposition Modeling and Sintering

Femtosecond laser-assisted etching is not the only method to manufacture micro-scale glass

structures. Toombs et al. [82] presented an additive manufacturing process of fused silica.

A photopolymer-silica nano-composite is illuminated tomographically. Then, the substrate

is sintered to result in a fused silica part. The minimum feature size is 20 � m with a surface

roughness of 6 nm.

2.4 Fused Silica Flexure Mechanisms

Fused silica �exure mechanisms have been designed for various applications. Bellouard et al.

[9] presented a monolithic optomechanical micro-displacement sensor (50 nm resolution).

The sensitive element is translational guidance containing an integrated linear encoder. The

displacement is measured optically through an integrated waveguide in the sensor frame

that is opened facing the linear encoder perpendicularly. It is one of the �rst instrumented

�exible glass structures manufactured by femtosecond laser-assisted wet etching. Lenssen and

Bellouard [50] demonstrated a transparent glass monolithic micro-actuator. The actuation is

performed by capacitive comb-array. A transparent conductive material (indium-tin-oxide

layer) is deposed on the structure. The comb array is guided in translation by a �exure

mechanism. It demonstrates that a coating can be deposed on a �exure mechanism to add

an actuation function to the structure. Nazir and Bellouard [62] proposed a laser-to-�bre

coupling mechanism contained in a monolithic fused silica tunable �exure mechanism (sub-

nm resolution positioning over tens of micrometres range of motion). Nazir et al. [60] also

used their concept of stressors to load a micro-tensile tester to perform long static stress

measurements under normal atmospheric conditions. These works introduce glass �exible

structures as a choice for high-precision positioning mechanisms. Zanaty et al. [94] presented

a multistable glass monolithic mechanism to perform safe surgical puncturing. The force and

stroke applied by the needle at the output of the mechanism are decoupled from the operator

input and are tunable (5-20 ° stroke with a force exceeding 8 mN). Tissot-Daguette et al. [81]

presented a constant-force surgical tool based on a monolithic glass �exure mechanism (1 gf

with a 0.1 gf maximum variation over a displacement range of 870 � m). A microscope is used
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as a visual feedback of the output displacement. These two works support investing in �exible

glass structures for surgical applications.

2.5 Inertial Sensor Design

Inertial sensors based on interferometric readout currently offer better performance than

conventional seismometers with electromagnetic readout. Sub-picometer resolutions have

been achieved using Michelson interferometric readings of the proof-mass motion of inertial

sensors [98, 28, 35, 24]. The sensors (VINS and HINS) designed by B. Ding [29] improve the

concept of the STS-1 sensor [91]. The VINS has a resolution of 2 £ 10¡ 13 m/
p

Hz at 1 Hz and

has a principal resonance frequency at 260 mHz.

The Precision Mechatronics Laboratory (PML) has been active in the conception of low-

frequency inertial sensors for more than a decade. Here is a list of the previous vertical inertial

sensors developed at PML:

• The NOSE (�gure 2.1) offers a high-resolution inertial sensor for low cost [27]. It is based

on CuBe leaf-spring joints and its readout consists of a Michelson interferometer. it has

a resolution of 3 pm /
p

Hz above 4 Hz. It is characterized by an inertial mass M = 55 g, a

principal resonance frequency f0 = 6 Hz and spurious resonances above 100 Hz.

Figure 2.1: NOSE, interferometric inertial sensor [27]

• The linear encoder-based inertial sensor (�gure 2.2) offers a high resolution, compact

and easy-to-mount inertial sensor [36]. it is based on a circular notch parallelogram

guidance with a prestressed leaf spring as a suspension. Its readout consists of a linear

encoder. it has a resolution of 10 pm /
p

Hz above 4 Hz. It is characterized by an inertial

mass M ¼200 g, a principal resonance frequency f0 ¼15 Hz and spurious resonances

above 100 Hz. [36] provides promising concepts to improve its resolution using an

ampli�cation mechanism.
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Figure 2.2: Linear encoder based inertial sensor [36]

• The Vertical Inertial Sensor (VINS, �gure 2.3) offers a high-resolution inertial sensor that

outperforms the commercial of the shelf products [29]. it is based on the STS-1V sensor

from Streckeisen. it is based on a cross-spring hinge and a CuBe leaf-spring suspension.

Its readout consists of a novel long-range Michelson interferometer. it has a resolution

of 2 £ 10¡ 13 m/
p

Hz at 1 Hz. It is characterized by an inertial mass M = 600 g, a principal

resonance frequency f0 = 260 mHz and spurious resonances above 70 Hz (but limited

from 20 Hz by the readout).

Figure 2.3: VINS, interferometric inertial sensor
based on the STS-1V [29]

(a) Guralp GS-13 (b) Trillium 240

(c) Sensor noise

Figure 2.4: Comparison of the sensor noise of
the VINS with the best commercial of the shelf
low-frequency inertial sensors [29]
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This chapter details the manufacturing of micro-scale fused silica structure and their me-

chanical properties. Section 3.1 describes the manufacturing process and the design for

manufacturing. Then, an introduction to an annealing process is presented. Next, in section

3.2, to quantify the elastic range of fused silica mechanisms at this scale, an experiment is per-

formed to obtain the bending strength of the material (or its elastic limit). Finally, this material

is known for its low internal damping property, the quality factor of oscillators made of fused

silica is extracted. This allows us to obtain an estimation of the damping of an oscillator based

on a compliant mechanism manufactured by femtosecond laser-assisted wet etching. This

experimental analysis is presented at the annual International Conference on Manipulation,

Automation and Robotics at Small Scales (MARSS) in Delft in July 2024.

3.1 Manufacturing

3.1.1 Femtosecond Laser-Assisted Etching

Fused silica monolithic structures are obtained using a femtosecond laser included in a ma-

chine which is called FEMTOprint. This machine pictured in �gure 3.1a features a three-axis

precision moving platform (100 nm resolution) on which the glass substrate is �xed (�gure

3.1b,c). The UV-grade fused silica glass substrate is provided by Siegert Wafers GmbH. A

Thorlabs LMH-20x-1064 or LMH-10x-1064 objective is used to focus the laser (�gure 3.1b).

The voxel waist is 1.5 � m in diameter and its height is 24 � m using the Thorlabs LMH-20x-

1064 laser objective (�gure 3.1e). It is 2 � m in diameter and its height is 42 � m using the

Thorlabs LMH-10x-1064 laser objective. The selection of the objective depends on the depth

of the required machining. The 20x laser objective can be used for machining up to 1 mm

depth, while the 10x laser objective can be used for machining up to 5 mm. A microscope is

located on top in front of the laser objective. It is used to help select the origin in the machine

command to place the toolpath with respect to the glass substrate. It is also used to �nd the

orientation of the glass substrate by selecting different points where the glass-air interface

vertical position is detected by moving the laser vertically with a �xed illumination. To de�ne
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the laser toolpath, a modi�ed version of the software Alphacam adapted by FEMTOprint SA is

used (�gure 3.1d). Each parameter of the laser can be tuned independently. After the laser

exposition, the substrate is placed in a 12 M Potassium Hydroxide (KOH) bath at 85 °C for wet

etching (�gure 3.1f).

Figure 3.1: Femtosecond laser-assisted etching. a The FEMTOprint device is used to perform
the laser exposure step. b The laser objective is located at the bottom. The microscope at
the top is used to calibrate the position and orient the glass substrate correctly. c The glass
substrate is attached to a holder placed above the laser objective, itself �xed to a moving
stage. d The laser path is extracted from the 3D model of the designed part. e Laser exposure
step: the laser path begins at the top of the substrate and �nishes at the surface in front of
the laser objective. The laser exposed volume is de�ned by the laser path and the laser voxel
dimension. The dimension is assumed according to the FEMTOprint parameters and not
measured. The voxel dimension depends on the focusing conditions and laser parameters.
(For representation purposes, the proportions are not accurate) f Etching step: the substrate is
placed in a KOH bath at 85 °C for wet etching. g After etching, the �nished part is cleaned with
pure water.

Figure 3.2 shows an example of the laser toolpath de�ned to obtain a component by fem-

tosecond laser assisted-etching. To allow the removal of the component, hatching parallel

lines are placed everywhere but inside the component volume. This component is part of a

custom inertial sensor described in 5.5. The selected vertical pitch for side etching is half of

the laser voxel. Beginning the vertical pass two laser voxels high above the glass substrate and

�nishing two voxels high below it allows for tolerating the thickness variability of the glass
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substrate. To perform surface etching, the horizontal pitch shall be less or equal to twice the

laser voxel width. To obtain a better surface quality, horizontal passes can be combined both

in one direction and in the perpendicular direction. Then, the passes in the perpendicular

direction shall be shifted vertically from the other horizontal passes for about 1-2 &m in the

vertical direction to prevent high-stress concentration at the surface.

Figure 3.2: Example of the laser toolpath (in light blue) to obtain a component by femtosecond
laser assisted-etching. Hatching parallel lines are written to allow the removal of the compo-
nent.

To perform the wet etching step, the substrate is placed in a polypropylene custom-made

net (�gure 3.3). It allows to recover the fragile manufactured parts after the etching process.

This net is then placed in a polypropylene recipient �lled with 12 M KOH. It is then placed

in a pure-water container heated at 85 °C. It is also possible to place the recipient in an oven

heated at 85 °C. The bath duration is dependent on the geometry of the component to be

etched and on the mounted laser objective. Using the 20x laser objective, the etching speed

of fused silica in KOH is 130 &m/h. Using the 10x laser objective, the etching speed of fused

silica in KOH is 70 &m/h. The etching speed of the non-illuminated fused silica in KOH is 700

nm/h, and the selectivity of the process is 200:1 or 100:1 depending on the laser objective,

respectively the 20x and the 10x. Before cleaning it with pure water, the component is left in

the KOH container until it attains room temperature. This step ensures safety as 85 °C KOH is

a dangerous chemical. After water cleaning, the component is left beside until it is completely

dry.
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Figure 3.3: KOH Container on the right and a Polypropylene net on the left. The glass substrate
to be etched is placed inside the net which is �ooded inside the KOH container which is placed
inside a pure water ultrasonic bath at 85 °C

Table 3.1 lists a summary of the process parameters according to the mounted laser objective.

These parameters are used for all the monolithic fused silica parts machined by femtosecond

laser-assisted wet etching in this work unless otherwise speci�ed.

Table 3.1: Femtosecond laser-assisted wet etching process parameters

Laser objective LMH-20x-1064 LMH-10x-1064

Illumination parameters

Pulse energy 230 nJ 400 nJ

Repetition rate 1 MHz 650 kHz

Inscription speed 950 mm/min 600 mm/min

Laser voxel diameter 1.5 &m 2 &m

Laser voxel height 24 &m 42 &m

Toolpath vertical pitch 7 &m 20 &m

Toolpath horizontal pitch 3 &m 4 &m

Maximum depth 1 mm 5 mm

Polarization Perpendicular

Etching parameters

Temperature 85 °C

Etchant KOH 12 M

Illuminated fused silica etching rate 130 &m/h 70 &m/h

Non-illuminated fused silica etching rate 700 nm/h

Flexure Manufacturing Results In summary, the most dif�cult parts to obtain are presented

in this section. Figure 3.4 shows a cross-spring hinge obtained in a 500 &m fused silica substrate.

Overall, the smaller the substrate the easier it is to produce. However, this hinge is in 3D and
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contains multiple surfacing layers. The dif�culty in this manufacturing is the removal of the

residual material. I have also managed to manufacture a cross-spring hinge from a 2 mm

fused silica substrate. Only the 500 &m thick is shown here due to the lens's limited depth of

�eld.

Figure 3.4: Cross-spring hinge manufactured from a 500 &m fused silica substrate. The rigid
moving part is 500 &m wide and the central thickness of the �exure beams is 10 &m. On the
left, the hinge is at rest. On the right, the hinge is bent at maximum before rupture

Figure 3.5 shows the two stages of the manufacturing process results of a monolithic compliant

mechanism. The left picture shows the state of the glass plate after illumination of the shape

of the specimens using the femtosecond laser. The right picture shows one specimen after the

KOH etching and pure water cleaning. The specimen manufactured corresponds to the Bragg

grating sensor design detailed in Chapter 5.

Figure 3.5: Bragg grating sensor tester manufactured from a 500 &m fused silica substrate. On
the left, a view of 4 samples inscribed on the same plate with the FEMTOprint machine. On
the right, is the view of one �nished sample obtained after the KOH wet etching.

Figure 3.6 shows structures composed of circular notch hinges manufactured from a 5 mm

fused silica substrate. These structures take the entire volume of the glass substrate. This

was dif�cult to produce due to the optical irregularities close to the sides of the substrate and
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its holders. These parts are also really fragile due to their weight and aspect ratio with their

�exure hinges. They are used as a mirror guiding mechanism in an inertial sensor, as detailed

in Chapter 4.

Figure 3.6: Structures are composed of circular notch hinges manufactured from a 5 mm fused
silica substrate. This structure is part of a mirror guiding for an inertial sensor optical readout.
The circular notch hinges have a central thickness of approximately 80 &m

Figure 3.7 shows a hinge composed of two 50 &m thin leaf springs manufactured from a 2

mm fused silica substrate. The dif�culty was �nding a way to design easy-to-etch mechanical

stops. First, 3D mechanical stops were designed but were not successfully produced due to

waste removal complexity. This design includes an easy-to-produce mechanical stop. This

stop is obtained leaving a 35 &m gap along the length of the part. This gap is produced by

passing 1 time with the laser. So, the original gap is about 3 &m, the width of the laser voxel.

Then, the gap increases by etching the non-illuminated material due to the long etching time

of the part (22 h). This �exure hinge is used as the guiding joint of a proof mass in an inertial

sensor, as detailed in Chapter 4. It is used in combination with the guiding of �gure 3.6.
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Figure 3.7: On the top, is a �exure hinge composed of 2 leaf-springs manufactured from a 2
mm glass substrate. Each leaf spring is located between the passing holes. They are 7.4 mm
wide, 500 &m long and 50 &m thick. On the centre, a scheme of the mechanical stop limits the
bending range of the hinge (In the same way as the specimen in �gure 3.12c). On the bottom,
a close view of the corners of one of the leaf springs. On the surface, the visible craters are the
marks of the laser voxel.

Discussion Three-dimensional structures with high aspect ratios such as �exures have been

manufactured in our lab using the femtosecond laser-assisted wet etching process. It is a

long process for thick part manufacturing. It takes about three to �ve days to manufacture

structures from a 2 mm to 5 mm thick substrate. For example, the �exure joint of �gure 3.7

takes about one day of machining, one day of etching and half a day of cleaning and drying.

However, this process allows the manufacture of these parts in fused silica glass. Also, as

the material is transparent, it can be machined with a contactless method such as using a

femtosecond laser. So, complex three-dimensional designs can be manufactured. During

my work, the design limit was to manufacture structures with non-vertical or non-horizontal

toolpaths. This is due to the Alphacam software complexity. If the "cut" is not vertical, as

in �gure 3.2, instead of de�ning a pitch, each horizontal plane toolpath has to be de�ned

manually. This has been improved lately by the newly updated Alphacam from Femtoprint

which has a special function to de�ne intelligent surface machining. It has been used to

improve the optical �bre mechanical guide described in Chapter 5 for example. Also, �gure

3.8 shows a test of free cross-spring hinge manufacturing in a 2 mm substrate in a transverse

orientation from the one obtained in �gure 3.4. Unfortunately, the wet etching was not a
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success. The etchant was not able to penetrate through all the substrate. The pitch of the

horizontal layers, the orientation of the toolpath and the hatching need to be investigated.

Figure 3.8: Sample example processed using the surface machining macro to manufacture
oblique �exure joints using the x10 laser objective. The KOH etching failed. The oblique parts
were not etched completely.

3.1.2 Annealing

As demonstrated in [89], fused silica mechanical strength can be increased by annealing

the structures after the femtosecond laser-assisted wet etching. It has been reported that

their compressive strength was improved from 8 GPa without annealing to 10 GPa for 17 &m

diameter pillars with an annealing of 4 h at 1200 °C. We have decided to test this process for

our bending specimens. They will then be used to perform bending tests that estimate the

bending strength of fused silica in their dimension range. The annealing is performed using a

Nabertherm oven. At �rst, the specimens are cleaned in acid. Pure acetic acid ( CH3COOH)

and hydrochloric acid (HCl) are tested as cleaning solutions. The specimens are bathed in

acid for 2 x 10 minutes at laboratory temperature. After the �rst 10 min, the specimens are

�ipped and the bath continues for 10 min. Afterwards, they are cleaned with pure water. The

acid cleaning removes the residual alkali metals such as Potassium or other impurities at

the surface. Alkali such as Potassium can adsorb in fused silica during the heating process

and crystallize above 700 °C which changes the properties of the structure. Then, after the

specimens are dehydrated, they are placed in the oven lying on Platinum pots (�gure 3.9).
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Figure 3.9: Annealing process. On the left, is a view of 2 samples cleaned in an acid bath and
placed inside separated platinum annealing pots. On the right, the oven used for the annealing
process.

Visual Results The �rst results were obtained following the same annealing step as in [89].

The temperature is increased with a ramp of 10 °C/min. Then, the temperature of 1200 °C is

kept for 4 h for annealing the samples. This �rst test was performed without acid cleaning.

Only a pure water cleaning was performed before the annealing. Figure 3.10 shows pictures

of the annealed specimen. The complete monolithic structure was deformed. On the closed

view of one of the cross-spring hinges, deformation is present along the length of one of the

beams. Also, crystallization is present at different locations of the structure. To mitigate the

deformation, the annealing step shall be shorter. It has then been performed during 3 h at

different temperatures (�gure 3.11). Crystallization is prevented by cleaning the specimens

using HCl or CH 3COOH. It is explained by the fact that some impurities such as Alkalis are

present at the surface of the fused silica substrate. Then, cristobalite can appear at tempera-

tures above 800 °C [54]. Finally, it crystallizes during the cool-down. The test performed with

the acid cleaning (�gure 3.11) shows no more crystallization. The source of the impurities is

probably the KOH etching step of the structure manufacturing.
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